溶胶凝胶法制备有序介孔二氧化钛薄膜及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有序介孔二氧化钛薄膜具有巨大的比表面积和有序的介孔结构,在染料敏化太阳能电池,光催化剂等领域有光明的应用前景,因此被广泛的研究。但是有序介孔二氧化钛薄膜在不同的温度和在不同的气氛下退火,特别是还原性气氛下退火对薄膜结构,以及薄膜中点缺陷对薄膜性能的影响却比较少而且不系统,而这些可能的结构和点缺陷浓度变化极有可能极大地影响薄膜的性能。本文采用TiCl_4和三嵌段共聚物F127分别作为前躯体和结构助进剂,用溶胶凝胶提拉膜方法合成出有序介孔二氧化钛薄膜。合成的薄膜分别在250℃,300℃,350℃,400℃,450℃下退火一个小时。合成的薄膜也分别在N_2,O_2,NH_3,H_2气氛下450℃退火一个小时。采用XRD,SEM和Raman光谱对在不同温度和气氛下退火的薄膜结构进行表征。用Photoluminescence光谱对在不同温度和气氛下退火薄膜的光致发光性能进行表征。
     XRD,SEM和Raman表征结果表明,合成的薄膜具有序的介孔结构,介孔呈蠕虫状且垂直于薄膜表面。对于在不同温度下退火的薄膜,在300℃以下为非晶态。随着退火温度的提高,薄膜的结晶度不断提高,薄膜的晶粒不断长大,薄膜表面粗糙度变大。薄膜在450℃退火具有完整的锐钛矿结构。对于在不同气氛下退火的有序介孔二氧化钛薄膜,薄膜主要呈锐钛矿结构。且在NH3气氛下薄膜晶粒和表面粗糙度最大,N掺杂进入薄膜;在O_2气氛下薄膜呈相对较多的金红石相。Photoluminescence表征的结果,薄膜都出现带边发光和激子发光带。在不同温度下退火的薄膜,随着退火温度的提高,Photoluminescence的强度不断减小。这是因为薄膜在300℃下为非晶,具有大量的缺陷作为电子空穴的复合中心。随着退火温度的升高,薄膜结晶度不断提高,缺陷不断减少。但是在450℃,薄膜展现一个强的激子发光带,这很可能归于退火温度提高薄膜表面粗糙度的提高产生大量氧空位。在H_2气氛下退火的薄膜具有最大的带边发光和激子发光,这主要归因于薄膜在H_2气氛下退火具有大量的表面缺陷,特别是H_2是还原气氛使薄膜产生大量的氧空位。在O_2气氛下退火的薄膜具有最低的带边发光和机子发光,这主要由于在O_2气氛下退火的薄膜呈相对较多的金红石相。相对于在空气下退火的有序介孔二氧化钛薄膜,在不同气氛下退火的薄膜在带边发光区出现红移,对于NH_3和N_2气氛退火,主要归因于N掺杂。而H_2和O_2气氛是由于产生缺陷能级使能隙变小。这些因退火温度和退火气氛的结构和点缺陷浓度变化对薄膜光致发光性能的影响,对研究和合成高效的染料敏化二氧化钛太阳能电池和高催化活性的二氧化钛薄膜光催化剂都具有有益的参考价值。
Ordered mesoporous TiO_2 thin films is studied extensively because they have extremely large specific surface area and ordered mesoporous structure and have promising potential application in dye-sensitized solar cells, photocatalyst fields and so on. However, the changing structure and point defects concentration of ordered mesoporous TiO_2 thin films by annealing at different temperature and annealing in different atmosphere, especially reduction atmosphere is paid less attention. This structure and point defect concentration change of thin films may extremely change the properties of thin films. Here, we employed the TiCl4 and triblock copolymer F127 as precursor and structure-directing agent and synthesized ordered mesoporous TiO_2 thin films by sol-gel dip-coating method. The as-prepared thin films were annealed at 250℃, 300℃, 350℃, 400℃, 450℃in air for 1 hour, respectively. Another group as-prepared thin film were annealed in N_2, O_2, NH_3 and H_2 atmosphere at 450℃for 1 hour, respectively. The structure, crystallinity, crystallite size and surface roughness of thin films were characterized by XRD,SEM and Raman spectra. The emission properties of thin films influenced by different annealing temperature and different annealing atmosphere were characterized by PL spectrum.
