天然矿泉水中溴酸盐快速检测方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溴酸盐是2B级潜在致癌物,主要存在于天然矿泉水和面制品中。目前采用的检测方法都是离子色谱法,仪器昂贵,不适合普遍推广使用,无法满足实时在线检测。因此,研究和建立一种方便、安全和快速的检测方法具有重要意义。化学修饰电极是通过化学修饰的方法在电极表面进行分子设计,将具有优良物理化学性质的分子、离子、聚合物固定在电极表面,从而具有某种特定的化学和物理性质的一类电极。其应用已涉及到化学、生命科学、医学、环境、食品和军事等诸多领域。本论文主要内容包括利用电化学的特性,制备新型快速灵敏的溴酸盐电化学传感器,建立溴酸盐快速检测方法,并对实际样品进行测定。具体研究结果如下:
     采用电聚合的方法制备GC/Ppy/PMo_(12)纳米复合修饰电极,通过循环伏安法(CV)对电极化学性质进行表征,发现Ppy大大的改善PMo_(12)的化学性质和对BrO_3~-的电催化还原效应。该修饰电极在0.5 mol/L H_2SO_4中有着良好的电化学行为。在﹣0.06 V的检测电位下,采用I—T曲线法,发现该修饰电极在溴酸盐浓度为0.005-0.1 mmol/L的范围内有着良好的线性关系,相关系数为0.998,响应时间为1.87 s,最低检测限为2μmol/L,灵敏度为46.86μA·mmol~(-1)·L·cm~(-2)。
     基于层层组装法,将带正电荷的PDDA和带负电荷的功能化的MWNTs通过静电吸引力的作用构筑{MWNTs/PDDA}n/PMo_(12)修饰电极。通过SEM、UV-Vis技术对该修饰电极的微观形貌进行表征。通过电化学方法研究表明该电极对溴酸盐有着良好的电催化性能。优化组装层数、溶液pH值以及PMo_(12)的使用量。在最佳的实验条件下,检测电位为﹣0.09 V,{MWNTs/PDDA}_5/PMo_(12)修饰电极在溴酸盐浓度为0.05-0.4μmol/L的范围内有着良好的线性关系,相关系数为0.99,响应时间为1.53 s,最低检测限为0.02μmol/L,灵敏度为966.9μA·mmol~(-1)·L·cm~(-2)。结果表明,该修饰电极的BrO_3~-传感器表现出较Gc/Ppy/PMo_(12)修饰电极卓越的性能。
     使用{MWNTs/PDDA}_5/PMo_(12)修饰电极对实际样品进行检测,结果表明该电极具有良好的重现性和稳定性。
Bromates are 2B-class potential carcinogens, which are mainly found in natural mineral water and flour goods. Tranditional Method currently used to detect bromates is ion chromatography. Due to the expensive cost of equipments, it cannot be widely applied in real-time detection. Therefore, it is meaningful to establish a convenient, safe and rapid detection method for bromates. Owing to their present particular physical and chemical properties via surface bonding of certain molecules, ions or polymers, chemically modified electrodes have been widely employed in many fields such as chemistry, biology, medicine, environment, food and military. The aim of present research is to prepare new bromate electrochemical sensors with fast and accurate responses. The main research contents are as follows:
     Gc/Ppy/PMo_(12) modified electrodes were prepared using electropolymerization. On the bais of cyclic voltammetry (CV) experimental results, it was found that Ppy significantly improved chemical properties of PMo_(12) and its electro-catalytic reducibility to BrO_3~-. In 0.5 mol/L H2SO4 solution, the modified electrode presented good electrochemical behavior.Under the detecting potential -0.05 V.,using I-T surve method, in the concentration range of 0.005-0.1 mmol/L ,the linear correlation coefficient was 0.998, the response time was 1.87 s, its detection limit on bromate was 2μmol/L, and sensitivity was 46.86μA·mmol~(-1)·L·cm~(-2).
     In this chapter , layer-by-layer{MWNTs/PDDA}n/PMo_(12) films assembled by altematead sorption of positively charged PDDA and negatively charged funditional MWNTs onto a glassy carbon electrode.The micorstructure of modified electrode were characterized by SEM and UV-Vis. Electric properties of the modified electrode were investigated by CV method and displayed a good electrocatalytic activity to the reduction of broamte . Lay numbers , pH and the concentration of PMo_(12) were optimized. At -0.09V, in the range of 0.05-0.4μmol/L, the linear correlation coefficient was 0.99, the response time was 1.53 s, its detection limit on BrO_3~- was 0.02μmol/L, and the sensitivity was 966.9μA·mmol~(-1)·L·cm~(-2). The result displayed that the electrode prepared by this method had a superior performance than that of Gc/Ppy/PMo_(12).
