平板式汽车尾气氧传感器的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车尾气氧传感器广泛运用于电喷汽车三元催化系统中,用于检测尾气中氧气含量,并通过反馈控制实现发动机保持在14.7的最佳空燃比以最优工况。由于日渐严格的环保法规,汽车尾气氧传感器有着广阔的市场前景。
     本课题主要研究了平板式汽车尾气氧传感器的制备工艺,为了制备出性能符合标准的氧传感器,对工艺进行了研究与优化:
     表征了实验中用到的原料,用粒度分析仪、SEM及XRD等方法对粉体原料进行了分析。
     采用流延法、丝网印刷法和层压成型法制备了氧传感器素体;采用流延法制备基体薄片,丝网印刷法制备功能层,层压成型法完成多层基体组装;研究了流延、丝网印刷成膜以及层压成型的规律;详细分析了影响多道工艺质量的各种因素。
     研究了氧传感器的整体共烧结过程,在此基础上制定了两段式烧结法工艺路线。设计了拥有更优良烧结性能的新型氧传感器绝缘层材料。
     研究了氧传感器热应力损伤与破坏的机理;探究了增强氧传感器抗热震性能的途径。
     探索了可能的氧传感器加热电极金属替代材料,研究了其长期可靠性。
     对制备完成的氧传感器样本进行了测试,将测试结果与商用标准进行了对比,认为其性能符合实际使用要求。
Planar automotive exhaust gas sensors widely applied in the three-way catalyst system are used to detect oxygen in exhaust gas and control the air/fuel ratio to stay at the stoichiometric point which is 14.7 to make ture the engines work at the best condition. Because of the stricter vehicle emission control laws day by day, the worldwide market will be remarkably extended.
     In this paper, the fabrication technique for planar exhaust gas sensors has been explored. In order to fabricate exhaust gas sensors with better performance, we investigated and optimized the following techniques:
     Materials for experiments are researched. The particle size and its distribution were measured with a Laser Particle Size (LPS) analyzer. The surface morphology and microstructure of powders were examined with Scanning Electron Microscope(SEM). Desirable phases were identified with X-ray diffractioner.
     Tape casting, screen-printing and lamination processes, simple and cost-effective techniques, were used to fabricate the exhaust gas sensors. Support was prepared by tape casting. Functional thin films were prepared by screen-printing. Final assembly was prepared by lamination. Several experiments were conducted to optimize the processing parameters of tape casting, screen-printing and lamination. The influence of the parameters on the quality of production process was discussed.
     The support/functional films multilayer ceramic green bodies sintering processes were researched. Factors resulting in shrinking were analyzed and discussed and the two-stage sintering process was explored and optimized.
     The novel insulation materials with better sintering performance was investigated. The thermal shock behavior of exhaust gas sensors was researched, the methods of improvement the thermal shock resistance of exhaust gas sensors were put forward.
     The feasibility of novel metal which could instead of platinμm used in the heating electrode was reseached, the long time reliability of the novel heating electrode was checked.
     The responses of the samples of final produtions were mearsured in a engine emission atmosphere, and the electrical output signal was analyzed. After all these checking, the exhaust gas sensors productioned by ourself are believed as good value production.
引文
1. Bosch, Gasoline-Engine Management. 1st edn ed. SAE Society of Automotive Engineers. 1999, Stuttgart: Robert Bosch.
    2. Riegel, J., H. Neumann, and H.M. Wiedenmann. Exhaust gas sensors for automotive emission control. in International Conference on Solid State Ionics. 2001. Cairns, Australia.
    3. BoschCompany. O2sensors. [cited; Available from: http://www.bosch.com.au/ content/language1/ downloads/O2sensors.pdf.
    4. J. Marek, et al., Sensors for Automotive Technology. Sensors Applications, ed. J.H. W.Gopel, J.Gardner. Vol. 4. 2003: Wilry-VCH.
    5. Wiedenmann, H.M., L. Raff, and R. Noack, Heated zirconium oxide sensor for stoichiometric and scanty air-fuel mixtures. Bosch Technische Berichte|Bosch Technische Berichte, 1984. 7(5): p. 210-19.
    6. Huang, D.T.Y., An integrated computer model for simulating electrothermomechanical interactions of an exhaust oxygen sensor. Finite Elements in Analysis and Design, 2001. 37(8): p. 657-672.
    7. Gopel, W., G. Reinhardt, and M. Rosch, Trends in the development of solid state amperometric and potentiometric high temperature sensors. Solid State Ionics, 2000. 136: p. 519-531.
