全光纤级联拉曼光纤激光器及其泵浦源实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拉曼光纤激光器是一种基于受激拉曼散射效应的光纤激光器,只要具有合适波长的泵浦源和反馈元件,拉曼光纤激光器可以获得任意波长的激光输出。级联拉曼光纤激光器具有增益介质长、噪声低、调谐范围宽、可同时实现多波长输出和与光纤耦合效率高等优点。级联拉曼光纤激光器用于泵浦光纤拉曼放大器可以在很宽的带宽内实现平坦放大,是光纤拉曼放大器理想的泵浦源。多波长输出的级联拉曼光纤激光器用作光纤通信系统,特别是波分复用系统的信号源,可以减少发射端的激光器数量。
     本文首先对受激拉曼散射的原理进行了介。然后设计了一个五级级联拉曼光纤激光器系统,包括级联拉曼光纤激光器谐振腔的设计、泵浦源的设计和用于泵浦掺镱光纤激光器的大功率半导体激光器驱动电路的设计,在实验室对所设计系统的各部分特性进行了测试,并对实验结果进行了分析。
     本论文的主要研究内容如下:
     (1)对受激拉曼散射的基本原理以及国内在拉曼光纤激光器和掺镱双包层光纤激光器上的研究进展作了介绍。
     (2)对掺镱石英光纤中镱离子的受激辐射进行了介绍,完成了级联拉曼光纤激光器用大功率泵浦源――掺镱双包层光纤激光器的设计制作。
     (3)对掺镱双包层光纤激光器的泵浦源――半导体激光器的特性进行了介绍,完成了大功率半导体激光器驱动电路的设计。
     (4)对Bragg光纤光栅进行了介绍,完成对所使用光纤光栅的实验测试。
     (5)设计了一个基于线性腔结构的五级级联拉曼光纤激光器,对所设计的激光器进行了测试,并对测试结果进行了分析。
     (6)对设计的掺镱双包层光纤激光器及大功率半导体激光器的驱动电路进行了测试。
     测试结果显示,所设计的大功率半导体激光器驱动电路稳定可靠,满足使用要求,级联拉曼光纤激光器第五阶Stokes光的最大输出功率为599mW。文中还对造成级联拉曼光纤激光器泵浦阈值高、光-光转换效率以及斜率效率低的原因进行了分析。
Raman fiber lasers (RFL) which base on the stimulated Raman scattering (SRS) effect, can generate any wavelengths output if it is pumped with an appropriate pump source and feedback elements. Cascaded Raman fiber lasers (CRFLs) have some advantages, such as longer gain medium, lower noise, broader turning, multi-wavelengths output and high coupling efficiency. The CRFLs, used as pump source in Raman fiber amplifier, can generate flat gain in a wide-band range. It is an ideal pump resource of Raman fiber amplifier. Multi-wavelengths CRFLs can be used as light source in fiber communication system, especially in WDM system. With it, the number of lasers in transmitter will be decreased.
     In this dissertation, SRS theory is introduced firstly. Then, a five-order CRFL is designed, including the design of CRFL resonant cavity, pump source, and the driving circuit of high power LD,which used as pump source for Yb~(3+)-doped double claded fiber lasers (DCFLs). The characteristics of each part of the system are measured in laboratory and the experimental results are analyzed.
     The main contents of this dissertation are as followings:
     (1) The basic theory of SRS, the domestic and abroad research state for RFLs and Yb~(3+)-doped DCFLs are introduced.
     (2) The transition processses between the energy states of the Yb~(3+) in Yb-doped fiber are presented. The high power DCFL, used as pump source for CRFL, is designed.
     (3) The drive circuit for high power LD, which used for pump DCFL is designed. The characteristics of LD are also introduced in this dissertation.
     (4) Bragg fiber grating is brifly introduced, and transmitiom spectra of the fiber gratings we used are experimentally measured.
     (5) The resonance cavity of a five-order CRFL in line style is designed. The CRFL is testd in the laboratory, and the experimental results are analysed.
     (6) The DCFL and the drive circuit for LD are mesured.
     The test results show that the driving circuit designed for high power LD is stable and fulfilled the requirement. The fifths Stokes light maximum output of the CRFL is 599mW. Reasons for high pump threshold, low light-light conversion efficiency and low slope efficiency of the CRFL are also analyzed in the dissertation.
