Mn-N共掺p型ZnO薄膜的制备及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO的室温禁带宽度是3.37eV,激子束缚能高达60meV,作为一种重要的光电信息功能材料,其p型掺杂问题是目前国际上最为关注的前沿领域。与此同时,由于ZnO通过适当地掺杂过渡金属离子有望实现室温铁磁性,有关ZnO基稀磁半导体(DMS)的研究也逐渐成为热点。
     本文针对目前ZnO研究中的热点问题,采用射频磁控溅射法制备较高结晶质量的ZnO:Mn薄膜,并结合N离子注入完成ZnO薄膜的Mn-N两步法共掺杂。通过在N2气氛中适当条件的快速退火,使注入的N离子达到电激活成为有效受主,进而实现p型转变。借助X射线衍射仪(XRD)、场发射扫描电镜(F-SEM)、霍尔测试仪、X光电子能谱(XPS)、双光束紫外-可见分光光度计、样品振动磁强计对ZnO:Mn-N薄膜进行了结构、表面形貌、电学、元素组分及化学状态、光学、磁学等方面的测试。
     结果表明采用二步法共掺杂技术制备的ZnO:Mn-N薄膜具有良好的晶体质量,晶粒呈柱状结构,沿垂直于衬底的(002)方向生长。经退火后,没有观察到其它杂质相的生成。薄膜在650℃经10~30min退火时均可实现p型转变,空穴浓度可达1016-1018cm-3,表明650℃可能为ZnO:Mn-N体系中N离子达到电激活成为有效受主的温度。XPS能谱证明了Mn2+、N3-离子的掺入。在热退火作用下,部分间隙位N离子通过扩散进入O空位,形成N-Zn或N-Mn键,是样品转变为p型的依据。XPS深度剖析还发现在热退火作用下,N和Mn在薄膜体内分布比较稳定,且随刻蚀深度的增加变化不大,表明在薄膜中N离子由退火前的高斯分布趋向于均匀分布。XPS的量化分析结果表明Mn和N在薄膜体内的摩尔百分比浓度分别为~4 at.%和~1 at.%。未退火的n型与650℃退火10min的p型ZnO:Mn-N薄膜均具有室温铁磁性,矫顽力分别为40Oe与65Oe, p型样品比n型的饱和磁化强度明显增大,使用束缚磁极化子模型(BMP)对样品的磁性来源作了解释。
     此外,在成功实现ZnO:Mn-N薄膜p型转变的基础上,本文还在650℃20min对不同样品进行了重复性退火,样品的空穴浓度均达到~1017cm-3;在对样品进行长期的跟踪测试中,发现p型ZnO:Mn-N薄膜的电学性能在历经六个月后虽然存有不同程度的弱化,但整体表现良好,薄膜导电类型依然为p型。
The semiconductor ZnO has gained substantial interest in the research of optoelectronic applications, which has band gap of 3.37eV at room temperature, and the binding energy of exciton as high as 60 meV. The renewed interest focusing on ZnO is fueled by reports of p-type conduction and ferromagnetic behavior when doped with transtions metals, both of which remain controversial.
     In this dissertation, our works are focused on p-type ZnO:Mn diluted magnetic semiconductor films. p-Type conductive Mn–N codoped ZnO thin films have been fabricated on quartz glass substrates by radio-frequency magnetron sputtering technique together with the direct implantation of N ions and post-annealing at appropriate condition in flowing N2 gas. The crystal structure, surface morphology, chemical bonding states and chemical compositions, electrical, optical and magnetic properties of the ZnO films are investigated by x-ray diffraction(XRD), field emission scanning electron microscopy(FESEM), Hall measurement system, X-ray photoelectron spectroscopy(XPS), transmission spectrum and Vibrating Sample Magnetometer (VSM) respectively.
     XRD and FESEM measurements reveal that the ZnO films which are grown by two steps codoping technic have single-phase wurtzite structure with c-axis preferred orientation, even when annealing later, no manganese oxide or nitride phase are detected. The codoped ZnO films annealed at 650℃from 10 to 30 minutes show good p-type conductivity with the hole concentration of 1016-1018cm-3, indicating that more N acceptors can be activated at the temperature of 650℃. X-ray photoelectron spectroscopy studies suggest that the incorporation of both divalent Mn2+ and trivalent N3- ions into the codoped ZnO films. Owing to electrical activation, a lot of N on substitutional sites can distribute into O site as NO, come into being N-Mn or N-Zn bonds in the films. It should be mentioned that nitrogen here mainly performs as Zn(MnZn)-NO or Zn(MnZn)+2NO complexes which would induce low resistivity p-type conduction. XPS depth profile reveals that the direct implantation of N ions change from Gaussian distribution tends to be uniform distribution under the effect of thermal annealing condition. The quantitative analysis indicate that the concentration of Mn and N in codoped ZnO film are~4.0% and~1.0 at.% respectively. Both samples of the deposit ZnO:Mn-N film and the film annealed at 650℃for 10 minutes exhibit significant ferromagnetism at room temperature(300K) with the coercive field (Hc) of 40Oe and 63Oe respectively. The saturation magnetic moment of the p-type sample is much larger than the n-type sample. The ferromagnetic mechanism in codoped ZnO films is discussed based on a bound magnetic polaron model.