    8. Wang, D.Y. and E. Detwiler, Dynamic study of porous coating layers of exhaust gas oxygen sensors. Sensors and Actuators B-Chemical, 2005. 106(1): p. 229-233.
    9. Kaneko, H., T. Okamura, and H. Taimatsu, Characterization of zirconia oxygen sensors with a molten internal reference for low-temperature operation. Sensors and Actuators B-Chemical, 2003. 93(1-3): p. 205-208.
    10. Rajabbeigi, N., et al., A novel miniaturized oxygen sensor with solid-stateceria-zirconia reference. Sensors and Actuators B-Chemical, 2004. 100(1-2): p. 139-142.
    11. Rajabbeigi, N., et al., Oxygen sensor with solid-state CeO2-ZrO2-TiO2 reference. Sensors and Actuators B-Chemical, 2005. 108(1-2): p. 341-345.
    12. Radhakrishnan, R., et al., Design, fabrication and characterization of a miniaturized series-connected potentiornetric oxygen sensor. Sensors and Actuators B-Chemical, 2005. 105(2): p. 312-321.
    13. Maskell, W.C. and B.C.H. Steele, SOLID-STATE POTENTIOMETRIC OXYGEN GAS SENSORS. Journal of Applied Electrochemistry, 1986. 16(4): p. 475-489.
    14. Ji, Y., et al., Study on the properties of Al2O3-doped (ZrO2)(0.92)(Y2O3)(0.08) electrolyte. Solid State Ionics, 1999. 126(3-4): p. 277-283.
    15. Garzon, F., et al., Dense diffusion barrier limiting current oxygen sensors. Sensors and Actuators B-Chemical, 1998. 50(2): p. 125-130.
    16. Periaswami, G., et al., LOW-TEMPERATURE ZIRCONIA OXYGEN GAUGES BASED ON RUO2 ELECTRODE. Solid State Ionics, 1988. 26(4): p. 311-317.
    17. NAITO.S, et al., Development of Planar Oxygen Sensor. Journal of the Ceramic Society of Japan, 2004. 112: p. S525-S531.
    18.贺连星,温廷琏, and吕之奕,流延法制膜技术.化学通报, 1996. 11: p. 19-22.
    19.李标荣,电子陶瓷工艺原理. 1986,武汉:华中工学院出版社.
    20. R.E.Mistler and E.R.Twiname, Tape Casting. 2000, Westerville: The American Ceramic Society.
    21. Carlos J. Martinez and J.A. Lewis, Rheological, Structural, and Stress Evolution of Aqueous Al2O3:Latex Tape-Cast Layers. Journal of the American Ceramic Society, 2002. 85(10): p. 2409-2416.
    22. Jau-Ho Jean and H.-R. Wang, Organic Distributions in Dried Alumina Green Tape. Journal of the American Ceramic Society, 2001. 84(2): p. 267-272.
    23. Jennifer A. Lewis, et al., Rheological Property and Stress Development duringDrying of Tape-Cast Ceramic Layers. Journal of the American Ceramic Society, 1996. 79(12): p. 3225-3234.
    24. Michael J Cima, Jennifer Alan Lewis, and A.D. Devoe, Binder Distribution in Ceramic Greenware During Thermolysis. Journal of the American Ceramic Society, 1989. 72(7): p. 1192-1199.
    25. G.L. Messing, S.I.Hirano, and H.Hausner, Ceramic Powder Science. 1990: American Ceramic Society.
    26. W.J.Gyurk, Methods for Manufacturing Monolithic Ceramic Bodies, U.S.P. Office, Editor. 1965, Radio Corporation of America: U.S.A.
    27. Chartier, T. and T. Rouxel. Tape-cast alumina-zirconia laminates: Processing and mechanical properties. in International Conference on Shaping of Advanced Ceramics. 1995. Mol, Belgium.
    28. Gurauskis, J., A.J. Sanchez-Herencia, and C. Baudin. Alumina-zirconia layered ceramics fabricated by stacking water processed green ceramic tapes. in 9th Conference and Exhibition of the European-Ceramic-Society. 2005. Portoroz, SLOVENIA.
    29. Lambrinou, K., et al. Elastic properties and damping behaviour of alumina-alumina/zirconia laminates. in 9th Conference and Exhibition of the European-Ceramic-Society. 2005. Portoroz, SLOVENIA.
    30. Gurauskis, J., A.J. Sanchez-Herencia, and C. Baudin, Al2O3/Y-TZP and Y-TZP materials fabricated by stacking layers obtained by aqueous tape casting. Journal of the European Ceramic Society, 2006. 26(8): p. 1489-1496.