     The experimental resulted on commercial goods using {MWNTs/PDDA}_5/PMo_(12) modified electrode indicated that the modified electrode had good reproducibility and stability.
引文
1.董俊,藏德道,陈国光等.关于瓶装水水质标准中溴酸盐离子的探讨[J].净水技术, 2009,28(1): 72-74
    2.刘勇建,牟世芬.离子色谱法在测定饮用水中痕量溴酸盐标准方法中的应用[J].环境化学,2002,21(2):203-204
    3. USEPA. List of drinking water contaminants and MCLs, Current drinking water standards, EPA. 816-F-02-013[S]. 2002
    4. Council Directive 98/83/EC on the quality of water intended for human consumption[S]. 1998
    5. Haag. W, R. Hoign. Ozonation of Bromide Containing Waters:Kinetics of Formation of Hypobromous Acid and Bromate[J]. Environ. Sci.Tech.,1983(17):261
    6. Urs Von Gunten. Ozonation of drinking water: Part II. Disinfection and by -product formation in presence of bromide,iodide or chlorine[J]. Water Research, 2003(37):1469-1487
    7.何星存.萃取浮光度法间接测定微量溴酸根离子[J].化学试剂,1992,14(4):249
    8.吕庆淮,韩长秀.褪色光度法测定微量溴酸根[J].理化检验-化学分册,2005,41:434
    9.刘文明,马卫兴.褪色光度法测定微量溴酸根离子[J].化学试剂,1999,21(3):164
    10.姜华.褪色光度法测定微量溴酸根[J].分析实验室,2001,20(2):89
    11.冠宗燕,王安平,赵心伟,等.用DSPCF光度法测定微量XO3-离子的研究[J].化学试剂,1988,10(5):291
    12. USEPA.Determination of inorganic anions in drinking water by ion chromatography[S].Method, 300.1
    13.陆洋,林奇.离子色谱法测定水中微量卤化物及卤素含氧酸盐[J].净水技术,2002,21(2):41-43
    14.臧道德,童俊,冯菊丽,等.淋洗液在线离子色谱法测定水中的溴酸盐[J].中国给水排水,2006,22(18): 83-85
    15.董绍俊,车广礼,谢远武.化学修饰电极[M].北京:科学出版社,1995
    16.金利通,仝威等.化学修饰电极[M].上海:华东师范大学出版社,1992
    17. B.Keita,L.Nadjo. New aspects of the electrochemistry of heteropolyacids: Part II. Coupled electron and proton transfers in the reduction of silicoungstic species[J].J.Electroanal.Chem..1987(217):287
    18.奚晓丹,刘绍琴,王恩波.吸附杂多化合物对亚硝酸根的电催化还原[J].分析化学,1998(6): 719
    19. X.Xi,S.Dong.Preparation of modified electrode with molybdophosphate anion and its electrocatalysis for bromate reduction[J]. Electrochimica. Acta.,1995(40):2785
    20. Hibbs J B,Taintor R R,Vavrin Z,et al.Nitric oxide:cytotoxic activated macrophage effector molecule[J].Biochem. Biophys. Res. Commum.,1988,157:87-90
    21. Che T M,Day V W,Francesconi L C,et al.Surface-enhanced resonance Raman spectroscopy of adsorbates on semiconductor electrode surfaces in situ studies of transition metal (iron and ruthenium) complexes on silver/gallium arsenide and silver/silicon[J].Inorg. Chem.,1985,24:4055-4061.