     In addition, on the basis of p-type ZnO films are prepared successfully, we also do some research about repeatability of the experiments and the stability of the p-type codoped ZnO films. All samples were annealed at 650℃for 20 minutes show good p-type conductivity with the hole concentration of 1017cm-3 around. Although there are some different degrees of weakening, Hall effect measurements were also carried out half a year later and the p-type conductivity of the codoped ZnO films are still well observed.
引文
[1] Wong E C, Searon P C. ZnO Quantum Particle Thin Films Fabricated By Electrophoretic Deposition [J]. Appl. Phys. Lett, 1999, 74(20): 2939-2942.
    [2] Service R. F. Will UV laser beat the blues [J]. Science, 1997, 276: 895.
    [3] U. Ozur, Ya. I. Alivov, C. Liu, et al. A comprehensive review of ZnO materials and devices [J], J. Appl. Phys, 2005, 98:041301.
    [4] G. Xiong, J. Wilkinson, S. Tuzemen, et al.In the Seventh International Conference on Laser and Laser-Information Technologies, Proc.of SPIE, 2002, 46(44): 256-260.
    [5] Sharma A.K., Narayan J., Muth J. F.Optical and Structural Properties of Epitaxial MgZnO Alloys[J]. Applied Physics Letters, 1999, 750:3327.
    [6] Tae-Hyoung Moon, Jeong Min-Chang, Lee Woong and Jae-Min Myoung. The Fabrication and Characterization of ZnO UV Detector[J]. Applied Surface Science, 2005, 240: 280-285.
    [7] Takagi T., Tanaka H., Fujita S., Fujita Shigeo, Molecular Beam Epitaxy of High Magnesium Content Single-Phase Wurzite MgxZn1-xO Alloys and Their Application to Solar-Blind Region Photodetectors[J]. Jpn. J. Appl. Phys. 2003, 43: 401-404.
    [8] Jaffe J. E. A. C. Hess. Hartree-Fock Study of Phase Changes in ZnO at High Pressure[J]. Phys. Rev. B, 1993, 48: 7903-7909.
    [9]秦国平.N-In共掺p型ZnO薄膜的制备及性能研究.[D].重庆:重庆师范大学2008.
    [10] Jian B. J., Ba S. H., Lee S. Y. Effects of Native Defects on Optical and Electrical Properties of ZnO Prepared by Pulsed Laser Deposition[J]. Materials Science and Engineering, 2000, 71: 301-305.
    [11] Tüzemen S. and Emre Gür. Principal Issues in Producing New Ultraviolet Light Emitters Based on Transparent Semiconductor Zinc Oxide[J]. Optical Materials, 2007, 30(2): 292-310.
    [12] Hiroki Goto, Hisao Makino, Agus Setiawan. Reduction of Dislocation Density and Improvement of Optical Quality in ZnO Layers by MgO-Buffer Annealing[J]. Current Applied Physics, 2004, 4(6): 637-639.
    [13] Hamdani F., Botchkarev A., Kim W., et al. Optical Properties of GaN Grown on ZnO by Reactive Molecular Beam Epitaxy[J]. Appl. Phys. Lett. 1997-1-27, 70 (4): 468-470.
    [14] Setiawan A., Ko H. J. and Yao T.. Effects of Annealing of MgO Buffer Layer on Structural Quality of ZnO Layers Grown by P-MBE on c-Sapphire[J]. Materials Science in Semiconductor Processing, 2003-10, 6: 371-374.
    [15] T. Yamaoto, H. Katayama-Yoshida. Unipolarity of ZnO with a wide-band and its solution usingcodoping method[J]. J.Cryst. Growth, 2000,214: 552-555.
    [16] T. Yamaoto, H. Katayama-Yoshida. Solution using a codoping method to unipolarity for the fabrication of p-type ZnO[J]. Jpn. J. Appl. Phys, 1999, 38: 166-169.