引文
[1] K. Ueda, A. Liu. Future of high-power fiber lasers. Laser Physics, 1998, 8(3):774-781
    [2] N. Johan, K. S. Jaganta, J. Yoonchan, et al.. High power new development, Proc. of SPIE, 2003(4974): 36-45
    [3]楼祺洪,周军,朱健强,等.高功率光纤激光器研究进展.红外与激光工程,2006,35(2):135-138
    [4]曾华,陈晓天,韩天愈.光纤激光器.光机电信息,2004,7:1-5
    [5]刘锐,瞿荣辉,陈辰,等.高功率光纤激光器研究进展.激光与光电子进展,2005,42(8):1-5
    [6]邓元龙,姚建铨,阮双琛.高功率光子晶体光纤激光器及关键技术.激光技术,2005,29(6):596-598
    [7]张瑞军.光子晶体光纤激光器.微纳电子技术,2006(7):323-329
    [8]黄绣江,刘永智,隋展,等.宽带可调谐掺Yb3+光纤环形腔激光器.光电子?激光,2005,16(7):771-774
    [9]李丽君,王志,范万德,等.波长无啁啾调谐窄线宽掺Yb3+双包层光纤激光器.光子学报,2005,34(2):184-186
    [10]郭巍.一种输出稳定的窄线宽可调谐掺铒光纤激光器.河北师范大学学报(自然科学版),2006,30(1):43-44
    [11]项阳,许兆文,宁鼎,等.掺Yb3+双薄层光纤激光器的多波长输出.中国激光,2004,31(4):403-406
    [12]田大伟,董波,胡曙阳,等.多波长掺铒光纤激光器技术研究.激光与光电子进展,2006,42(9):6-10
    [13] E. Snitzer. Optical maser action of Nd3+ in a barium glass. Phys. Rev. Lett., 1961, 7(12):444
    [14] C. J. Koester, E. Snitzer. Amplification in a fiber laser. Appl. Opt., 1964(10):1182-1186
    [15] E. Snitzer, H. Po, F. Hakimi, et al.. Double-clad offset core Nd fiber laser. Proc. OFC,1988:PD5
    [16] H. Po, E. Snitzer, R. Tummelini, et al.. Double clad high brightness Nd fiber laser pumped by GaAlAs phased array. Proc. OFC,1989:PD7
    [17] H. M.Pask, J. L. Archambault, D. C. Hanna. Operation of cladding-pumped Yb3+-doped silica fibre lasers in 1μm region. Electronics Letters, 1994, 30(11):863-865
    [18] V. Dominic, S. MaeCormack, R. Waarts, et al.. 110W fiber laser. Electron Lett.. 1999, 35(14):1158-1160
    [19] J. Limpert, A. Liem, S. Hofer, et al.. 150W Nd/Yb codoped fiber laser at 1μm, CLEO, 2002, CThX3:590-591
    [20] U. Ken-ichi, A. Li. Future of high powcr fiber laser. Laser Physics, 1998, 8(8):774-781
    [21] http://bbs.njupt.edu.cn/cgi-bin
    [22] IPG photonics newsletters, October 2004
    [23] http://www.ipgphotonics.com.cn/newsletter, 2006
    [24]吕可诚,刘伟伟,吕福云,等.包层泵浦光纤激光器.中国科学基金,1999,13(5):288-292
    [25]陈柏,陈兰荣,林尊琪,等.LD抽运的掺Yb3+双包层光纤激光器.中国激光,2000,A27(2):101-105
    [26]吕可诚,刘伟伟,李乙钢,等.高效率掺Yb双包层光纤激光器.中国激光,2000,A27(2):755
    [27]吕可诚,苏红新,李乙钢,等.瓦量级全光纤掺Yb3+双包层光纤激光器.中国激光,2002,A29(7):604
    [28]楼祺洪,周军,李铁军,等.4.9W掺镱双包层光纤激光器.中国激光,2002,A29(4):306
    [29]楼祺洪,周军,朱健强,等.掺Yb双包层光纤激光器获得50W激光输出.中国激光,2003,30(10):884
    [30]楼祺洪,周军,朱健强,等.单端抽运国产D形双包层光纤激光器实现输出功率200W.中国激光,2004,31(9):1029
    [31]闫平,巩马理,袁艳阳,等.双端包层抽运光纤激光器实现137W激光输出.中国激光,2004,31(1):80
    [32]楼祺洪,周军,朱健强,等.国产双包层掺镱光纤实现440W的连续高功率激光输出.中国激光,2005,32(1):20
    [33]周军,楼祺洪,朱健强,等.采用国产大模场面积双包层光纤的714 W连续光纤激光器.光学学报,2006,26(7):1119-1120
    [34]朱宗玖,周孟然.多波长掺镱光纤激光器实验研究.光电工程,2007,34(7):59-62
    [35]朱宗玖,孙青,刘雪明,等.掺镱光纤激光器的多波长振荡特性.中国激光,2007,34(10):1333-1337
    [36] Su Hongxin, Li Yigang, Lu Kecheng, et al.. Wavelength tunable Yb3+-doped double-clad photonic crystal fiber laser. Proc. SPIE Int. Soc. Opt. Eng.. 2008, 6823:682318
