铁和锌及铁氧化物还原水中亚硝基二甲胺的效能与机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亚硝基二甲胺(NDMA)是亚硝胺类污染物的代表物质,对人类具有潜在致癌性,在原水和消毒后的出水中都曾被检出。常规的处理方法不能对其进行有效控制,于是需要强化处理技术对其进行去除。国内外研究者进行了吸附、生物处理、膜分离、高级氧化、加氢催化还原等技术处理NDMA的研究,但这些技术存在对其处理不彻底、反应时间长、能耗大、不易操作等问题。因此需要开发新的对NDMA有效的控制方法。
     本文首先对铁氧化物对NDMA的还原效能进行探究;在比较零价铁和零价锌还原NDMA的效能的基础上选取零价锌进行还原NDMA的反应,对该反应的速率、主要影响因素对该反应的影响进行考察并进行了理论解释,为更好地进行产物分析,建立了中间产物偏二甲肼(UDMH)的痕量检测方法,进行了该反应体系的产物分析和机理推断;为了进一步提高反应速率,研究了Cu2+结合零价铁(Fe/Cu2+)和零价锌(Zn/Cu2+)还原NDMA的反应,考察了Cu2+的投量对反应的影响,进行了该反应体系的产物分析和机理推断。
     首先探究了Fe2+结合一系列铁氧化物、磁铁矿、绿铁矿和NDMA的反应。结果表明Fe2+结合针铁矿、赤铁矿、纤铁矿和水铁矿,磁铁矿、Fe2+结合磁铁矿,绿铁矿均对NDMA没有明显的还原效果。加入Cu2+后绿铁矿对NDMA有明显的还原效果,但使用不同批次绿铁矿的反应体系间及平行样间对NDMA的去除效果相差较大。
     比较了零价铁和零价锌还原NDMA的效能,结果表明零价锌对NDMA的还原效果较好。采用零价锌还原NDMA,考察了反应速率,由结果可知,零价锌能够有效还原NDMA,溶液初始pH值为7.0时,反应分为停滞期和快速反应期,停滞期的数据符合零级反应动力学模型,快速反应期的数据符合准一级反应动力学模型。通过考察有无NDMA时锌离子的溶出和pH值的变化得出NDMA的投加对锌的腐蚀几乎没有影响。考察溶液初始pH值对反应的影响,得出较低的pH值有利于反应的进行。进行无氧和有氧条件下零价锌还原NDMA反应,发现反应前8h溶液中无氧比有氧有利于反应的进行,之后6h溶液中有氧比无氧有利于反应的进行。在以上的反应过程中通过对NDMA的还原规律、反应过程中pH值和溶出锌离子的变化规律的对比得到锌和NDMA的反应活性和锌的腐蚀速率是一致的,不同反应条件下对于NDMA的去除效果以及动力学的差别与可用的H+量有关。通过对各种反应条件下腐蚀情况的总结得出在有氧条件下对于氧的消耗形成钝化膜、局部酸化形成H+以及钝化膜的破裂是导致从停滞期到快速反应期转变的原因。
     建立了高效液相色谱对水中痕量UDMH的检测方法。采用4-硝基苯甲醛对UDMH进行衍生,并对色谱条件和衍生条件进行优化。该方法能够快速检测水中痕量的UDMH,检出限低、具有良好的线性关系。方法精密度和准确度高,检测模拟水样时的相对标准偏差≤1.69%,加标回收率为95.7%~102.7%。对零价锌还原NDMA进行产物分析得出零价锌还原NDMA生成UDMH和二甲胺(DMA)。UDMH是NDMA和DMA之间的中间产物,同时在零价锌还原NDMA和UDMH过程中有一些未测定的产物。基于反应现象、锌和NDMA的性质,反应机理被推断为催化加氢。
     进行了Cu2+存在下零价铁和零价锌还原NDMA的反应,考察了Cu2+浓度对Fe/Cu2+和Zn/Cu2+还原NDMA的效能和反应速率的影响,Fe/Cu2+和Zn/Cu2+还原NDMA的效果分别优于Fe(0)和Zn(0)还原NDMA的效果。通过对Fe/Cu2+和Zn/Cu2+还原NDMA体系进行产物分析得出Cu2+的存在未改变产物的类型,UDMH和DMA仍是这两种反应体系的产物,UDMH能被进一步还原为DMA,还有未测定产物的存在。基于反应现象及已有文献,这两种体系的反应机理被推断为催化加氢。通过理论计算和对反应后金属颗粒的表征得出Fe/Cu2+体系中起到促进还原NDMA作用的为Cu(OH)2,Zn/Cu2+体系中起到促进还原NDMA作用的为Cu2O和Cu(OH)2。
     本研究探究了铁氧化物和NDMA的反应,填补了NDMA自然衰减和在管网中衰减的数据空白。进行了零价锌以及Fe/Cu2+和Zn/Cu2+体系还原NDMA的系统研究,为进一步开发金属还原NDMA提供了数据支持。
Nitrosodimethylamine (NDMA) is the representative of nitrosamines as the pollutants. It is potentially carcinogenic to humans, and has been detected in the raw water and the effluent after disinfection. Conventional treatment methods cannot treat NDMA effectively. Thus, the enhanced processing technologies are needed to remove NDMA. Domestic and foreign researchers conducted the studies on adsorption, biological treatment, membrane separation, advanced oxidation, catalytic reduction with hydrogen, et al. However, these technologies have many issues such as incomplete degradation, long reaction time, high energy consumption, complicate operation. Therefore, there is the need to develop new effective methods to treat NDMA.
     In this paper, the efficiencies of the reduction of NDMA with iron oxides were explored. The efficiencies of the reduction of NDMA with zero-valent zinc and zero-valent iron were compared. Zinc was chosen to reduce NDMA. The reaction rates were investigated, the effects of the main influencing factors on the reduction were examined, the theoretical explanations for the above phenomena were conducted. For the better product analysis, the detection method for the trace unsymmetrical dimethylhydrazine (UDMH) in water, which is the intermediates during the reduction of NDMA, was established. The products of the system were analyzed and the mechanisms were deduced. To further enhance the reaction rates, the reductions of NDMA with Cu2+and iron (Fe/Cu2+) and Cu2+and zinc(Zn/Cu2+) were studied, the effects of the Cu2+loading on the reduction of NDMA were examined, the products were analyzed and the mechanisms were deduced.