     The results of XRD,SEM and Raman spectra show that the as-prepared thin films have ordered mesostrure. Mesopores are wormlike and normal to thin film surface. As for samples annealed at 250℃, 300℃, 350℃, 400℃, 450℃, thin films are amorphous when the annealing temperature is below 300℃. With the annealing temperature increasing, the crystallinity, crystallite size and surface roughness of thin films increase. Thin films annealed at 450℃were crystallized completely and exhibited the anatase phase. As for ordered mesoporous TiO_2 thin films annealed in N_2, O_2, NH_3 and H_2 atmosphere, they mainly show anatase structure. The crystallite size and surface roughness of thin films annealed in NH3 atmosphere are the largest and that may be attributed to N doped into thin films. More rutile peaks were observed in thin films annealed in O_2. PL results show that thin films all exhibit two emission bands. One is band-band PL, the other is excitonic PL. As for samples annealed in different temperature, with the temperature increasing, the intensity of photoluminescence decreases. It can be ascribed to point defect concentration of thin films decreasing due to the crystallinity of thin films increasing with temperature increasing. But when the annealing temperature is up to 450℃, a strong excitonic emission band appears. It is attributed to the large amount of oxygen vacancies due to the largest surface roughness of thin films annealed at 450℃. Thin films annealed in H2 show the strongest band-band PL and excitonic PL compared to thin films annealed in NH3, N2 and O_2. This is ascribed to the large amount of defect in thin films, especially the large amount of oxygen vacancies generating due to reduced H_2 atmosphere. Thin films annealed in O_2 exhibit the lowest PL intensity. It is ascribed to that they contain more rutile phase. Compared to thin films annealed in air, thin films annealed in N_2, O_2, NH_3 and H_2 atmosphere show the slightly red shift. It can be attributed to N-doped for N_2 and NH_3, generating defect level and decrease the width of band gap for O_2 and H_2. These effects on photoluminescence properties due to the structure and point defect concentration change resulted from different annealing temperature and different annealing atmosphere is of benefit to study and synthesize high quality dye-sensitized solar cells and photocatalyst.
引文
1. Gr?tzel, M., Perspectives for Dye-Sensitized Nanocrystalline Solar Cells. Progress in Photovoltaics: Research and Application 2000, 8, (1), 171-185.
    2. Huang, C. H. Li, F. Y. Huang, Y. Y., Ultathin Films for Optics and Electroncics. Beijing University Press, 2001, Beijing. (In Chinese)
    3. Yang, S. M., Dye-sensitized nanocrytalline solar cells. Zhengzhou University Press, 2007, Zhengzhou. (In Chinese)
    4. Oregan, B. Gr?tzel, M., A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature 1991, 353, (6346), 737-740.
    5. Gr?tzel, M., Dye-Sensitized Solar Cells. Journal of Photochemistry and Photobiology C-Photochemistry Reviews 2003, 4, (2), 145-153.
    6. Chen, X. Mao, S. S., Titanium Dioxide Nanomaterials: Synthesis, Properties, Modification, and Application. Chemical Reviews 2007, 107, (7), 2891-2959.
    7. Gr?tzel, M., Conversion of Sunlight to Electric Power by Nanocrystalline Dye-Sensitized Solar Cells. Journal of Photochemistry and Photobiology a-Chemistry 2004, 164, (1-3), 3-14.
    8. Cahen, D. Hodes, G. Gr?tzel, M. Guillemoles, J. F. Riess, I., Nature of Potovoltaic Action in Dye-Sensitized Solar Cells. Journal of Physical Chemistry B 2000, 104, (9), 2053-2059.
    9. Pichot, F. Gregg, B. A., The Photovoltage-Determining Mechanism in Dye-Sensitized Solar Cells. Journal of Physical Chemistry B 2000, 104, (1), 6-10.
    10. Zukalova, M. Zukal, A. Kavan, L. Nazeeruddin, M. K. Liska, P. Gr?tzel, M. Organized Mesoporous TiO2 Films Exhibiting Greatly Enhanced Performance in Dye-Sensitized Solar Cells. Nano Letters 2005, 5, (9), 1789-1792.
