电介质陶瓷的微波烧成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波烧成技术是利用微波具有的特殊波段与材料的基本细微结构耦合而产生热量,材料的介质损耗使其材料整体加热至烧结温度而实现致密化的方法,是快速制备高质量的新材料和制备具有新的性能的传统材料的重要技术手段。它具有烧结温度低、烧结时间短、能源利用率和加热效率高、安全卫生无污染等优点。
     本文采用4个1.5kW的微波源叠加,通过谐振腔和保温装置的优化,设计了一台工业微波炉。当输入功率为1.5kW微波能量时,炉腔内的功率密度为30kW/m3,输入最大功率6kW时,炉腔内的功率密度已经达到120kW/m3。该设备有待改进的地方在于:微波源功率只能四级可调,难以精确控制升温速度,只适用于对升温速度要求不太严格的材料,如粉体材料的合成等。
     采用自行设计的工业微波炉合成了K0.5Na0.5NbO3(简称KNN)系无铅压电陶瓷粉体。设计了合理的保温装置和微波合成工艺升温曲线,考察了不同微波合成温度对KNN粉体性能和微观形貌的影响。结果发现:传统电热法的固相合成温度需要800℃以上,而微波法的固相合成温度在600℃保温5min,就可得到处于准同型相界(MPB)的粉体,至少降低了200℃的合成温度,且总体合成时间不到电热合成的1/20。微波合成法所得到的粉体形状规则、大小均匀、团聚较少,具有更好的烧结性能,是一种具有很好应用前景的材料合成方法。
     分别采用电热和微波烧结法制备了(Zr0.8Sn0.2)TiO4 (ZST)微波介质陶瓷,研究了不同方法中烧结工艺制度对介质陶瓷材料密度、微观结构、相组成和微波介电性能的影响。结果表明:与电热烧结相比,在所得材料密度近似的情况下,微波烧结能降低烧结温度约70℃、缩短烧结时间2.5h,所获材料密度分布的标准差大大减小;微波烧结所得材料的晶粒尺寸均匀、结构致密;材料的介电常数和品质因数随着微波烧结温度的提高而增大,对应数值分别比传统烧结方式提高17.5%和14.3%左右。并对微波烧结介质陶瓷的致密化机理以及性能进行了较系统的理论分析。
The technology of microwave sintering is the method which use the special band of microwave to couple the basic fine structure of materials to arising heat, and the dielectric loss of materials make itself heated to the sintering temperature to achieve densification. It is an important technical means that can be used to prepare materials which have high quality or new properties fast. It has many benefits such as lower sintering temperature, shorten sintering time, and improve the energy efficiency and security, etc.
     In this paper, four 1.5kW microwave sources are added to 6 kW, through optimizing the resonant cavity and the insulation device, we designed an industrial microwave oven. When the input microwave power is 1.5kW, the power density of the furnace cavity 30kW/m3, and when the input microwave power is 6kW, the power density of the furnace cavity has reached 120kW/m3. Deficiency is that the microwave source power only four levels adjustable, so it is difficult to control the rate of rising temperature accurately, and it just only applies to material which have less stringent requirements on the heating rate, Such as the synthesis of ceramic powders, etc.
     In this paper, the self-designed industrial microwave was used to synthesis K0.5Na0.5NbO3 (abbreviated as KNN) Lead-free piezoelectric ceramic powder. A reasonable insulation device and a microwave heating curve are designed, the influence of different microwave synthesis temperature to the powder properties and microstructure of KNN are studied. The results showed that microwave synthesis can lower the synthesis temperature about 200℃and cut down the processing time to about 1/20, comparing to electric heating method need synthesis temperature above 800℃. The powders obtained by microwave synthesis exhibit fine morphology, uniform granularity and less reunion, microwave synthesis is a kind of good prospects for the development of materials process method.
     Microwave sintering and electrical-thermal sintering techniques were used to prepare the (Zr0.8Sn0.2)TiO4 (ZST) ceramics whose densification, component, microstructure and dielectric performance were characterized by Archimedes method, X-ray diffraction (XRD), scanning electron microscopy (SEM) and HP8720ES network analyzer, etc. The results show that the microwave sintering method can decrease the sintering temperature about 70℃and the sintering time about 150min and can enhance the densification. The value of sr and Q of ZST increased with the increasing of sintering temperature, and the corresponded value increase 17.5% and 14.3% respectively, compared with electrical-thermal sintering. The densification mechanic and performance were analysised more systematically in theoretically.