    31. Tarlazzi, A., et al., Tribological behaviour of Al2O3/ZrO2-ZrO2 laminated composites. Wear, 2000. 244(1-2): p. 29-40.
    32.陶瓷材料物理性能. 1980:中国建筑工业出版社.
    33. R.L.Coble, Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models. Journal of Applied Physics, 1961. 32(5).
    34. LANGE, F.F., Sinterability of Agglomerated Powders. Journal of the American Ceramic Society, 1984. 67(2): p. 83-89.
    35. RHODES, W.H., Agglomerate and Particle Size Effects on Sintering Yttria-Stabilized Zirconia. Journal of the American Ceramic Society, 1981. 64(1): p. 19-22.
    36. F. F. LANGE and M.METCALF, Processing-Related Fracture Origins: II, Agglomerate Motion and Cracklike Internal Surfaces Caused by Differential Sintering. Journal of the American Ceramic Society, 1983. 66(6): p. 398-406.
    37. F.F. LANGE, B.I. DAVIS, and I.A. AKSAY, Processing-Related Fracture Origins: III, Differential Sintering of ZrO2 Agglomerates in Al2O3/ZrO2 Composite. Journal of the American Ceramic Society, 1983. 66(6): p. 407-408.
    38. LANGE, F.F., Processing-Related Fracture Origins: I, Observations in Sintered and Isostatically Hot-Pressed A12O3/ZrO2 Composites. Journal of the American Ceramic Society, 1983. 66(6): p. 396-398.
    39.施剑林,高建华, and严东生,团聚体含量对氧化锆粉料烧结性能的影响.硅酸盐学报, 1993. 21(5).
    40. Maiti, H.S., E.C. Subbarao, and K.V.G. Gokhale, KINETICS AND BURST PHENOMENON IN ZRO2 TRANSFORMATION. Journal of the American Ceramic Society, 1972. 55(6): p. 317-&.
    41.吴文芳, et al., ZrO2烧结动力学研究.高等学校化学学报, 1993. 14(9): p. 1257~1260.
    42. CRAIG P. CAMERON, R.R., Grain-Growth Transition During Sintering of Colloidally Prepared Alumina Powder Compacts. Journal of the American Ceramic Society, 1988. 71(12): p. 1031-1035.
    43. Jenqdaw Wang and R. Raj, Estimate of the Activation Energies for Boundary Diffusion from Rate-Controlled Sintering of Pure Alumina, and Alumina Doped with Zirconia or Titania. Journal of the American Ceramic Society, 1990. 73(5): p.1172-1175.
    44. Tan, X.Y., et al., Theoretical analysis of ion permeation through mixed conducting membranes and its application to dehydrogenation reactions. Solid State Ionics, 2000. 138(1-2): p. 149-159.
    45. Virkar, A.V., Theoretical analysis of the role of interfaces in transport through oxygen ion and electron conducting membranes. Journal of Power Sources, 2005. 147(1-2): p. 8-31.
    46. Bateman, C.A., S.J. Bennison, and M.P. Harmer, MECHANISM FOR THE ROLE OF MAGNESIA IN THE SINTERING OF ALUMINA CONTAINING SMALL AMOUNTS OF A LIQUID-PHASE. Journal of the American Ceramic Society, 1989. 72(7): p. 1241-1244.
    47. Bennison, S.J. and M.P. Harmer, Effect of MgO solute on the kinetics of grain-growth in Al2O3. Journal of the American Ceramic Society, 1983. 66(5): p. C90-C92.
    48. BERRY, K.A. and M.P. HARMER, Effect of MgO Solute on Microstructure Development in A12Q3. Journal of the American Ceramic Society, 1986. 69(2): p. 143-49.
    49. JOHNSON, W.C. and R.L. COBLE, A Test of the Second-Phase and Impurity-Segregation Models for MgO-Enhanced Densification of Sintered Alumina. Journal of The American Ceramic Society, 1978. 61(3-4): p. 110-114.
    50. S.J. Bennison and M.P. Harmer, Effect of Magnesia Solute on Surface Diffusion in Sapphire and the Role of Magnesia in the Sintering of Alumina. Journal of the American Ceramic Society, 1990. 73(4): p. 833-37.
    51. Peelen.J.G.J, influence of MgO on the evolution of the microstructure of alumina. Material Science Research 1975. 10: p. 443-453.
    52. Ren, J.W., et al., Simulations and modeling of planar amperometric oxygen sensors. Sensors and Actuators B-Chemical, 2007. 123(1): p. 135-141.