     First of all, the reactions of the Fe2+bound to the iron oxides with NDMA, magnetite with NDMA, green rust with NDMA were explored. The results showed that Fe2+bound to goethite, hematite, lepidocrocite and ferrihydrite, magnetite and Fe2+bound to magnetite, green rust had no obvious degradation of NDMA. After the addition of Cu2+, green rust can degrade NDMA significantly, however, there were considerable differences on the NDMA removal between the reaction systems using different batches of green rust and between parallel samples.
     The efficiencies of the reduction of NDMA with zero-valent iron and zero-valent zinc were compared, the results showed that zero-valent zinc was more reactive than iron on the reduction of NDMA. Zero-valent zinc was used to reduce NDMA. The reaction rates were examined. The results showed that the zero-valent zinc could degrade NDMA effectively, at initial pH7.0, the reaction was divided into the lag period and the rapid reaction period, the data of the lag period obeyed the zero-order kinetic model, the data of the rapid reaction period obeyed the pseudo-first-order kinetic model. By examining the dissolved zinc ions and the pH change with and without the addition of NDMA, it was found that the addition of NDMA had little effect on the zinc corrosion. The pH effect was examined. The low pH was found to facilitate the reaction. The reduction of NDMA with zinc in aerobic and anaerobic conditions were conducted, the anaerobic condition was good for the reduction in the first8h, the aerobic condition benefited the reduction in the following6h. After comparing the phenomena of the NDMA reduction, the pH changes and the dissolved zinc ion in the above reaction systems, the zinc reactivity on the NDMA reduction was found to be consistent with the zinc corrosion rates. The differences of the removal efficiencies and kinetics of the reduction of NDMA under the different reaction conditions were related to the available amount of the H+. Through the summary of the corrosion conditions of a variety of reaction conditions, the oxygen consumption forming the passive film, localized acidification forming H+and the breakdown of passive film were regarded as the reason of the transformation from the lag period to the rapid reaction period.
     A high performance liquid chromatography method was developed for the determination of trace unsymmetrical dimethylhydrazine (UDMH) in water.4-nitrobenzaldehyde was used for the derivatization of UDMH, the chromatographic conditions and the derivative conditions were optimized. The method is rapid in determination, and has a low detection limit, the good linear relationship, the high precision and accuracy of determining trace UDMH in water. For the simulated water sample, the relative standard deviation was equal to or less than1.69%, the recovery of standard addition was95.7%~102.7%. Through the products analysis, we found that UDMH and DMA were formed during the reduction of NDMA. UDMH was intermediates between NDMA and DMA, some unmeasured products also existed in the process of reductions of NDMA and UDMH with zero-valent zinc. Catalytic hydrogenation was deduced as the mechanism based on the reaction phenomenon and the characters of the zero-valent zinc and NDMA.
     The reductions of NDMA with zero-valent iron and zinc in the presence of Cu2+ were conducted. The effect of Cu2+concentration on the efficiencies and the reaction rates of reduction of NDMA with Fe/Cu2+and Zn/Cu2+systems were studied. The Fe/Cu2+and Zn/Cu2+systems were more reactive than Fe(0) and Zn(0) systems, respectively. Through the products analysis, it was found that the presence of Cu2+did not change the type of the products. UDMH and DMA still were the products of the two reaction system. UDMH can be further reduced to DMA. There are other unmeasured products existing in the reaction system. The mechanism of the two reaction systems was deduced to be catalytic hydrogenation based on the reaction phenomenon and existing literatures. Basing on the theory calculation and the characterizations of the metal powders after reaction, Cu(OH)2was found to be the substance that enhanced the reduction of NDMA in the Fe/Cu2+system, Cu2O and Cu(OH)2were found to promote reduction of NDMA in the Zn/Cu2+system.
     In this research, the reaction of the iron oxides and NDMA was explored, which can fill the data gap in the natural attenuation and the attenuation in the water distribution system. The systematic studies were conducted on the reduction of NDMA with zero-valent zinc, Fe/Cu2+and Zn/Cu2+. The studies can supply the data supporting the further development of the reduction of NDMA with metals.
引文
[1]许后效.环境中的N-亚硝基化合物[M].北京:科学出版社,1988.
    [2] CDPH. Studies on the Occurrance of NDMA in Drinking Water [EB/OL].(2002-03-15)[2003-06-10].http://www.cdph.ca.gov/certlic/drinkingwater/Documents/NDMA/NDMAstudies.pdf.
    [3] Gerecke A C, Sedlak D L. Precursors of N-Mitrosodimethylamine in NaturalWaters[J]. Environmental Science&Technology,2003,37(7):1331-1336.
    [4] Yang L, Chen Z L, Shen J M, et al. Improved Method for Determining TraceDimethylamine in Water by Gas Chromatography[J]. China Water Wastewater,2010,26(8):93-97.
    [5] U.S.EPA. Integrated Risk Information System:N-Nitrosodimethylamine (CASRN62-75-9)[EB/OL].(2002-12-03)[2013-06-11]. http://www.epa.gov/iris/subst/0045.htm.
    [6] OEHHA. Public Health Goal for N-Nitrosodimethylamine in Drinking Water [M].2006.
    [7] OMOE. Technical Support Document for Ontario Drinking Water Standards,Objectives and Guidelines[R].Ontario: Ministry of the Environment,2003.
    [8] Gregory K B, Larese-Casanova P, Parkin G F, et al. Abiotic Transformation ofHexahydro-1,3,5-Trinitro-1,3,5-Triazine by Fe(II) Bound to Magnetite[J].Environmental Science&Technology,2004,38(5):1408-1414.
    [9] Cwiertny D M, Handler R M, Schaefer M V, et al. Interpreting Nanoscale Size-Effectsin Aggregated Fe-Oxide Suspensions: Reaction of Fe(II) with Goethite[J].Geochimica Et Cosmochimica Acta,2008,72(5):1365-1380.