    [37] M. Rini, I. Cristiani, V. Degiorgio. Numerical modeling and optimization of cascaded CW Raman fiber lasers. IEEE J. Quantum Electron, 2000, 36(10):1117-1122
    [38] M. Rini, I. Cristiani, V.Degiorgio, et al.. Experimental and numerical optimization of a fiber Raman laser. Optics Communications, 2002, 203(1-2):139-144
    [39] S. D. Jackson, P. H. Muir. Theory and numerical simulation of nth-order cascaded Raman fiber lasers. J. Opt. Soc. Am B, 2001, 18(9):1297-1306
    [40] C. Sven, R. Hagen, B. Ernst. Numerical optimization of multi-wavelength and cascaded Raman fiber lasers. Opt. Commun., 2003, 217(1-6):233-238
    [41] Y. Wang, P. Hong. Characteristics of fibre Bragg gratings and influences on high-power Raman fibre lasers. Meas. Sci. Technol., 2003, 14(6):883-891
    [42] Bouteiller, Jean-Christophe. Spectral Modeling of Raman Fiber Lasers. IEEE Photonics Technol Lett., 2003, 15(12):1698-1700
    [43] L. Florence, M. Catherine, B. Sophie, et al.. Modeling of multiwavelength Raman fiber lasers using a new and fast algorithm. IEEE Photonics Technol Lett., 2004, 16(12):2601-2603
    [44] K. Michael, R. Hagen. Theory and design of double-cavity Raman fiber lasers. J. Lightwave Technol., 2005, 23(8):2474-2483
    [45] K. Michael, R. Hagen. Numerical calculation of the linewidth of Raman fiber lasers due to spontaneous Raman scattering. AEU Int. J. Electron. Commun., 2005, 59(8):502-509
    [46] B. Bryan, G. Nicolas, L. Suzanne. Theoretical analysis of nth-order cascaded continuous-wave Raman fiber lasers. I. Model and resolution, J. Opt. Soc. Am B, 2005, 22(4):764-771
    [47] S. A. Babin, D. V. Churkin, A. E. Ismagulov, et al.. Spectral broadening in Raman fiber lasers. Opt. Lett.. 2006, 31(20): 3007-3009
    [48] S. A. Babin, D. V. Churkin, A. E. Ismagulov, et al.. Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser. Opt. Soc. Am. B, 2007, 24(8): 1729-1738
    [49] S. A. Babin, D. V. Churkin, A. E. Ismagulov, et al.. Role of nonlinear effects in Raman fiber laser spectral broadening. Proc. SPIE, 2007, 6612: 661206
    [50] S. A. Babin, D. V. Churkin, A. E. Ismagulov, et al.. Turbulence-induced Raman fiber laser output spectrum formation and broadening. Proc. SPIE, 2007, 6725: 67251G
    [51] S. A. Babin, V. Karalekas, E. V. Podivilov, et al.. Turbulent broadening of optical spectra in ultralong Raman fiber lasers. Phys. Rev. A, 2008, 77: 033803
    [52] J. Hagen, R .Engelbrecht, O. Welzel, et al.. Numerical modeling of intracavity spectral broadening of Raman fiber lasers. IEEE Photon. Technol., 2007, 19(21): 1759-1761
    [53] Liu Tao, Zhou Xiaojun. Comment on“Theoretical analysis of nth-order cascaded continuous-wave Raman fiber lasers. II. Optimization and design rules”. J. Opt. Soc. Am. B,2007,24(1):28-29