    53. KINGERY, W.D., Factors Affecting Thermal Stress Resistance of Ceramic Materials. Journal of the American Ceramic Society, 1955. 38(1): p. 3-15.
    54. HASSELMAN, D.P.H., Elastic Energy at Fracture and Surface Energy as Design Criteria for Thermal Shock. Journal of the American Ceramic Society, 1963. 46(11): p. 535-540.
    55. HASSELMAN, D.P.H., Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in Brittle Ceramics. Journal of the American Ceramic Society, 1969. 52(11): p. 600-604.
    56. Lutz, E.H. and M.V. Swain, Fracture Toughness and Thermal Shock Behavior of Silicon Nitride-Boron Nitride Ceramics. Journal of the American Ceramic Society, 1992. 75(1): p. 67-70.
    57. Dorey, R.A., J.A. Yeomans, and P.A. Smith, Effect of pore clustering on the mechanical properties of ceramics. Journal of the European Ceramic Society, 2002. 22(4): p. 403-409.
    58. Maensiri, S. and S.G. Roberts, Thermal Shock Resistance of Sintered Alumina/Silicon Carbide Nanocomposites Evaluated by Indentation Techniques. Journal of the American Ceramic Society, 2002. 85(8): p. 1971-1978.
    59. Uribe, R. and C. Baudín, Influence of a Dispersion of Aluminum Titanate Particles of Controlled Size on the Thermal Shock Resistance of Alumina. Journal of the American Ceramic Society, 2003. 86(5): p. 846-850.
    60. Wang, L., et al., Influence of tungsten carbide particles on resistance of alumina matrix ceramics to thermal shock. Journal of the European Ceramic Society, 2001. 21(9): p. 1213-1217.
    61.尹衍升and李嘉,氧化锆陶瓷及其复合材料. 2004:化学工业出版社.
    62. Ishitsuka, M., et al., Grain-Size Dependence of Thermal-Shock Resistance of Yttria-Doped Tetragonal Zirconia Polycrystals. Journal of the American Ceramic Society, 1990. 73(8): p. 2523-25.
    63. T.Sato, et al., Thermal shock resistance of yttria-doped tetragonal zirconia polycrystals: effect of solvent in quenching test. JOURNAL OF MATERIALS SCIENCE LETTERS 1987. 6: p. 1287-1290.
    64. T.Sato, M.Ishltsuka, and M.Shimada, Thermal Shock Resistance of ZrO2 Based Ceramics. Materials and Design 1988. 9(4): p. 204-212.
    65. Fargas, G., et al., Thermal shock resistance of yttria-stabilized zirconia with Palmqvist indentation cracks. Journal of the European Ceramic Society, 2003. 23(1): p. 107-114.
    66. Fargas, G., et al., Reply to the paper entitled“Comments on thermal shock resistance of yttria stabilized zirconia with Palmqvist indentation cracks by G. Fargas, D.Casellas, L. Llanes, M. Anglada”by F. Tancret [J. Eur. Ceram. Soc. 23 (2003) 107–114]. Journal of the European Ceramic Society, 2006. 26: p. 1523–1524.
    67. Tancret, F., Comments on "Thermal shock resistance of yttria-stabilized zirconia with Palmqvist indentation cracks" by G. Fargas, D. Casellas, L. Llanes, M. Anglada [J. Eur. Ceram. Soc. 23 (2003) 107-114]. Journal of the European Ceramic Society, 2006. 26(8): p. 1517-1522.
    68. Tancret, F. and F. Osterstock, The vickers indentation technique used to evaluate thermal smock resistance of brittle materials. Scripta Materialia, 1997. 37(4): p. 443-447.
    69. R.H.Dauskardt, W.Yu, and R.O.Ritchie, Fatigue Crack Propagation in Transformation-Toughened Zirconia Ceramic. Journal of the American Ceramic Society, 1987. 70(10): p. C-248-C-252.
    70. Reinhold H. Dauskarat, D.B.M.R.O.R., Cyclic Fatigue-Crack Propagation in Magnesia-Partially-Stabilized Zirconia Ceramics. Journal of the American Ceramic Society, 1990. 73(4): p. 893-903.
    71. Zhang, L. and V.D. Krstic, HIGH TOUGHNESS SILICON-CARBIDE GRAPHITELAMINAR COMPOSITE BY SLIP CASTING. Theoretical and Applied Fracture Mechanics, 1995. 24(1): p. 13-19.
    72. F.A.KROGER, Defect Models for Sintering and Densification of Al2O3: Ti and Al2O3: Zr. Journal of the American Ceramic Society, 1984. 67(6): p. 390-392.