    [10] Pecher K, Haderlein S B, Schwarzenbach R P. Reduction of PolyhalogenatedMethanes by Surface-Bound Fe(II) in Aqueous Suspensions of Iron Oxides[J].Environmental Science&Technology,2002,36(8):1734-1741.
    [11] Scott T B, Allen G C, Heard P J, et al. Reduction of U(VI) to U(IV) on the Surface ofMagnetite[J]. Geochimica Et Cosmochimica Acta,2005,69(24):5639-5646.
    [12] Boronina T, Klabunde K J, Sergeev G. Destruction of Organohalides in Water UsingMetal Particles-Carbon Tetrachloride/Water Reactions with Magnesium, Tin, andZinc[J]. Environmental Science&Technology,1995,29(6):1511-1517.
    [13]王文成,吴德礼,马鲁铭.零价金属还原降解水中污染物的应用研究综述[J].四川环境,2007,26(03):99-103.
    [14] Li L X, Marolla T V, Nadeau L J, et al. Probing the Role of Promoters in ZincReduction of Nitrobenzene: Continuous Production of Hydroxylaminobenzene[J].Industrial&Engineering Chemistry Research,2007,46(21):6840-6846.
    [15] Mitch W A, Sharp J O, Trussell R R, et al. N-Nitrosodimethylamine (NDMA) as aDrinking Water Contaminant: A Review[J]. Environmental Engineering Science,2003,20(5):389-404.
    [16] Park S H. Effect of Amine-Based Water Treatment Polymers on the Formation ofN-Nitrosodimethylamine(NDMA) Disinfenction by-Product[D]: Georgia Instituteof Technology,2008:4-5.
    [17] Barnes J M, Magee P N. Some Toxic Properties of Dimethylnitrosamine[J]. BritishJournal of Industrial Medicine,1954,11(3):167-174.
    [18]百度百科.黄洋[EB/OL].(2013-05-21)[2013-6-11].http://baike.baidu.com/view/1106922.htm.
    [19]胡荣梅,马立珊. N-亚硝基化合物分析方法[M].北京:科学出版社,1980.
    [20] Montesano R, Bartsch H. Mutagenic and Carcinogenic N-Nitroso Compounds:Possible Environmental Hazards.[J]. Mutat Res,1976,(32):179-228.
    [21] Charrois J W A, Boyd J M, Froese K L, et al. Occurrence of N-Nitrosamines inAlberta Public Drinking-Water Distribution Systems[J]. Journal of EnvironmentalEngineering and Science,2007,6(1):103-114.
    [22] Mitch W A, Sedlak D L. Factors Controlling Nitrosamine Formation DuringWastewater Chlorination[J].2nd World Water Congress: Water andHealth-Microbiology, Monitoring and Disinfection,2002,2(3):191-198.
    [23] Mitch W A, Oelker G L, Hawley E L, et al. Minimization of NDMA FormationDuring Chlorine Disinfection of Municipal Wastewater by Application ofPre-Formed Chloramines[J]. Environmental Engineering Science,2005,22(6):882-890.
    [24] Pehlivanoglu-Mantas E, Hawley E L, Deeb R A, et al. Formation ofNitrosodimethylamine (NDMA) During Chlorine Disinfection of WastewaterEffluents Prior to Use in Irrigation Systems[J]. Water Research,2006,40(2):341-347.
    [25] Andrzejewski P, Kasprzyk-Hordern B, Nawrocki J. N-Nitrosodimethylamine(NDMA) Formation During Ozonation of Dimethylamine-Containing Waters[J].Water Research,2008,42(4-5):863-870.
    [26] Schmidt C K, Brauch H-J. N,N-Dimethylsulfamide as Precursor forN-Nitrosodimethylamine (NDMA) Formation Upon Ozonation and Its Fate DuringDrinking Water Treatment[J]. Environmental Science&Technology,2008,42(17):6340-6346.
    [27] Yang L, Chen Z L, Shen J M, et al. Reinvestigation of the Nitrosamine-FormationMechanism During Ozonation[J]. Environmental Science&Technology,2009,43(14):5481-5487.
    [28]梁闯,徐斌,夏圣骥,等. SPE/LC/MS/MS检测水中痕量二甲基亚硝胺[J].中国给水排水,2009,25(14):82-85,92.
    [29] Hung H W, Lin T F, Chiu C H, et al. Trace Analysis of N-Nitrosamines in WaterUsing Solid-Phase Microextraction Coupled with Gas Chromatograph-TandemMass Spectrometry[J]. Water Air and Soil Pollution,2010,213(1-4):459-469.
    [30] Ma F J, Wan Y, Yuan G X, et al. Occurrence and Source of Nitrosamines andSecondary Amines in Groundwater and Its Adjacent Jialu River Basin, China[J].Environmental Science&Technology,2012,46(6):3236-3243.
    [31] Luo Q, Wang D H, Wang Z J. Occurrences of Nitrosamines in Chlorinated andChloraminated Drinking Water in Three Representative Cities, China[J]. Science ofthe Total Environment,2012,437:219-225.
    [32] Asami M, Oya M, Kosaka K. A Nationwide Survey of NDMA in Raw and DrinkingWater in Japan[J]. Science of the Total Environment,2009,407(11):3540-3545.
    [33] Planas C, Palacios O, Ventura F, et al. Analysis of Nitrosamines in Water byAutomated SPE and Isotope Dilution GC/HRMS-Occurrence in the Different Stepsof a Drinking Water Treatment Plant, and in Chlorinated Samples from a Reservoirand a Sewage Treatment Plant Effluent[J]. Talanta,2008,76(4):906-913.
    [34] Krauss M, Longree P, Dorusch F, et al. Occurrence and Removal of N-Nitrosaminesin Wastewater Treatment Plants[J]. Water Research,2009,43(17):4381-4391.
    [35] Mirvish S S. Formation of N-Nitroso Compounds: Chemistry, Kinetics and in VivoOccurrence.[J]. Toxicology and Applied Pharmacology,1975,31(3):325-351.
    [36] Ohta T, Suzuki J, Iwano Y, et al. Photochemical Nitrosation of Dimethylamine inAqueous Solution Containing Nitrite.[J]. Chemosphere,1982,11(8):797-801.