    [54] Qin Zujun,Zhou Xiaojun,Li Qing,et al.. An Improved Theoretical Model of nth-Order Cascaded Raman Fiber Lasers. J. Lightwave Technology, 2007, 25(6):1555-1560
    [55] S. V. Chernikov, E. M. Dianov, D. J. Richardson, et al.. Soliton pulse compression in dispersion-decreasing fiber. Opt. Lett., 1993, 18(7):476-478
    [56] V. I. Karpov, E. M. Dianov, V. M. Paramonov, et al.. Laser-diode-pumped phosphosilicate-fiber Raman laser with an output power of 1 W at 1.48μm. Opt. Lett., 1999, 24(13):887-889
    [57] N. S. Kim, M. Prabhu, C. Li, et al.. Output characteristics of P-doped Raman fiber laser at 1484 nm with 2.11 W maximum output power pumped by CW 1064 nm Yb-doped double-clad fiber laser. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Note Rev. Pap., 2000, 39(11):6264-6267
    [58] N. S. Kim, M. Prabhu, C. Li, et al.. 1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation. Opt. Commun., 2000, 176(1):219-222
    [59] M. Prabhu, N. S. Kim, L. Jianren, et al.. Simultaneous two-color CW Raman fiber laser with maximum output power of 1.05 W/1239 nm and 0.95 W/1484 nm using phosphosilicate fiber. Opt. Commun., 2000, 182(4):305-309
    [60] M. D. Mermelstein, C. Headley, J. C. Bouteiller, et al.. Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening. IEEE Photonics Technol. Lett., 2001, 13(12):1286-1288
    [61] Z. Xiong, N. Moore, Z. G. Li, et al.. 10-W Raman fiber lasers at 1248nm using phosphosilicate fibers. J. Lightwave Technol., 2003, 21(10): 2377-2381
    [62] Y. G. Han, C. S. Kim, J. U. Kang, et al.. Multivelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings. IEEE Photon. Technol. Lett., 2003, 15(3): 383-385
    [63] R. Vallée, E. Bélanger, B. Déry, et al.. Highly efficient and high-power Raman fiber laser based on broadband chirped fiber bragg gratings. Lightwave Technol., 2006, 24(12): 5039-5042
    [64] G. Ning, P. Shum, S. Aditya, et al.. Multiwavelength Raman fiber lasers with equalized peak power using a sampled chirped fiber Bragg grating. Appl. Phys. B, 2006, 83: 249-253
    [65] Z. Xiong, T. Chen. Multi-wavelength Raman fiber laser with 2- and 3-stage cavities in a phosphosilicate fiber. Opt. Fiber Technol., 2007, 13: 81-84
    [66]李乙钢,苏红新,樊亚仙,等.级联拉曼光纤激光器.中国激光,2001,28(5):394
    [67]苏红新,吕可诚,闫培光,等.内腔级联拉曼光纤激光器输出特性的实验研究.光学学报,2003,23(1):53-56
    [68]孙迭篪,胡谊梅,尹红兵,等.用光纤回路镜组成运转在1240nm的新型串级光纤拉曼激光器.光学学报,2001,21(11):1407-1408
    [69]陈晴川,王英.固体激光器泵浦输出波长在1428nm的单级拉曼光纤激光器.光学与光电技术,2004,2(6):48-50
    [70]张敏明,刘德明,王英,等.用于光纤拉曼放大器抽运源的单级光纤拉曼激光器.光学学报,2005,25(12):1634-1638
    [71]郭春雨,阮双堔,闫培光,等,光子晶体光纤拉曼激光器研究,深圳大学学报理工版,2006,23(3):263-267
    [72]闫培光,阮双堔,郭春雨,等.3.8W光子晶体光纤拉曼激光器.光子学报,2006,35(3):324
    [73] S. A. Babin,D. V. Churkin,赵崇光等,二级级联拉曼光纤激光器的特性,中国激光,2007,34(2):156-162
    [74] Clifford Headley, Govind P. Agrawal. Raman Amplification in Fiber Optical Communication Systems. Elsevier Academic Press, 2005
    [75]郑顺旋.激光喇曼光谱学.上海科学技术出版社,1985.6