    [17] Y. J. Zeng, Z. Z. Ye, W. Z. Xu, et al. Dopant source choice for formation of p-type ZnO:Li acceptor[J]. Appl. Phys. Lett, 2006, 88: 062107.
    [18] Y. R. Ryu, S. Zhu, D. C. Look, et al. Synthesis of p-type ZnO films[J].J. Cryst. Growth. 2000, 216: 330.
    [19] Fujihara S, Sasaki C, Kimura T. Crystallization Behavior and Origin of c-axis Orientation in Sol–Gel-Derived ZnO:Li Thin Films on Glass Substrates[J ]. J. Europ. Ceramic Society, 2001, 21(10-11): 2109-2112.
    [20] Haase MA, Sankey OF, Dow J D. Blue·green Laser Diodes[J]. App1. Phys. Lett., 1991,59(10):1272-1273.
    [21] Aoki T,Hatanaka Y,Look D C.ZnO Diode Fabricated by Excimer-Laser Doping[J ]. App1. Phys. Lett. 2000, 6(22): 3257-3258.
    [22] Kyoung-Kook Kim, Hyun-Sik Kim, Dae-Kue Hwang, Jae-Hong Lim, and Seong-Ju Parka. Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant [J ] App1. Phys. Lett . 2003, 83: 63-65.
    [23] Ryu Y R, Zhu S, Look D C, et al.. Synthesis of p-type ZnO films [J ]. J. Cryst. Growth, 2000, 76(22): 3257-3258.
    [24] Ryu Y R, Kim W J, White H W, et al. Fabrication of homostructural ZnO p-n junctions[J ]. J. Cryst. Growth, 2000, 216(1-4): 330-334.
    [25] Y. R. Ryu, S. Zhu, D. C. Look, et al. Incestigation of As-doped ZnO films synthesized via thermal annealing of ZnSe/GaAs heterostructures[J]. J. Crystal Growth. 2000, 216: 330-334.
    [26] X. H. Pan, Z. Z. Ye, J. S. Li, et al. Preparation of p-type ZnMgO thin films by Sb doping method[J]. Appl. Surf. Sci. 2007, 253:5067-5071.
    [27] Haase MA, Sankey OF, Dow J D. Blue-green Laser Diodes[J]. App1. Phys. Lett., 1991,59(10):1272-1273.
    [28] Futsuhara M., Yoshiok K. Otakai. Structural, Electrical and Optical Properties of Zinc Nitride Thin Films Prepared by Reactive RF Magnetron Sputtering[J]. Thin Solid Films, 1998, 317-322.
    [29] Li X., Yan Y. , Gessert T. A. , De. Hart C. p-Type ZnO Thin Films Formed by CVD Reaction of Diethylzinc and NO Gas Electrochem[J]. Solid-State Lett., 2003-4, 6(4): 56-58.
    [30]徐伟中,叶志镇,周婷等MOCVD法以NO气体为掺杂源生长P型ZnO[J].薄膜半导体学报,2005,26(1):38.
    [31] Kamata A,Mitsuhashi H,Fujita H.. Origin of the Low Doping Efficiency of Nitrogen Acceptors in ZnSe Grown by Metalorganic Chemical Vapor Deposition [J ]. App1. Phys. Lett., 1993, 63(24): 3353-3354.
    [32] Ohtomo A,Kawasaki M ,Sakurai Y,et a1.Fabrication of Alloys and Superlattices Based on ZnO Towards Ultraviolet Laser[J ]. Mater.Sci.Eng.B,1998,56:263-266.
    [33] Ye Zhi-Zhen. et a1.Preparation and Characteristics of p-type ZnO Films by DC Reactive Magnetron Sputtering[J ]. J. Cryst. Growth,2003,253:258.
    [34] Lu Jian-Guo. et a1. p-Type ZnO Films Deposited by DC Reactive Magnetron Sputtering at Different Ammonia Concentrations[J ]. Materials Letters,2003, 57: 3311.
    [35] Ji Zhen-Guo. et a1. Fabrication and Characterization of p-Type ZnO Films by Pyrolysis of Zinc-Acetate-Ammonia solution[J ]. J Cryst Growth,2003, 253: 239.
    [36] Yamamoto T., Yoshida H.K.. Solution Using a Codoping Method to Unipolarity for the Fabrication of p-type ZnO [J]. Jpn. J.Appl.Phys., 1999, 38: 166-169.
    [37] Yamamoto T., Katayama-Yoshida H.. Unipolarity of ZnO with a Wide-Band Gap and Its Solution Using Codoping Method[J]. Cryst J.. Growth 2000, 214/215: 552.