    [37] Lee C, Yoon J. UV-A Induced Photochemical Formation of N-Nitrosodimethylamine(NDMA) in the Presence of Nitrite and Dimethylamine[J]. Journal ofPhotochemistry and Photobiology a-Chemistry,2007,189(1):128-134.
    [38] Keeper L K, Roller P P. N-Nitrosation by Nitrite Ion in Neutral and Basic Medium[J].Science,1973,4106(181):1245-1247.
    [39] Weerasooriya S V R, Dissanayake C B. The Enhanced Formation of N-Nitrosaminesin Fulvic and Mediated Environment[J]. Toxicology and Environmental Chemistry,1989,25(1):57-62.
    [40] Choi J H, Valentine R L. N-Nitrosodimethylamine Formation HyFree-Chlorine-Enhanced Nitrosation of Dimethylamine[J]. Environmental Science&Technology,2003,37(21):4871-4876.
    [41] Choi J H, Valentine R L. Formation of N-Nitrosodimethylamine (NDMA) fromReaction of Monochloramine: A New Disinfection by-Product[J]. Water Research,2002,36(4):817-824.
    [42] Mitch W A, Sedlak D L. Formation of N-Nitrosodimethylamine (NDMA) fromDimethylamine During Chlorination[J]. Environmental Science&Technology,2002,36(4):588-595.
    [43] Schreiber I M, Mitch W A. Nitrosamine Formation Pathway Revisited: TheImportance of Chloramine Speciation and Dissolved Oxygen[J]. EnvironmentalScience&Technology,2006,40(19):6007-6014.
    [44]贲岳.生物法对水中两种硝基化合物的去除效能及机理研究[D].哈尔滨:哈尔滨工业大学,2009.
    [45] Sharma V K. Kinetics and Mechanism of Formation and Destruction ofN-Nitrosodimethylamine in Water-A Review[J]. Separation and PurificationTechnology,2012,88:1-10
    [46] Park S H, Wei S, Mizaikoff B, et al. Degradation of Amine-Based Water TreatmentPolymers During Chloramination as N-Nitrosodimethylamine (NDMA)Precursors[J]. Environmental Science&Technology,2009,43(5):1360-1366.
    [47] Kemper J M, Walse S S, Mitch W A. Quaternary Amines as Nitrosamine Precursors:A Role for Consumer Products?[J]. Environmental Science&Technology,2010,44(4):1224-1231.
    [48] Padhye L, Luzinova Y, Cho M, et al. Polydadmac and Dimethylamine as Precursorsof N-Nitrosodimethylamine During Ozonation: Reaction Kinetics andMechanisms[J]. Environmental Science&Technology,2011,45(10):4353-4359.
    [49] Schmidt C K, Brauch H J. N,N-Dimethosulfamide as Precursor forN-Nitrosodimethylamine (NDMA) Formation Upon Ozonation and Its Fate DuringDrinking Water Treatment[J]. Environmental Science&Technology,2008,42(17):6340-6346.
    [50] Fleming E C, Pennington J C, Wachob B G, et al. Removal ofN-Nitrosodimethylamine from Waters Using Physical-Chemical Techniques[J].Journal of Hazardous Materials,1996,51(1-3):151-164.
    [51] Zhu J H, Yan D, Xai J R, et al. Attempt to Adsorb N-Nitrosamines in Solution by Useof Zeolites[J]. Chemosphere,2001,44(5):949-956.
    [52] Dai X D, Zou L, Yan Z F, et al. Adsorption Characteristics ofN-Nitrosodimethylamine from Aqueous Solution on Surface-Modified ActivatedCarbons[J]. Journal of Hazardous Materials,2009,168(1):51-56.
    [53] Sharp J O, Wood T K, Alvarez-Cohen L. Aerobic Biodegradation ofN-Nitrosodimethylamine (NDMA) by Axenic Bacterial Strains[J]. Biotechnologyand Bioengineering,2005,89(5):608-618.
    [54] Gunnison D, Zappi M E, Teeter C, et al. Attenuation Mechanisms ofN-Nitrosodimethylamine at an Operating Intercept and Treat GroundwaterRemediation System[J]. Journal of Hazardous Materials,2000,73(2):179-197.
    [55] Yifru D D, Nzengung V A. Uptake of N-Nitrosodimethylamine (NDMA) from Waterby Phreatophytes in the Absence and Presence of Perchlorate as aCo-Contaminant[J]. Environmental Science&Technology,2006,40(23):7374-7380.
    [56] Hollender J, Zimmermann S G, Koepke S, et al. Elimination of OrganicMicropollutants in a Municipal Wastewater Treatment Plant Upgraded with aFull-Scale Post-Ozonation Followed by Sand Filtration[J]. Environmental Science&Technology,2009,43(20):7862-7869.
    [57] Webster T S, Condee C, Hatzinger P B. Ex Situ Treatment ofN-Nitrosodimethylamine (NDMA) in Groundwater Using a Fluidized BedReactor[J]. Water Research,2013,47(2):811-820.
    [58] Tezel U, Padhye L P, Huang C H, et al. Biotransformation of Nitrosamines andPrecursor Secondary Amines under Methanogenic Conditions[J]. EnvironmentalScience&Technology,2011,45(19):8290-8297.
    [59] Steinle-Darling E, Zedda M, Plumlee M H, et al. Evaluating the Impacts ofMembrane Type, Coating, Fouling, Chemical Properties and Water Chemistry onReverse Osmosis Rejection of Seven Nitrosoalklyamines, Including Ndma[J]. WaterResearch,2007,41(17):3959-3967.
    [60] Miyashita Y, Park S H, Hyung H, et al. Removal of N-Nitrosamines and TheirPrecursors by Nanofiltration and Reverse Osmosis Membranes[J]. Journal ofEnvironmental Engineering-Asce,2009,135(9):788-795.
    [61] Fujioka T, Khan S J, Mcdonald J A, et al. N-Nitrosamine Rejection by Nanofiltrationand Reverse Osmosis Membranes: The Importance of Membrane Characteristics[J].Desalination,2013,316:67-75.
    [62] Liang S. Photolysis and Advanced Oxidation Processes for NDMA Removal fromDrinking Water[C]. The Fourth Symposium in the Series on GroundwaterContaminants, Baldwin Park, CA,2002.