引文
[1]Tinga W R, Voss Wag. Microwave Power Engineering. Academic Press New York. 1968
    [2]王念,周健.陶瓷材料的微波烧结特性及应用[J].武汉理工大学学报,2002,24(5):43-46
    [3]K. Y. Lee, P. H. Dearhouse, and E. D. Case. Microwave sintering of alumina using four single-cavity modes [J]. Journal of Materials Synthesis and Processing,1999, 7(3):159-166
    [4]L. M. Sheppard. Innovative processing of advanced ceramics [J]. American Ceramic Society Bulletin,1993,72(4):48-53
    [5]M. Jain, G. Skandan, A. Singhal, D. Agrawal. Processing of nanopowders into transparent ceramics for infrared windows [J]. Proceeding of SPIE,2003,5078: 189-198
    [6]W. H. Sutton. Microwave processing of ceramics-an overview, in microwave processing of materials Ⅲ, edited by R. L. Beatty, W. H. Sutton, and M. F.Iskander (Mater.Res.Soc.Proc.269, Pittsbur, Pa).1992,269:3-20
    [7]L. M. Sheppard. Innovative processing of advanced ceramics [J]. American Ceramic Society Bulletin,1993,72(4):48-53
    [8]周健,程吉平,傅文斌,等.2450MHz/5KW改进的单模腔微波烧结系统研制[J].武汉工业大学学报,1999,21(4):4-6
    [9]王黎.Al2O3-Si-Al系统中原位合成Sialon的动力学研究[D].西安:西安建筑科技大学,2003:1-24
    [10]仲维斌,李文超.无压烧结合成Sialon[J].耐火材料,1995,2:63-66
    [11]常爱民.氧化物电子陶瓷材料的微波处理研究[D].成都:电子科技大学,2002:1-122
    [12]C. O. Meara, J. Sjoberg and G. D. Pompe. Oxidation of pressureless sintered Si2N2O materials [J]. Journal European Ceramic Society,1991,7(6):369-378
    [13]J. H. Booske, R. F. Cooper, I. Dobson. Mechanisms for nonthermal effects on ionic mobility during microwave processing of crystalline solids [J]. Journal of Materials Research,1992,7(2):495-500
    [14]K. I. Rybakov and V. E.Semenov. Mass transport in ionic crystals induced by the ponderomotive action of a high-frequency electric field [J]. Physcal Review Bulletin 1995,52:3030-3033
    [15]S. Egorov, A. Eremeev, A. Sorokin, and A. Rachkovskii. Experimental study of the possibility of microstructure control in the microwave sintering of nanostructured alumina, in Abstr.3rd World Congr. Microwave and Radio Frequency Applications, Sydney, Australia,2002,99:109-110
    [16]Black R D, Meek T T et al. Microwave processed eom-posite materials [J]. Journal of Material Science Letter,1986,5:1097-1098
    [17]W. Yang, A. Chang, and B. Yang. Preparation of barium strontium titanate ceramic by Sol-Gel method and microwave sintering [J]. Journal of Materials synthesis and processing,2002,10(6):303-309
    [18]S. Singh, O. P. Thakur and C. Prakash. Dielectric and piezoelectric properties of microwave processd Sm substituted PCT ceramics [J]. Journal of Physical: Application Physical,2005,38:1621-1638
    [19]Willard H.Suton. Microwave Processing of Ceramic Materials. Ceramic Bulletin. 1989,68(2):376-386
    [20]Xie Zhipeng, Wang Changan et al. Micorwave Processing and Porperties of ZrO2 with 2.45GHz Irradiation. Materials Leters,1999,38(3):190-196
    [21]张劲松,曹丽华,等.微波烧结关键技术的进展.材料导报.1994,2:34-37
    [22]Gerald J. Vogt, Wesley P. Unruh, etal. Microwave sintering of continuous zirconia ceramic fibers Materials Research Society Symposium Proceedings.1994,347(48): 551
    [23]Wang Jun, etal. Preparation of mixed silicon carbide fiber with the function of absorbing microwaves Gongneng Cailiao. Jounral of functional Materials 1997, 28(6):619-622