    11. Frank, S. N. Bard, A. J., Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous-Solutions at Semiconductor Powders. The Journal of Physical Chemistry 1977, 81, (15), 1484-1488.
    12. Fujishima, A. Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, (5358), 37-38.
    13. Gao, L. Zheng, S. Zheng, Q. H., Nano Titania Photocatalytic Materials and Application. Chemical Industry Press, 2002, Beijing. (In Chinese)
    14. Sclafani, A. Palmisano, L. Schiavello, M. Influence of the Preparation Methods of TiO2 on the Photocatalytic Degradation of Phenol in Aqueous Dispersion. Journal of Physical Chemistry 1990, 94, (2), 829-832.
    15. Trudeau, M. L. Ying, J. Y., Nanocrystalline Materials in Catalysis and Electrocatalysis: Structure Tailoring and Surface Reactivity. Nanostructured Materials 1996, 7, (1-2), 245-258.
    16. Anpo, M. Aikawa, N. Kodama, S. Kubokawa, Y., Photocatalytic Hydrogenation of Alkynes and Alkenes With Water Over TiO2. Hydrogenation Accompanied by Bond Fission. Journal of Physical Chemistry 1984, 88, (12), 2569-2572.
    17. Hoffmann, M. R. Martin, S. T. Choi, W. Y. Bahnemann, D. W., Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews 1995, 95, (1), 69-96.
    18. Peng, T. Y. Zhao, D. Dai, K. Shi, W. Hirao, K., Synthesis of Titanium Dioxide Nanoparticles With Mesoporous Anatase Wall and High Photocatalytic Activity. Journal of Physical Chemistry B 2005, 109, (11), 4947-4952.
    19. Huang, J. F., Sol-Gel principles and techniques. Chemical Industry Press, 2005, Beijing. (In Chinese)
    20. Beck, J. S. Vartuli, J. C. Roth, W. J. Leonowicz, M. E. Kresge, C. T. Schmitt, K. D. Chu, C. T. W. Olson, D. H. Sheppard, E. W. Mccullen, S. B. Higgins, J. B. Schlenker, J. L., A New Family of Mesoporous Molecular-Sieves Prepared with Liquid-Crystal Templates. Journal of the American Chemical Society 1992, 114, (27), 10834-10843.
    21. Kresge, C. T. Leonowicz, M. E. Roth, W. J. Vartuli, J. C. Beck, J. S., Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature 1992, 359, (6397), 710-712.
    22. Van Gerven, T. Mul, G. Moulijn, J. Stankiewicz, A., A Review of Intensification of 51Photocatalytic Processes. Chemical Engineering and Processing 2007, 46, (9), 781-789.
    23. Cozzoli, P. D. Comparelli, R. Fanizza, E. Curri, M. L. Agostiano, A. Photocatalytic Activity of Organic-Capped Anatase TiO2 Nanocrystals in Homogeneous Organic Solutions. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 2003, 23, (6-8), 707-713.
    24. Lindgren, T. Mwabora, J. M. Avendano, E. Jonsson, J. Hoel, A. Granqvist, C. G.. Lindquist, S. E., Photoelectrochemical and Optical Properties of Nitrogen Doped Titanium Dioxide Films Prepared by Reactive DC Magnetron Sputtering. Journal of Physical Chemistry B 2003, 107, (24), 5709-5716.
    25. Asahi, R. Morikawa, T. Ohwaki, T. Aoki, K. Taga, Y., Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001, 293, (5528), 269-271.
    26. Chen, C. A. Huang, Y. S. Chung, W. H. Tsai, D. S. Tiong, K. K., Raman Spectroscopy Study of the Phase Transformation on Nanocrystalline Titania Films Prepared via Metal Organic Vapour Deposition. Journal of Materials Science-Materials in Electronics 2009, 20, 303-306.
    27. Lindgren, T. Mwabora, J. M. Avendano, E. Jonsson, J. Hoel, A. Granqvist, C. G. Lindquist, S. E. Photoelectrochemical and Optical Properties of Nitrogen Doped Titanium Dioxide Films Prepared by Reactive DC Magnetron Sputtering. Journal of Physical Chemistry B 2003, 107, (24), 5709-5716.