    [63] Lee C, Yoon J, Von Gunten U. Oxidative Degradation of N-Nitrosodimethylamine byConventional Ozonation and the Advanced Oxidation Process Ozone/HydrogenPeroxide[J]. Water Research,2007,41(3):581-590.
    [64]邹剑锋,黎维彬,水野忠雄.在钴/氧化铝(Co/Al2O3)上臭氧催化降解水体中痕量N-亚硝基二甲胺(NDMA)[J].净水技术,2010,29(4):49-53.
    [65] Hiramoto K, Ryuno Y, Kikugawa K. Decomposition of N-Nitrosamines, andConcomitant Release of Nitric Oxide by Fenton Reagent under PhysiologicalConditions[J]. Mutation Research-Genetic Toxicology and EnvironmentalMutagenesis,2002,520(1-2):103-111.
    [66] Kommineni S, Ela W P, Arnold R G, et al. NDMA Treatment by Sequential GacAdsorption and Fenton-Driven Destruction[J]. Environmental Engineering Science,2003,20(4):361-373.
    [67]黄露溪. UV/H2O2和UV/Fenton降解水中N-亚硝基二甲胺的效能研究[D].哈尔滨:哈尔滨工业大学,2008:85.
    [68] Stefan M I, Bolton J R. UV Direct Photolysis of N-Nitrosodimethylamine (NDMA):Kinetic and Product Study[J]. Helvetica Chimica Acta,2002,85(5):1416-1426.
    [69] Lee C, Choi W, Kim Y G, et al. UV Photolytic Mechanism ofN-Nitrosodimethylamine in Water: Dual Pathways to Methylamine VersusDimethylamine[J]. Environmental Science&Technology,2005,39(7):2101-2106.
    [70] Lee C, Choi W, Yoon J. UV Photolytic Mechanism of N-Nitrosodimethylamine inWater: Roles of Dissolved Oxygen and Solution pH[J]. Environmental Science&Technology,2005,39(24):9702-9709.
    [71] Sharpless C M, Linden K G. Experimental and Model Comparisons of Low-andMedium-Pressure Hg Lamps for the Direct and H2O2Assisted UV Photodegradationof N-Nitrosodimethylamine in Simulated Drinking Water[J]. Environmental Science&Technology,2003,37(9):1933-1940.
    [72] Kim J O, Jung J T, Kim M, et al. Removal of N-Nitrosodimethylamine by UltravioletTreatment and Anodizing TiO2Membrane Processes[J]. Environmental Progress&Sustainable Energy,2012,31(3):407-414.
    [73] Zhou C, Gao N Y, Deng Y, et al. Factors Affecting Ultraviolet Irradiation/HydrogenPeroxide (UV/H2O2) Degradation of Mixed N-Nitrosamines in Water[J]. Journal ofHazardous Materials,2012,231:43-48.
    [74] Xu B B, Chen Z L, Qi F, et al. Factors Influencing the Photodegradation ofN-Nitrosodimethylamine in Drinking Water[J]. Frontiers of Environmental Science&Engineering in China,2009,3(1):91-97.
    [75] Xu B B, Chen Z L, Qi F, et al. Photodegradation of N-Nitrosodiethylamine in Waterwith UV Irradiation[J]. Chinese Science Bulletin,2008,53(21):3395-3401.
    [76] Xu B B, Chen Z L, Qi F, et al. Rapid Degradation of New Disinfection by-Productsin Drinking Water by UV Irradiation: N-Nitrosopyrrolidine andN-Nitrosopiperidine[J]. Separation and Purification Technology,2009,69(1):126-133.
    [77] Xu B B, Chen Z L, Qi F, et al. Comparison of N-Nitrosodiethylamine Degradation inWater by UV Irradiation and UV/O3: Efficiency, Product and Mechanism[J]. Journalof Hazardous Materials,2010,179(1-3):976-982.
    [78] Chaplin B P, Schrader G, Farrell J. Electrochemical Oxidation ofN-Nitrosodimethylamine with Boron-Doped Diamond Film Electrodes[J].Environmental Science&Technology,2009,43(21):8302-8307.
    [79] Chaplin B P, Schrader G, Farrell J. Electrochemical Destruction ofN-Nitrosodimethylamine in Reverse Osmosis Concentrates Using Boron-DopedDiamond Film Electrodes[J]. Environmental Science&Technology,2010,44(11):4264-4269.
    [80] Davie M G, Reinhard M, Shapley J R. Metal-Catalyzed Reduction ofN-Nitrosodimethylamine with Hydrogen in Water[J]. Environmental Science&Technology,2006,40(23):7329-7335.
    [81] Davie M G, Shih K, Pacheco F A, et al. Palladium-Indium Catalyzed Reduction ofN-Nitrosodimethylamine: Indium as a Promoter Metal[J]. Environmental Science&Technology,2008,42(8):3040-3046.
    [82] Frierdich A J, Shapley J R, Strathmann T J. Rapid Reduction of N-NitrosamineDisinfection Byproducts in Water with Hydrogen and Porous Nickel Catalysts[J].Environmental Science&Technology,2008,42(1):262-269.
    [83] Frierdich A J, Joseph C E, Strathmann T J. Catalytic Reduction ofN-Nitrosodimethylamine with Nanophase Nickel-Boron[J]. Applied CatalysisB-Environmental,2009,90(1-2):175-183.
    [84] Chung J, Ahn C H, Chen Z, et al. Bio-Reduction of N-Nitrosodimethylamine(NDMA) Using a Hydrogen-Based Membrane Biofilm Reactor[J]. Chemosphere,2008,70(3):516-520.
    [85] Lowry G V, Reinhard M. Pd-Catalyzed Tce Dechlorination in Groundwater: SoluteEffects, Biological Control, and Oxidative Catalyst Regeneration[J]. EnvironmentalScience&Technology,2000,34(15):3217-3223.
    [86] Gui L, Gillham R W, Odziemkowski M S. Reduction of N-Nitrosodimethylaminewith Granular Iron and Nickel Enhanced Iron.1. Pathways and Kinetics[J].Environmental Science&Technology,2000,34(16):3489-3494.