    [38] Yamamoto T. and Yoshida H. K.. Physics and Control of Valence States in ZnO by Codoping Method[J]. Physics B, 2001, 302/303:155.
    [39] Yamamoto T., Codoping for the Fabrication of p-Type ZnO[J]. Thin Solid Films 2002, 420/421: 100-106.
    [40] Yamamoto T. Codoping Method for Solutions of Doping Problems in Wide-Band-Gap Semiconductors[J]. Phys. Stat. Sol., 2002, 193: 423-433.
    [41] Joseph M., Tabata H., Saeki H., et al. Fabrication of the Low-Resistive p-Type ZnO by Codoping Method[J]. Physica B 2001, 302/303: 140-148.
    [42] J. G. Lu, Z. Z. Ye, F. Zhuge, et al. p-type conduction in N-Al co-doped ZnO thin films[J]. Applied Physics Letters. 2004, 85: 3134.
    [43] Zhi-Zhen Ye, Fei Zhu-Ge, Jian-Guo Lu. et al. Preparation of p-type ZnO films by Al+N-condoping method[J]. J. Crystal Growth. 2004, 265:127.
    [45] J. G. Lu, L. P. Zhu, Z. Z. Ye, et al. Dependence of properties of N-Al condoped p-type ZnO thin films on growth temperature[J]. Applied Surface Science 2005, 245:129.
    [46] Bian J M,Li X M,Gao X D,et al. Deposition and Electrical Properties of N-In Codoped p-Type ZnO Films by Ultrasonic Spray Pyrolysis[J]. Appl. Phys. lett.. 2004, 84(4):541-543.
    [47] Chen L. L., Lu J. G., Ye Z. Z., et al. p-Type Behavior in In–N Codoped ZnO Thin Films[J]. Appl. Phys. lett.. 2005, 87: 252106.
    [48] Chen L. L., Ye Z. Z. et al. Control and Improvement of p-type Conductivity in Indium andNitrogen Codoped ZnO Thin Films[J]. Appl. Phys. lett.. 2006, 89: 252113.
    [49] Kong Chun-Yang, Qin Guo-ping, Ruan Hai-Bo, Nan Mao et al. Effect of Post-Annealing on the Microstructure and Electronic Properties of N+ Ion-Implanted into ZnO:In Films. Chinese Physics Letters, 2008, 25(3): 1128.
    [50] Ohno H, Munekata H, Penney T. et al. Ferromagnetism and its stability in the diluted magnetic semiconductor (Ga, Mn)As[J]. Appl. Phys. Lett. 1996, 69:363-366.
    [51] Stito H, Ando K, Phys. Rev. Lett. 2003, 90: 207202.
    [52] Dietl T, Ohno H, MatsukuraF, et al. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors[J]. Science, 2000, 287: 1019-1022.
    [53] Sato. K, Katayama-Yoshida H. Electronic structure and ferromagnetism of transition-metal-impurity-doped zinc oxide. Physica B, 2001, 308-310: 904-907.
    [54] K. Sato, H. Katayama-Yoshida, Electronic structure and ferromagnetism of transition-metal-impurity-doped zinc oxide[J].Physica B. 2001, 308-310, 904-907.
    [55] K. Sato, H. Katayama-Yoshida, Ferromagnetism in a transition metal atom doped ZnO[J].Physica E, 2001, 10:251-255.
    [56] Q. W ang and P. Jena. First-principles study of magnetism in (1120) Zn1-xMnxO thin film[J].Appl. Phys. Lett. 2004, 84: 4170.
    [57]李金华.Mn掺杂ZnO纳米晶的光学和磁学性质研究.[D].长春:中国科学院长春光学精密机械与物理研究所,2006.
    [58]姜寿亭,李卫.凝聚态磁性物理[M].科学出版社,2003.
    [59] T. Fukumura, Z. Jin, M. Kawasaki, et al. Magnetic properties of Mn-doped ZnO[J]. Appl. Phys. Lett. 2001, 78: 958-960.
    [60] Jin Z.W. et al. High through put fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties[J]. Appl. Phys. Lett. 2001, 78(24):3824-3826.
    [61] S. W. Jung, S. J. An, G, Yi, et al. Ferromagnetic properties of Zn1-xMnxO epitaxial thin films[J]. Appl. Phys. Lett.2002, 80: 4561-4563.
    [62] P. Sharma, A.Gupta, K. V. Rao, et al. Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO[J]. Nat. Mater. 2003, 2:673-677.