    28. Trentler, T. J. Denler, T. E. Bertone, J. F. Agrawal, A. Colvin, V. L., Synthesis of TiO2 Nanocrystals by Nonhydrolytic Solution-Based Reactions. Journal of the American Chemical Society 1999, 121, (7), 1613-1614.
    29. Fujishima, A. Rao, T. N. Tryk, D. A., Tatanium Dioxide Photocatalysts. Journal of Photochemistry and Photobiology C-Photochemistry Reviews 2000, 1, (1), 1-21.
    30. Bhatkhande, D. S. Pangarkar, V. G. Beenackers, A. A. C. M., Photocatalytic Degradation for Environmental Applications - a Review. Journal of Chemical Technology and Biotechnology 2002, 77, (1), 102-116.
    31. Ionic Radiuses of Elements [EB/OL]. Department of Chemistry, Hexi University [2009-05-09]. http://xxj.hxu.edu.cn/huaxuexi/qt/hxys/element2.htm (In Chinese)
    32. Knorr, F. J. Zhang, D. McHale, J. L., Influence of TiCl4 Treatment on Surface Defect Photoluminescence in Pure and Mixed-Phase Nanocrystalline TiO2. Langmuir 2007, 23, (17), 8686-8690.
    33. Abazovic, N. D. Comor, M. I. Dramicanin, M. D. Jovanovic, D. J. Ahrenkiel, S. P. Nedeljkovic, J. M., Photoluminescence of Anatase and Rutile TiO2 Particles. Journal of Physical Chemistry B 2006, 110, (50), 25366-25370.
    34. Jing, L. Q. Qu, Y. C. Wang, B. Q. Li, S. D. Jiang, B. J. Yang, L. B. Fu, W. Fu, H. G. Sun, J. Z., Review of Photoluminescence Performance of Nano-Sized Semiconductor Materials and its Relationships With Photocatalytic Activity. Solar Energy Materials and Solar Cells 2006, 90, (12), 1773-1787.
    35. Zhang, D. S. Downing, J. A. Knorr, F. J. McHale, J. L., Room-Temperature Preparation of Nanocrystalline TiO2 Films and the Influence of Surface Properties on Dye-Sensitized Solar Energy Conversion. Journal of Physical Chemistry B 2006, 110, (43), 21890-21898.
    36. Shi, J. Y. Chen, J. Feng, Z. C. Chen, T. Lian, Y. X. Wang, X. L. Li, C. Photoluminescence Characteristics of TiO2 and Their Relationship to the Photoassisted Reaction of Water/Methanol Mixture. Journal of Physical Chemistry C 2007, 111, (2), 693-699.
    37. Xu, J. X. Li, L. P. Yan, Y. J. Wang, H. Wang, X. X. Fu, X. Z. Li, G. S., Synthesis and Photouminescence of Well-Dispersible Anatase TiO2 Nanoparticles. Journal of Colloid and Interface Science 2008, 318, (1), 29-34.
    38. Chen, X. B. Lou, Y. B. Samia, A. C. S. Burda, C. Gole, J. L., Formation of Oxynitride as the Photocatalytic Enhancing Site in Nitrogen-Doped Titania Nanocatalysts: Comparison to a Commercial Nanopowder. Advanced Functional Materials 2005, 15, (1), 41-49.
    39. Ivanda, M. Music, S. Gotic, M. Turkovic, A. Tonejc, A. M. Gamulin, O. The Effects of Crystal Size on the Raman Spectra of Nanophase TiO2. Journal of Molecular Structure 1999, 481, 641-644.
    40. Yu, J. G. Yu, H. G. Cheng, B. Zhao, X. J. Yu, J. C. Ho, W. K. The Effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activityof TiO2 Thin Films Prepared by Liquid Phase Deposition. Journal of Physical Chemistry B 2003, 107, (50), 13871-13879.
    41. Xiao, Q. Si, Z. C. Yu, Z. M. Qiu, G. Z. Sol-gel Auto-Combustion Synthesis of Samarium-Doped TiO2 Nanoparticles and Their Photocatalytic Activity Under Visible Light Irradiation. Materials Science and Engineering B-Solid State Materials for Advanced Technology 2007, 137, (1-3), 189-194.
    42. Yang, Z. Y., Nanoscience and nanotechnology. China Machine Press, 2004, Beijing. (In Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700