    [87] Odziemkowski M S, Gui L, Gillham R W. Reduction of N-Nitrosodimethylaminewith Granular Iron and Nickel-Enhanced Iron.2. Mechanistic Studies[J].Environmental Science&Technology,2000,34(16):3495-3500.
    [88] Gorski C A, Sherer M M. Fe2+Sorption at the Fe Oxide-Water Interface: A RevisedConceptual Framework[M].//Tratnyek P G, Grundl T J, Haderlein S B. AquaticRedox Chemistry. Washington: American Chemical Society,2011:315-343.
    [89] Vikesland P J, Valentine R L. Iron Oxide Surface-Catalyzed Oxidation of FerrousIron by Monochloramine: Implications of Oxide Type and Carbonate onReactivity[J]. Environmental Science&Technology,2002,36(3):512-519.
    [90] Peng C Y, Korshin G V, Valentine R L, et al. Characterization of Elemental andStructural Composition of Corrosion Scales and Deposits Formed in Drinking WaterDistribution Systems[J]. Water Research,2010,44(15):4570-4580.
    [91] Williams A G B, Gregory K B, Parkin G F, et al.Hexahydro-1,3,5-Trinitro-1,3,5-Triazine Transformation by Biologically ReducedFerrihydrite: Evolution of Fe Mineralogy, Surface Area, and Reaction Rates[J].Environmental Science&Technology,2005,39(14):5183-5189.
    [92] Zachara J M, Heald S M, Jeon B H, et al. Reduction of Pertechnetate Tc(VII) byAqueous Fe(II) and the Nature of Solid Phase Redox Products[J]. Geochimica EtCosmochimica Acta,2007,71(9):2137-2157.
    [93] Larese-Casanova P, Cwiertny D M, Scherer M M. Nanogoethite Formation fromOxidation of Fe(II) Sorbed on Aluminum Oxide: Implications for ContaminantReduction[J]. Environmental Science&Technology,2010,44(10):3765-3771.
    [94] Klausen J, Trober S P, Haderlein S B, et al. Reduction of Substituted Nitrobenzenesby Fe(II) in Aqueous Mineral Suspensions[J]. Environmental Science&Technology,1995,29(9):2396-2404.
    [95] Charlet L, Silvester E, Liger E. N-Compound Reduction and ActinideImmobilisation in Surficial Fluids by Fe(II): The Surface Fe(III)OFe(II)OH DegreesSpecies, as Major Reductant[J]. Chemical Geology,1998,151(1-4):85-93.
    [96] Chun C L, Hozalski R M, Arnold W A. Degradation Ot Drinking Water DisinfectionByproducts by Synthetic Goethite and Magnetite[J]. Environmental Science&Technology,2005,39(21):8525-8532.
    [97] Jeon B H, Dempsey B A, Burgos W D. Kinetics and Mechanisms for Reactions ofFe(II) with Iron(III) Oxides[J]. Environmental Science&Technology,2003,37(15):3309-3315.
    [98] Danielsen K M, Hayes K F. pH Dependence of Carbon Tetrachloride ReductiveDechlorination by Magnetite[J]. Environmental Science&Technology,2004,38(18):4745-4752.
    [99] Gorski C A, Scherer M M. Influence of Magnetite Stoichiometry on Fe-II Uptakeand Nitrobenzene Reduction[J]. Environmental Science&Technology,2009,43(10):3675-3680.
    [100] Gorski C A, Nurmi J T, Tratnyek P G, et al. Redox Behavior of Magnetite:Implications for Contaminant Reduction[J]. Environmental Science&Technology,2010,44(1):55-60.
    [101] Hansen H C B, Koch C B, Nanckekrogh H, et al. Abiotic Nitrate Reduction toAmmonium: Key Role of Green Rust[J]. Environmental Science&Technology,1996,30(6):2053-2056.
    [102] Hayashi H, Kanie K, Shinoda K, et al. pH-Dependence of Selenate Removal fromLiquid Phase by Reductive Fe(II)-Fe(III) Hydroxysulfate Compound, Green Rust[J].Chemosphere,2009,76(5):638-643.
    [103] Hansen H C B, Guldberg S, Erbs M, et al. Kinetics of Nitrate Reduction by GreenRusts-Effects of Interlayer Anion and Fe(II): Fe(III) Ratio[J]. Applied Clay Science,2001,18(1-2):81-91.
    [104] Genin J M R, Renard A, Ruby C. Fougerite FeII-III Oxyhydroxycarbonate inEnvironmental Chemistry and Nitrate Reduction[J]. Hyperfine Interactions,2008,186(1-3):31-37.
    [105] Chun C L, Hozalski R M, Arnold W A. Degradation of Disinfection Byproducts byCarbonate Green Rust[J]. Environmental Science&Technology,2007,41(5):1615-1621.
    [106] Bond D L, Fendorf S. Kinetics and Structural Constraints of Chromate Reductionby Green Rusts[J]. Environmental Science&Technology,2003,37(12):2750-2757.
    [107] Larese-Casanova P, Scherer M M. Abiotic Transformation ofHexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX) by Green Rusts[J]. EnvironmentalScience&Technology,2008,42(11):3975-3981.
    [108] O'loughlin E J, Burris D R. Reduction of Halogenated Ethanes by Green Rust[J].Environmental Toxicology and Chemistry,2004,23(1):41-48.
    [109] Matheson L J, Tratnyek P G. Reductive Dehalogenation of Chlorinated Methanes byIron Metal[J]. Environmental Science&Technology,1994,28(12):2045-2053.
    [110]王向宇.纳米钯/铁双金属体系对氯代有机物催化还原脱氯研究[D].哈尔滨:哈尔滨工业大学,2009.
    [111]王志远.零价金属铁、锌以及双金属铁/钯、铁/银脱氯降解林丹、1,2,3,4-四氯代二苯并对二噁英的研究[D].广州:中国科学院广州地球化学研究所,2006.
    [112] Boronina T N, Lagadic I, Sergeev G B, et al. Activated and Nonactivated Forms ofZinc Powder: Reactivity toward Chlorocarbons in Water and AFM Studies ofSurface Morphologies[J]. Environmental Science&Technology,1998,32(17):2614-2622.