    73. Jenqdaw Wang, R.R., Estimate of the Activation Energies for Boundary Diffusion from Rate-Controlled Sintering of Pure Alumina, and Alumina Doped with Zirconia or Titania. Journal of the American Ceramic Society, 1990. 73(5): p. 1172-1175.
    74. Nils, C., Fracture Toughness of Al_2O_3 with an Unstabilized ZrO2 Dispersed Phase. Journal of the American Ceramic Society, 1976. 59(1-2): p. 49-51.
    75. Paul M. Sheedy, H.S.C.H.M.C.M.P.H., Effects of Zirconium Oxide on the Reaction Bonding of Aluminum Oxide. Journal of the American Ceramic Society, 2001. 84(5): p. 986-990.
    76. Goncalves, R.F., et al. Nanocoating of Al2O3 additive on ZrO_2 powder and its effect on the sintering behaviour in ZrO2 ceramic. in 4th Meeting of the Brazilian-Society-for-Materials-Research. 2005. Recife, BRAZIL.
    77. Koji Matsui, N.O.M.O.N.E.J.H., Sintering Kinetics at Constant Rates of Heating: Effect of Al2O3 on the Initial Sintering Stage of Fine Zirconia Powder. Journal of the American Ceramic Society, 2005. 88(12): p. 3346-3352.
    78. Koji Matsui, T.Y.M.U.N.E.J.H., Mechanism of Alumina-Enhanced Sintering of Fine Zirconia Powder: Influence of Alumina Concentration on the Initial Stage Sintering. Journal of the American Ceramic Society, 2008. 91(6): p. 1888-1897.
    79. Thokchom, J.S., et al., Heterogeneous electrolyte (YSZ-Al_2O_3) based direct oxidation solid oxide fuel cell. Journal of Power Sources, 2008. 178(1): p. 26-33.
    80. Feighery, A.J. and J.T.S. Irvine, Effect of alumina additions upon electrical properties of 8 mol.% yttria-stabilised zirconia. Solid State Ionics, 1999. 121(1-4): p. 209-216.
    81. Ye, Y., et al., Microstructure and mechanical properties of yttria-stabilizedZrO_2/Al_2O_3 nanocomposite ceramics. Ceramics International, 2008. 34(8): p. 1797-1803.
    82. Chen, G., et al., The superplastic deep drawing of a fine-grained alumina-zirconia ceramic composite and its cavitation behavior. Ceramics International, 2004. 30(8): p. 2157-2162.
    83.梁凤丽,固体氧化物燃料电池Pd-YSZ阴极研究与性能优化. 2009.
    84. Wolf, M.M., et al., Kinetic model for polycrystalline Pd/PdOx in oxidation/reduction cycles. Applied Catalysis A: General, 2003. 244(2): p. 323-340.
    85. Groppi, G., et al., Effect of ceria on palladium supported catalysts for high temperature combustion of CH4 under lean conditions. Catalysis Today, 1999. 50(2): p. 399-412.
    86. Hicks, R.F., et al., Structure sensitivity of methane oxidation over platinum and palladium. Journal of Catalysis, 1990. 122(2): p. 280-294.
    87. Liang, F.L., et al., Novel nano-structured Pd plus yttrium doped ZrO2 cathodes for intermediate temperature solid oxide fuel cells. Electrochemistry Communications, 2008. 10(1): p. 42-46.
    88. Zhang, H., et al., Novel nanostructred Pd-Zr oxides. Materials Science and Engineering A, 2004. 366(2): p. 248-253.
    89. Zhang, H., et al., PdO/Pd system equilibrium phase diagram under a gas mixture of oxygen and nitrogen. Journal of Phase Equilibria, 2002. 23(3): p. 246-248.
    90. Farrauto, R.J., et al., Catalytic chemistry of supported palladium for combustion of methane. Applied Catalysis A: General, 1992. 81(2): p. 227-237.
    91. Farrauto, R.J., et al., Thermal decomposition and reformation of PdO catalysts; support effects. Applied Catalysis B: Environmental, 1995. 6(3): p. 263-270.
    92. Hicks, R.F., et al., Effect of catalyst structure on methane oxidation over palladium on alumina. Journal of Catalysis, 1990. 122(2): p. 295-306.
    93. Heck, R.M. and R.J. Farrauto, Automobile exhaust catalysts. Applied Catalysisa-General, 2001. 221(1-2): p. 443-457.
    94. BoschCompany. Oxygen Sensor Catalogue Section A. [cited; Available from: http://www.bosch.com.au/content/language1/downloads/Section_A.pdf.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700