    [24]Levush, B. Multi-frequency microwave sintering of ceramics. IEEE International Conference on Plasma Science.1995.5-8:2130730-9244
    [25]Calame,1. P. Dielcetric properties of poorus zinc oxide ceramics. Materials Research Society Symposium Proceedings 430 April 8-12,1996:273-278
    [26]吕明,陈楷,苏雪筠.氧化物陶瓷的微波烧结机理[J].中国陶瓷,1998,35(4):26-29
    [27]Cheng J. P., Agrawal D., Zhang Y. H. et al. Fabricating Transparent Ceramics by Microwave Sintering [J]. American Ceramic Society Bulletin,2000,79(9):71-74
    [28]Fang Y, Roy R., Agrawal D.K.etal.Transparent Mullite Ceramics from Diphasic Aerogels by Microwave and Conventional Processing [J]. Materials Letter,1996, 28(1-3):11-15
    [29]朱文玄,吴一平,徐正达.微波烧结技术及其进展[J].材料科学与工程,1998,16(2):61-64
    [30]刘阳,曾令可,胡晓力.微波合成纳米TiC粉体的热力学研究[J].中国陶瓷工业,2003;10(3):20-23
    [31]曲世鸣,张明.微波混合加热技术及应用前景[J].物理,1999,28(2):117
    [32]李磊,许业文,林枞等.微波烧结ZnO压敏电阻的可行性研究[J].电子元件与材料,2007,26(3):41-43
    [33]Mohit Jain, Ganesh Skandan, Amit Singhal, Dinesh Agrawal, Processing of nanopowders into transparent ceramics for infrared windows[J]. Proceeding of SPIE, Vol.5078,2003,189-198
    [34]Yi Fang, Dinesh Agrawal, Ganesh Skandan, Mohit Jain, Fabrication of translucent MgO ceramics using nanopowders[J]. Materials Letters,2004,58:551-554
    [35]Jiping Cheng, Dinesh Agrawal, Yunjin Zhang, Rustum Roy, Microwave sintering of transparent alumina [J]. Materials Letters,2002(56):587-592
    [36]Jiping Cheng, Dinesh Agrawal, Yunjin Zhang and Rustum Roy, Development of translucent aluminumnitride (AlN) using microwave sintering process[J], Journal of Electroceramics,2002(9):67-71,
    [37]Ramesh Peelamedu, Sintering of zirconia nanopowder by microwave-laser hybrid process [J]. Journal American Ceramic Society,2004,87(9):1806-1809
    [38]S. Egorov, A.Eremeev, A.Sorokin, and A.Rachk-ovskii. "Experimental study of the possibility of micro-structure control in the microwave sintering of nanostruc-tured alumina," in Abstr.3rd World Congr. Microwave and Radio Frequency Applications [J]. Sydney, Australia,2002,99:109-110
    [39]Yoon-chang Kim, et al, Novel microstructure of microwave sintered silicon nitride doped with Al2O3 and Y2O3 [J]. Ceramic Engneer & Science Processing,1997. 18(4):394-400
    [40]V. P. Paranosenkov, I. Yu. Kelina, L. A. Plyasunko-va, and Yu. V. Bykov, Preparation of dense ceramics based on silicon nitride [J]. nanopowders,2003, 44(4):223-226
    [41]M. Panneerselvam, Ankur Agrawall, K. J. Rao, Microwave sintering of MoSi2/SiC composites[J], Material Science and Engineering A,356(2003) 267/273
    [42]田岛键一.高强度压电陶瓷制造方法[J].日本公开特许公报(A),特开平,1998,350:10-29
    [43]杨文,常爱民,庄建文.陶瓷材料的制备及介电特性研究[J].无机材料学报,2002,17(4):822-825
    [44]王卓薇,王志强,等.羟基磷灰石的微波烧结[J].大连轻工业学院学报,2007,26(2):147-151
    [45]樊旭东,谢志鹏,黄勇.Y、Ce-TZP陶瓷的快速烧结[J].现代技术陶瓷增刊.1996,731-735
    [46]李世普.特种陶瓷工艺学[M].武汉工业大学出版社,1990.4:160-165
    [47]徐政,倪宏伟编著.现代功能陶瓷[M].北京:国防工业出版社.1998
    [48]刘维良主编.先进陶瓷工艺学[M].武汉:武汉理工大学出版社.2004
    [49]李玉平,高朋召,刘荣正,等.(Zr0.8Sn0.2) TiO4 (ZST)微波介质陶瓷的微波烧成工艺研究.陶瓷学报.2007,28(3):200-204
    [50]干福熹.信息材料[M].天津:天津大学出版社,2000
    [51]Wu Z G, Ronald E. Pressure2induced anomalous phase transitions and colossal enhancement of piezoelectricity in PbTiO3 [J]. Physical Review Letters,2005, 95(037601):124.