    [113] Sarathy V, Salter A J, Nurmi J T, et al. Degradation of1,2,3-Trichloropropane (TCP):Hydrolysis, Elimination, and Reduction by Iron and Zinc[J]. Environmental Science&Technology,2010,44(2):787-793.
    [114] Salter-Blanc A J, Tratnyek P G. Effects of Solution Chemistry on the Dechlorinationof1,2,3-Trichloropropane by Zero-Valent Zinc[J]. Environmental Science&Technology,2011,45(9):4073-4079.
    [115] Arnold W A, Roberts A L. Pathways of Chlorinated Ethylene and ChlorinatedAcetylene Reaction with Zn(0)[J]. Environmental Science&Technology,1998,32(19):3017-3025.
    [116] Arnold W A, Ball W P, Roberts A L. Polychlorinated Ethane Reaction withZero-Valent Zinc: Pathways and Rate Control[J]. Journal of Contaminant Hydrology,1999,40(2):183-200.
    [117] Cheng S F, Wu S C. The Enhancement Methods for the Degradation of TCE byZero-Valent Metals[J]. Chemosphere,2000,41(8):1263-1270.
    [118] Song H, Carraway E R, Kim Y H, et al. Amendment of Hydroxyapatite inReduction of Tetrachloroethylene by Zero-Valent Zinc: Its Rate Enhancing Effectand Removal of Zn(II)[J]. Chemosphere,2008,73(9):1420-1427.
    [119] Fennelly J P, Roberts A L. Reaction of1,1,1-Trichloroethane with Zero-ValentMetals and Bimetallic Reductants[J]. Environmental Science&Technology,1998,32(13):1980-1988.
    [120] Kim Y H, Carraway E R. Dechlorination of Chlorinated Phenols by Zero ValentZinc[J]. Environmental Technology,2003,24(12):1455-1463.
    [121]谢凝子,邱罡,陈少瑾.锌粉对1,2,4-三氯苯的脱氯性能[J].化工环保,2007,03):227-229.
    [122] Hernandez R, Zappi M, Kuo C H. Chloride Effect on TNT Degradation byZerovalent Iron or Zinc During Water Treatment[J]. Environmental Science&Technology,2004,38(19):5157-5163.
    [123]刘娜,赵勇胜,张兰英,等.锌粉降解地下水中的农药阿特拉津[J].中国环境科学,2006,26(1):116-119.
    [124]樊金红,徐文英,高廷耀. Fe-Cu微电池电解法预处理硝基苯废水[J].同济大学学报(自然科学版),2005,33(3):334-348.
    [125]黄理辉,马鲁铭,张波,等. Fe-Cu法预处理印染废水技术研究[J].工业水处理,2006,26(4):56-58,90.
    [126]楚文海,高乃云,赵世嘏,等. Fe/Cu催化还原去除饮用水消毒副产物三氯乙酸[J].同济大学学报(自然科学版),2009,37(10):1355-1359.
    [127] Bransfield S J, Cwiertny D M, Roberts A L, et al. Influence of Copper Loading andSurface Coverage on the Reactivity of Granular Iron toward1,1,1-Trichloroethane[J]. Environmental Science&Technology,2006,40(5):1485-1490.
    [128]徐咏咏,张燕.纳米Fe及纳米Fe/Cu还原水中溴酸盐研究[J].给水排水,2013,39(3):121-124.
    [129] Hosseini S M, Ataie-Ashtiani B, Kholghi M. Nitrate Reduction by Nano-Fe/CuParticles in Packed Column[J]. Desalination,2011,276(1-3):214-221.
    [130] Cwiertny D M, Bransfield S J, Livi K J T, et al. Exploring the Influence of GranularIron Additives on1,1,1-Trichloroethane Reduction[J]. Environmental Science&Technology,2006,40(21):6837-6843.
    [131] Schrick B, Blough J L, Jones A D, et al. Hydrodechlorination of Trichloroethyleneto Hydrocarbons Using Bimetallic Nickel-Iron Nanoparticles[J]. Chemistry ofMaterials,2002,14(12):5140-5147.
    [132] Su Y F, Hsu C Y, Shih Y H. Effects of Various Ions on the Dechlorination Kineticsof Hexachlorobenzene by Nanoscale Zero-Valent Iron[J]. Chemosphere,2012,88(11):1346-1352.
    [133] Lien H L, Jhuo Y S, Chen L H. Effect of Heavy Metals on Dechlorination ofCarbon Tetrachloride by Iron Nanoparticles[J]. Environmental Engineering Science,2007,24(1):21-30.
    [134] Shih Y H, Chen M Y, Su Y F. Pentachlorophenol Reduction by Pd/Fe BimetallicNanoparticles: Effects of Copper, Nickel, and Ferric Cations[J]. Applied CatalysisB-Environmental,2011,105(1-2):24-29.
    [135] Maithreepala R A, Doong R A. Synergistic Effect of Copper Ion on the ReductiveDechlorination of Carbon Tetrachloride by Surface-Bound Fe(II) Associated withGoethite[J]. Environmental Science&Technology,2004,38(1):260-268.
    [136] Maithreepala R A, Doong R A. Enhanced Dechlorination of Chlorinated Methanesand Ethenes by Chloride Green Rust in the Presence of Copper(II)[J].Environmental Science&Technology,2005,39(11):4082-4290.
    [137] O'loughlin E J, Kemner K M, Burris D R. Effects of AgI, AuIII, and CuII on theReductive Dechlorination of Carbon Tetrachloride by Green Rust[J]. EnvironmentalScience&Technology,2003,37(13):2905-2912.
    [138] Taguchi V, Jenkins S D W, Wang D T, et al. Determination ofN-Nitrosodimethylamine by Isotope-Dilution, High-ResolutionMass-Spectrometry[J]. Canadian Journal of Applied Spectroscopy,1994,39(3):87-93.
    [139] Luo X, Clevenger T E, Gang D. NDMA Analytical Method Comparisons and ItsOccurence in Missouri[C]. American Water Works Association., Philadelphia,Pennsylvania,USA,2003:131-142.