    22. Ketia B,Belhouari A,Nadjo L.Electrocatalysis by polyoxometalate polymer systems:reduction of nitrite and nitric oxide[J].Electroanal. Chem.,1995, 381:243-250
    23. Keita B,Nadjo L.High resolution scanning tunneling microscopy imaging of tungstophosphoric acid [J].Surface Science Letters,1991,254:443-448
    24. Dong S,Wang Y.The application of chemically modified electrodes in analytical chemistry[J].Electroanalysis.,1989,1(2):99–106
    25.董绍俊.二茂铁--AQ修饰碳纤维微葡萄糖传感器的研究[J].分析化学,1993,(3):255-258
    26.田慧敏,付守俊.Nafion修饰电极阴极溶出伏安法测定钦[J].分析化学,1994,22(1):51-53
    27. Legg K D,Eillis A B,Bolts J M.N-type Si-based photoelectrochemical cell: New liquid junction photocell using a nonaqueous ferricenium/ferrocene electrolyte[J]. Proc.Natl.Acad.Sci.,1977,74:4116-4120
    28.景遐斌,王宝忱,彭新生,等.聚苯胺全固态锂电池[J].应用化学,1994,11(1):50-53
    29. Dong S,Li F. Researches on chemically modified electrodes: Part XV. Preparation and electrochromism of the vanadium hexacyanoferrate film modified electrode[J].Electroanal.Chem.,1986,210(1):31–44
    30. Savadogo O, Allard C. The hydrogen evolution reaction in an acid medium on nickel electrodeposited with SiW12O404- or SiMo12O404- form electrolytes of various anionic compositions[J]. J.Appl. Electrochem.,1991,21:73-78
    31. K A A, D A K, Y A K.Self-doped polyanilines electrochemically active in neutral and basic aqueous solutions:Electropolymerization of substituted anilines[J].Electroanal. Chem.,1994,371(1-2):259-265
    32.董绍俊,金哲.化学修饰电极的研究——1:12磷钼杂多阴离子薄膜修饰电极的电化学性质[J].化学学报, 1989,(09):922-925
    33. Ingersoll D,Kulesza P J,Faulkner L R.Polyoxometallate-Based Layered Composite Filmson Electrodes[J].Electrochem. Soc.,1994,141:140-147
    34. Rong C,Anson F G.A.Spontaneous adsorption of heteropolytungstates and heteropolymolybdates on the surfaces of solid electrodes and the electrocatalytic activity of the adsorbed anions[J].Inorg. Chem. Acta,1996,242:11-16
    35. Sun C,Zhao J,Xu H.Fabrication of multiplayer films containing 1:12 phosphomolybdic anions on the surface of a gold electrode based on lelctrostatic interaction and its application as an electrochemical detector in flow-injection amperometric detection of hydrogen peroxide[J].Electroanal. Chem.,1997,435:63-68
    36. Ichinose I,Tagawa H,Kunitake T.Formation Process of Ultrathin Multilayer Films of Molybdenum Oxide by Alternate Adsorption of Octamolybdate and Linear Ploycations[J].Langmuir,1998,14:187-192.
    37. Porter M D, Bright T B, Allara D L, et al. Spontaneously organized molecular assemblies 4-Structural characterization of n-alkylthiol monolayers on gold by optical- ellipsometry, infrared spectroscopy,and electrochemistry[J].J.Am.Chem. Soc,1987,109:3559-3568
    38. Widrig C A, Chung C, Porter M D. The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes[J]. J Electroanal. Chem,1991,310:335-359
    39. Liu S Q, Tang Z Y. Electrochemistry of heteropolyanions in coulombically linked self-assembled monolayers[J]. J Electroanal. Chem,1998,458:87-97
    40. Cheng L, Niu L, Gong J, et a1. Electrochemical growth and characterization of polyoxometalate-containing monolayers and multilayers on alkanethiol monolayers self-assembled on gold electrodes[J].Chem. Mater,1999,11:1465-1470
    41. Chen S M, Lin K C. The electrocatalytic properties of polymerized neutral red film modified electrodes[J].Electroanal.Chem.,2001,511(1–2):101–114
    42.兰阳.多金属氧酸盐layer-by-layer复合纳米结构多层膜的构筑与表征[D]: [博士论文].长春:东北师范大学,2006
    43. W.Szczepaniak,H.kosciena.Specific adsorption of halogen anions on hydrousγ-Al2O3[J].Analytic Chimica.Acta 470(2002):263-276
    44. H.kosciena,Maria Ren.Voltammetric determination of the trace amounts of bromated in drinking water after pre-concentration on hydrousγ-Al2O3[J].Central European Journal of Chemistry.2(3)2004:491-499
    45. H.X.Guo, Y.Q.Li, L.F.Fan, et al. Voltammetric behavior study of folic acid at phosphomolybdic- polypyrrole film modified eletrode[J]. Electochim. Acta. 51(2006):6230-6237
    46. P.Wang, Y.Li. Electrochemical and electrocatalytic properties of polypyrrole film dopedwith heteropolyanions [J].J.Electroanal.Chem.408(1996):77
    47. J. Pozniczek, A. Bielanski, I. Kulszewicz-Bajer, M. Zagorska, K. Kruczaka, K. Dyrek and A. Pron, Heteropolyanion-doped polypyrrole as catalyst for ethyl alcohol conversion [J].J. Mol. Catal. 1991,69:223
    48. Song W, Liu Y, Lu N, et al. Application of the sol–gel technique to polyoxometalates: towards a new chemically modified electrode [J].Electrochim. Acta, 2000,45(10):1639-1644
    49. Qian L,Yang X. Preparation and characterization of network composite film containing polyoxometallates and carbon nanotubes [J],Electrochem.Commun.,2005,7(5):547-551.