    [76] D. A. Long.喇曼光谱学.科学出版社,1983.9
    [77] E. P. Ippen. Low-power quasi-CW Raman oscillator. Appl. Phys. Lett.. 1970, 16:303-305
    [78] R. H. Stolen, E. P. Ippen, A. R. Tynes. Raman Oscillation in Glass Optical Waveguide. Appl. Phys. Lett., 1972, 20:62-64
    [79] Govind P. Agrawal. Nonlinear Fiber Optics. Third Edition, Academic Press, 2001
    [80] E. M. Dianov, D G. Fursa, A. A. Abramov, et al.. Raman Fiber-Optic Amplifier of Signals at the Wavelength of 1.3μm, Quantum Electron, 1994, 24:749-751
    [81] V. V. Grigoryants, B. L. Davydov, M. E. Zhabotinski, et al.. Spectra of stimulated Raman scattering in silica-fibre waveguides. Opt. Quantum Electron, 1977, 9(4):351-352
    [82] S. T. Davey, D. L. Williams, B. J. Ainslie, et al.. Optical Gain Spectrum of GeO2-SiO2 Raman Fiber Amplifiers. IEE Proceedings, 1989, 136(6):301-306
    [83] K. O. Hill, Y. Fujii, D. C. Johnson, et al.. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett., 1978, 32(10):647-649
    [84] J. Canning, R. Pasman, M. G.Sceats, et al.. Photosensitisation of Phosphosilicate fibre Bragg gratings. Photosensitivity and Quadratic Nonlinearity: Fundamentals and Applications, Washington, DC, 1995, paper SuA6
    [85] E. M. Dianov, M. V. Grekov, I. A. Bufetov, et al.. CW high power 1.24μm and 1.48μm Raman lasers on low loss phosphosilicate fibre. Electron Lett., 1997, 38(18):1542-1544
    [86] X. Normandin, F. Leplingard, E. Bourova, et al.. Experimental assessment of phosphor-silicate fibers for three-wavelength (1427nm, 1455nm,1480nm) reconfigurable Raman lasers. OFC 2002, TuB2:9-11
    [87] Y. G. Han, C. S. Kim, J. U. Kang, et al.. Multiwavelength Raman Fiber-Ring Laser Based on Tunable Cascaded Long-Period Fiber Gratings. IEEE Photonics Technology Letters, 2003, 15(3):383-385
    [88] D. I. Chang, M. Y. Jeon, H. K. Lee, et al.. 1480~1485nm cascaded CW Raman fiber laser. CLEO 2000, CWK20:302-302
    [89] B. S. Kawasaki, K. O. Hill, D. C. Johnson, et al.. Narrow-Band Bragg Reflectors in Optical Fibers. Optics Letters, 1978, 3:66-68
    [90]李川,张以谟,赵永贵,等.光纤光栅:原理、技术与传感应用.科学出版社,2005.10
    [91]王帆,王春霞,王田虎,等.一种实现半导体激光器和多模光纤耦合的实用技术.激光与红外,2006,36(7):555-557
    [92]杨瀛海,吴金生,俞本立,等.球形光纤端面效应及其应用.光学技术,1999,(4):55-57
    [93]李鹏,张全,沈诗哲,等.柱状楔形微透镜光纤与半导体激光器耦合效率研究.光学仪器,2006,28(3):52-55
    [94]焦明星,张书练,梁晋文,等.大功率LD与多模光纤的直接耦合.激光技术,1997,21(2):77-80
    [95]谭旭东,任钢,蔡邦维,等.斜端面光纤耦合效率理论与实验研究.激光技术,2005,29(1):59-61,89
    [96]许孝芳,李丽娜,吴金辉,等.高功率半导体激光器列阵光纤耦合模块.红外与激光工程,2006,35(1):86-88
    [97]周军,楼祺洪,李铁军,等.用于光纤拉曼放大的高功率光纤激光器.激光与光电子学进展,2002,39(8):40-46
    [98]黄德修,刘雪峰.半导体激光器及其应用.国防工业出版社,1999.5
    [99] Jeff Hecht.光纤光学(第四版).人民邮电出版社,2004.5
    [100]刘光祜,饶妮妮.模拟电路基础.电子科技大学出版社,2004.1
    [101]清华大学电子工程系、工业自动化系编.晶体管电路(第一册).科学出版社,1976.5
    [102]高光天,张伦,冯新强,等.传感器与信号调理器件应用技术.科学出版社,2002.7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700