    [63] D. P. Norton, S. J. Pearton, A. F. Hebard, et al. Ferromagnetism in Mn-implanted ZnO:Sn single crystals[J]. Appl. Phys. Lett. 2003,82: 239-241.
    [64] K. R. Kittilstved, N. S. Norberg and D.R. Gamelin. Chemical Manipulation of High-Tc Ferromagnetism in ZnO Diluted Magnetic Semiconductors[J]. Phys. Rev. Lett, 2005,94: 147209.
    [65] S. Lim, M. Jeong, M. Ham et al. Hole-Mediated Ferromagnetic Properties in Zn1-xMnxO Thin Films[J]. Jpn. J. Appl. Phys. 2004, 43(2B): 280-283.
    [66] H. Y. Xu, Y. C. Liu, C. S. Xu, et al. Room-temperature ferromagnetism in (Mn, N)-condoped ZnO thin films prepared by reactive magnetron cosputtering[J]. Appl. Phys. Lett. 2006, 88:242502-242504.
    [67] Zheng-Bin Gu, Ming-Hui Lu, Jing Wang, et al. Structure, optical, and magnetic properties of sputtered manganese and nitrogen-codoped ZnO films[J]. Appl. Phys. Lett. 2006,88:082111-082113.
    [68] Wensheng Yan, Zhihu Sun, Qinghua Liu, et al. Structures and magnetic properties of (Mn-N)-codoped ZnO thin films[J]. Appl. Phys. Lett. 2007,90:242509-242511.
    [69] Q. Wang, Q. Sun, P.Jena et al. Carrier-mediated ferromagnetism in N codoped (Zn, Mn)O (1010) thin films[J]. Physical Reciew B. 2004, 70: 052408-052411.
    [70]杨邦朝,王文生.薄膜物理与技术[M].电子科技大学出版社,1994: 60-117.
    [71]戴达煌,周克落,袁振海:现代材料表面技术科学[M],冶金技术出版社,2004.
    [72] Stephen A. Campbell.微电子制造科学原理与工程技术[M].电子工业出版社, 2005-8:304.
    [73]王贻华,胡正琼.离子注入与分析基础[M],航空工业出版社,1992.
    [74]罗晋生.离子注入物理[M],上海科学技术出版社,1984.
    [75] Craig L, Perkins, Se-Hee Lee, et al. Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy[J]. J. Appl. Phys, 2005, 97:034907.
    [76] Zhang J P, Zhang L D, Zhu L Q, et al. Characterization of ZnO:N films prepared by annealing sputtered zinc oxynitride films at different teperatures[J]. J. Appl. Phys, 2007, 102:114903.
    [77] P. Fons, H. Tampo, A.V. Kolobov, M. Ohkubo, S. Niki, J. Tominaga, R. Carboni, F. Boscherini, S. Friedrich. Phys. Rev. Lett. 2006, 96:045504 .
    [78] S. J. Jiao, Z. Z. Zhang, Y. M. Lu. et al. ZnO p-n junction light-emitting diodes fabricated on sapphire substrated[J]. Appl. Phys. Lett. 2006, 88:031911-031913.
    [79] B.S.Li, Y. C. Liu, Z. Z. Zhi, et al. Opticl properties and electrical characterization of p-type ZnO thin films prepared by thermally oxiding Zn3N2 thin films[J]. J. Mater. Res. 2003, 18:8-13.
    [80] H. Wang, H. P. Ho, K. C. Lo, et al. Preparation of p-type ZnO films with (N, Ga) co-doping by MOVPE[J]. Materials Chemistry and Physics.2008, 107: 244-247.
    [81]宗福建,马洪磊,薛成山等.氮化锌粉末的制备和结构性质[J].中国科学G辑.物理学力学天文学2004,34(6): 610-619.
    [82] Lee Y R, Ramdas A K and Aggarwal R L. Energy Gap, Excitonic, and“Internal”Mn2+ Optical Transition in Mn-BasedⅡ-ⅥDiluted Magnetic Semiconductors. Phys. Rev. B.1988, 38:10600-10610.
    [83]沈学础半导体光谱和光学性质[M],科学出版社,2006: 118.
    [84] Maiti UM, Ghosh PK, Nandy S, et al. Effect of Mn doping on the optical and structural properties of ZnO nano/micro-gibrous thin film synthesized by sol-gel technique[J]. Physica, B. 2007, 387(1-2): 103-108.
    [85]邱东江,王俊,丁扣宝等.退火对Mn和N共掺杂的Zn0.88Mn0.12O:N薄膜特性的影响[J].物理学报,2008, 57(8):5249-5255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700