    [140] Shen R, Andrews S A. Demonstration of20Pharmaceuticals and Personal CareProducts (PPCPs) as Nitrosamine Precursors During Chloramine Disinfection[J].Water Research,2011,45(2):944-952.
    [141]陈忠林,徐冰冰,齐虹,等.高效液相色谱测定水中痕量亚硝基二甲胺[J].中国给水排水,2007,23(8):84-87.
    [142]杨磊,陈忠林,沈吉敏,等.对水中痕量二甲胺传统检测方法的改进[J].中国给水排水,2010,26(8):93-97.
    [143]佟丽娜,沈吉敏,康晶,等.氯甲酸-9-芴甲酯柱前衍生液相色谱法测定水中脂肪胺[J].中国给水排水,2013,29(18):138-142.
    [144] U. S. EPA. Monitored Natural Attenuation[EB/OL].[2013-08-07].http://www.epa.gov/ada/gw/mna.html.
    [145] Martin R B, Tashdijian M O. The Polarographic Reduction of N-Nitrosamines[J]. JPhys Chem,1956,60:1028-1030.
    [146] Lund H. Electroorganic Preparations Ⅲ.Polarography and Reduction ofN-Nitrosamines[J]. Acta Chemica Scandinavica,1957,11(6):990-995.
    [147] Yang W Z. Electrochemical Basis[M]. Beijing: Peking University Press, China.1982.
    [148] O'loughlin E J, Kelly S D, Kemner K M, et al. Reduction of Ag(I), Au(III), Cu(II),and Hg(II) by Fe(II)/Fe(III) Hydroxysulfate Green Rust[J]. Chemosphere,2003,53(5):437-446.
    [149] National Toxicology Program. Report on Carcinogens, TwelfthEdition[EB/OL].(2011-06-10)[2013-07-10]. http://ntp.niehs.nih.gov/ntp/roc/twelfth/profiles/Nitrosamines.pdf.
    [150] California Department of Public Health (CDPH). A Brief History of Ndma Findingsin Drinking Water [EB/OL].(2011-01-04)[2013-07-12].http://www.cdph.ca.gov/certlic/drinkingwater/Pages/NDMAhistory.aspx.
    [151] Von Gunten U, Salhi E, Schmidt C K, et al. Kinetics and Mechanisms ofN-Nitrosodimethylamine Formation Upon Ozonation ofN,N-Dimethylsulfamide-Containing Waters: Bromide Catalysis[J]. EnvironmentalScience&Technology,2010,44(15):5762-5768.
    [152] U.S.EPA. Integrated Risk Information System:N-Nitrosodimethylamine (CASRN62-75-9)[EB/OL].(1993-07-01)[2013-07-15].http://www.epa.gov/iris/subst/0045.htm.
    [153] Zembura Z, Burzynska L. Corrosion of Zinc in Deaerated0.1M Nacl in pH Rangefrom1.6to13.3[J]. Corrosion Science,1977,17(11):871-878.
    [154] Zhang X G. Corrosion and Electrochemistry of Zinc[M]. Beijing: MetallurgicalIndustry Press,2008.
    [155] Alowitz M J, Scherer M M. Kinetics of Nitrate, Nitrite, and Cr(VI) Reduction byIron Metal[J]. Environmental Science&Technology,2002,36(3):299-306.
    [156] Huang C P, Wang H W, Chiu P C. Nitrate Reduction by Metallic Iron[J]. WaterResearch,1998,32(8):2257-2264.
    [157] Evans U R. Pitting and Cracking[J]. Chemistry&Industry,1956,44:1291-1297.
    [158] Johnson J W, Sun Y C, James W J. Anodic Dissolution of Zn in Aqueous SaltSolutions[J]. Corrosion Science,1971,11(3):153-159.
    [159] Aramaki K. Effects of Organic Inhibitors on Corrosion of Zinc in an Aerated0.5MNaCl Solution[J]. Corrosion Science,2001,43(10):1985-2000.
    [160] Galvele J R. Transport Processes and the Mechanism of Pitting of Metals[J].Journal of The Electrochemical Society,1976,123(4):464-474.
    [161] Greene B, Mcclure M B, Johnson H T. Destruction or Decomposition of HypergolicChemicals in a Liquid Propellant Testing Laboratory[J]. Chemical Health and Safety,2004,11(1):6-13.
    [162] Denisov A A, Smolenkov A D, Shpigun O A. Determination of1,1-Dimethylhydrazine by Reversed-Phase High-Performance LiquidChromatography with Spectrophotometric Detection as a Derivative with4-Nitrobenzaldehyde[J]. Journal of Analytical Chemistry,2004,59(5):452-456.
    [163] Pramanik B N, Ganguly A K, Gross M L. Applied Electrospray MassSpectrometry[M]. New York: Marcel Dekker,Inc,2002.
    [164] Lunn G, Sansone E B. Reductive Destruction of Hydrazines as an Approach toHazard Control[J]. Environmental Science&Technology,1983,17(4):240-243.
    [165] Lunn G, Sansone E B, Andrews A W. Aerial Oxidation of Hydrazines toNitrosamines[J]. Environmental and Molecular Mutagenesis,1991,17(1):59-62.
    [166] Guo H, Wang X, Yang R, et al. Investigation on Oxidation Products of UDMHunder Normal Environmental Conditions[C].Huntsville, Alabama, USA,2003.
    [167] Banerjee S, Pack E J, Sikka H, et al. Kinetics of Oxidation of Methylhydrazines inWater. Factors Controlling the Formation of1,1-Dimethylnitrosamine.[J].Chemosphere,1984,13(4):549-559.
    [168] Lunn G, Sansone E B. Oxidation of1,1-Dimethylhydrazine(UDMH) in AqueousSolution with Air and Hydrogen Peroxide.[J]. Chemosphere,1994,29(7):1577-1590.
    [169] Speight J G. Lange's Handbook of Chemistry[M]. New York, Chicago, SanFrancisco, Lisbon, London, Madrid, Mexico City, Milan, New Delhi, San Juan,Seoul, Singapore, Sydney, Toronto:McGraw-Hill Education LLC,2005.
    [170] Crist B V. Handbook of Monochromatic XPS Spectra:The Elements and NativeOxides[M]. Mountain View, California:XPS International, LLC,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700