    [52]张福学.现代压电学(上册)[M].北京:科学出版社,2001
    [53]张福学.现代压电学(下册)[M].北京:科学出版社,2003
    [54]惠春.水热合成PZT纳米晶粉末烧结性及机理的研究[J].压电与声光,1997,19(1):61-64.
    [55]江向平,廖军,魏晓勇等.中温烧结PZN-PZT系陶瓷的压电性能研究[J].无机材料学报,2000,15(2):281-286
    [56]王军霞,杨世源,牟国洪.锆钛酸铅陶瓷的烧结研究进展[J].陶瓷,2004(6):10-14
    [57]Thomas R. Shrout, Shujun Zhang, Richard Eitel, et al. High Performance, High Temperature Perovskite Piezoelectrics[C]. IEEE International UFFC Joint Conference, Montreal,2004
    [58]Yasuyoshi Saito, Hisaaki Takao, Toshihiko Tani, et al. Toshiatsu Nagaya & Masaya Nakamura, Lead-free piezoceramics[J]. Nature,2004,432:84-87
    [59]Yiping Guo, Kenichi Kakimoto, Hitoshi Ohsato. Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)Nb03-LiNb03 cermaics, Application of Physical Letter 2004,85(18):4121-4123
    [60]李宝让,王哓慧,李龙土,等.放电等离子法烧结BaTiO3纳米晶[J].压电与声光,2005,27(1):44-46.
    [61]肖定全.关于无铅压电陶瓷及其应用的几个问题[J].电子元件与材料,2004,23(11):62-65
    [62]ZHANG Boping, ZHANG Hailong, LI Jingfeng, et al. Composition dependence of piezoelectric properties in NaxKl_xNbO3 lead-free ceramics prepared by spark plasma sintering[J]. Journal of the American Ceramic Society,2006,89(5): 1605-1609
    [63]张沛霖,钟维烈,陈守六,等.压电材料与器件物理[M].青岛:山东科学技术出版社,1996
    [64]Wu Z G, Ronald E. Pressure induced anomalous phase transitions and colossal enhancement of piezoelectricity in PbTiO3. Physical Review Letter,2005, 95(037601):124
    [65]Zhang S J, Eitel E, Randall A, et al. Manganese modified BiScO3-PbTiO3 piezoelectric ceramic for high temperature shear mode sensor. Application Physical Letter,2005,86(262904):123
    [66]吴浪,肖定全,赁敦敏,等.LiNbO3改性KNN基无铅压电陶瓷的制备和性能.压电与声光,2008,30(4):483-486
    [67]Jurgen Rodel, Alain B.N. Kounga, Marion Wwissenberger-Eibl et al. Development of a roadmap for advanced ceramics:2010-2025. Journal of the European Ceramic Society,2009, (29):1549-1560
    [68]R.C.C. Figurira, M. P. F. Graca, L. C. Costa et al. Crystallization of KNbO3 in a B2O3 glass network. Journal of Non-Crystlin Solids,2008,354:5162-5164
    [69]E. Dulkin, E.Mojaev, M. Roth, Wook Jo et al. Acoustic emission study of domin wall motion and phase transition in (1-x-y) Bi0.5Na0.5TiO3-xBaTiO3-yK0.5Na0.5NbO3 lead-free piezoceramics. Script Material, 2009,60:251-253
    [70]Seok-Jung Park, Hwi-Yeol Park, Kyung-Hoon Cho et al. Effect of CuO on the sintering temperature and piezoelectric properties of lead-free 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 ceramics. Material Research Bulletin,2008,43: 3580-3586
    [71]Henry Ekene Mgbemere, Ralf-Peter Herber, Gerold A. Schneider. Effect of MnO2 on the dielectric and piezoelectric properties of alkaline niobate based lead free piezoelectric ceramics. Journal of the European Ceramic Society,2009,29: 1729-1733
    [72]黄向东,李建保,谢志鹏,等.微波与无机非金属介质的相互作用.无机材料学报,1998,13(3):282-290
    [73]Yun-Tien Chen, Ching-Iuan Sheu, Shih-Chin Lin et al. Effects of microwave heating on dielectric and piezoelectric properties of PZT ceramic tapes. Ceramic International,2008,34:621-624