    50. Sadakane M,Steckhan E.Electrochemical Properties of Polyoxometalates as Electrocatalysts[J].Chem.Rev,1998,98(1):219-237
    51. Laviron E.The use of linear potential sweep voltammetry and of a.c.voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes[J].J.Electroanal.Chem.,1979,100(1–2):263-270
    52. Gu H, Yu A, Chen H. Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid–cysteamine-modified gold electrode[J]. J. Electroanal.Chem., 2001, 516(1-2):119-126
    53. Zou X,Shen Y,Peng Z,et al.Preparation of a phosphopolyoxomolybdate P2Mo18O626– doped polypyrrole modified electrode and its catalytic properties[J].Electroanal.Chem.,2004,566(1):63-71
    54. Li Y,Bu W,Wu L,et al.A new amperometric sensor for the determination of bromate,iodate and hydrogen peroxide based on titania sol-gel matrix for immobilization of cobalt substituted Keggin-type cobalttungstate anion by vapor deposition method[J].Sensor.Actuat.B,2005,107(2):921-928
    55. Casella I G,Contursi M.Electrochemical and spectroscopic characterization of a tungsten electrode as a sensitive amperometric sensor of small inorganic ions[J].Electrochim.Acta,2005,50(20):4146-4154
    56. Britto,P.J.:Santhanam,K.S.V.;Rubio,A.R.;Alonso,J.A.Ajayan,P.M.Improved charge transfer at carbon nanotube electrodes[J]. Adv.Mater.1999,11:154
    57. Stephan T., Dubas, Joseph B. Schlenoff.Factors Controlling the Growth of Polyelectrolyte Multilayers[J]. Macromolecules 1999, 32, 8153-8160
    58.崔杨.多酸阴离子在不同介质中的电化学和传感性质研究[D]:[硕士论文].东北师范大学,2005.
    59. Shih-Chieh J .H, Alexander B.A,Yinming Wang et al . Persistence length Control of the Polyelectrolyte Layer-by-Layer self–Assembly onCarbonnanotubes[J].J.Am.Chem.Soc.,2005,127(41): 14176-14177
    60. Hanna P., Marjo L.,et al.Layer-by-Layer Electrostatic Self-Assembly of Single-Wall Carbon Nanotube Polyelectrolytes[J]. Langmuir, 2006, 22 (1):74–83
    61. Meining Z,Yiming Y,Kuanping G,et al .Electrostatic Layer-by-layer Assembled Carbon Nanotube Multilayer Film and Its Electrocatalytic Activity for O2 Reduction[J].Langmuir,2004,20(20):8781-8785
    62. Jason H.Rouse.Peter T.Lillehei.Electristatic Assembly of Polymer/Single Walled Carbon Nanotube Multilayer Films[J].Nano Lettet,2003,1(3):59-62
    63. Jianfeng S., Yizhe H., Chen Q, et al.. Layer-by-Layer Self-Assembly of Multiwalled Carbon Nanotube Polyelectrolytes Prepared by in Situ Radical Polymerization[J]. Langmuir, 2008, 24 (8): 3993-3997
    64. Jiahua S., Zhiyong C., Yujun Q.,et al.Multiwalled Carbon Nanotube Microspheres from Layer-by-Layer Assembly and Calcination[J] J.Phys.Chem. C,2008,112(31):11617-11622
    65. Pingang He, Mekki Bayachou.Layer-by-Layer Fabrication and Characterization of DNA-Wrapped Single-Walled Carbon Nanotube Particles[J].Langmuir,2005,21 (13):6086-6092
    66. Lei Q,Xiurong, Yang. Preparation and characterization of network composite film containing polyoxometalates and carbon nanotubes[J].Ele.Chem. Com. 2005(7):547-551
    67. Pawel J. Kulesza, Malgorzata Chojak,et al.Polyoxometallates as inorganic templates for monolayers and multilayers of ultrathin polyaniline[J].Electrochem. Com.,2002,4(6): 510-515

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700