    [74]Cheng-Yu Hsieh, Chun-Nan Lin, Shyan-Lung Chung et al. Microwave sintering of AlN powder synthesized by a SHS method. Journal of European Ceramic Society, 2007,27:343-350
    [75]Hongtao Yu, Hanxing Liu, Dabing Luo et al. Microwave synthesis of high dielectric constant CaCu3Ti4O12. Journal of Material Processing Technology,2008, 208:145-148
    [76]唐福生,杜红亮,刘代军,等.(Ko.5Nao.5)NbO3-LiNbO3无铅压电陶瓷的烧结特性和压电性能研究.无机材料学报,2007,22(2):323-327
    [77]John G. Fisher, Suk-Joong L. Kang. Microstructural changes in (K0.5Na0.5)Nb03 ceramics sintered in various atmospheres. Journal of European Ceramic Society, 2009,29:2581-2588
    [78]E. Breval, J.P.Cheng, D.K.Agrawal, P.Gigl et al. Comparison between microwave and conventional sintering of WC/Co composites. Material Science and Engneer A, 2005,391:285-295
    [79]Romualdo R.Menezes, Pollyane M.Souto, Ruth.H.GA.Kiminami. Microwave hybrib fast sintering of porcelain bodies. Journa of Material Processing Technology,2007,190:223-229
    [80]Aimin Chang, Jiawen Jian. The orientational growth of grains in doped BaTiO3 PTCR materials by microwave sintering. Journal of Materials Processing Technology,2003,137:100-101
    [81]林营,杨海波,朱建锋,等.铌酸钾钠陶瓷的低温制备及其介电性能分析.压电与声光,2009,31(1):87-89
    [82]K.Perumal et al. Microwave-assisted synthesis and characterization of tin oxide nanoparticles. Materials Letter,2008,62:3437-3440
    [83]郭秀芬.陶瓷介质在微波技术中的应用[J].压电与声光,1990,12(6):40-47.
    [84]曲秀荣,贾德昌.微波介质陶瓷的研究进展[J].硅酸盐通报,2006,6(25):144-147
    [85]傅英松,刘建勇,石勇,等.(Zr, Sn)TiO4系微波介质陶瓷的研究进展[J].陶瓷学报,2005,26(2):133-138
    [86]Ru-Yuan Yang, Min-Huang Weng, Hon Kuan. TEM observation of liquid phase sintering in V2O5 modified Zr0.8Sn0.2Ti04 microwave ceramics.Ceramics International,2007,9:2762-2767
    [87]王依琳,赵梅瑜,吴文俊,等低温烧结陶瓷的晶相组成和微波介电性能.无机材料学报,2005,20(3):613-617
    [88]Guohua Huang, Dongxiang Zhou, Jianmei Xu, Xiaoping Chen, Daoli Zhang, Wenzhong Lu, Buyin Li. Low-temperature sintering and microwave dielectric properties of (Zr,Sn)TiO4 ceramics[J]. Materials Science and Engineering B,2003, 99:416-420
    [89]Cheng-Liang Huang, Ming-Hung Weng. Liquid phase sintering of (Zr, Sn)TiO4 microwave dielectric ceramics[J]. Materials Research Bulletin,2000,35: 1881-1888
    [90]P. Yadoji. R. Peelamedu, D. Agrawal, R. Roy. Microwave sintering of Ni-Zn ferrites:comparison with conventional sintering [J]. Materials Science and Engneer,2003, B98:269-278
    [91]李俊,文俊翔,冷观武,等.微波烧结高磁导率Mn-Zn铁氧体材料的研究[J].磁性材料及器件.2004,35(2):36-39
    [92]谢志鹏,李建保,张锐等.Ce-Y-ZTA复相陶瓷的微波烧结[J].复合材料导报,1998,15(2):48-52
    [93]R.Freer, F. Azough. Microstructural engineering of microwave dielectric ceramics [J]. Journal of the European Ceramic Society,2008,28:1433-1444
    [94]吴苏,鹿安理,白向钰,等.陶瓷材料的微波烧结机理探讨[J].航空材料学报,1996,16(4):24-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700