n型多孔硅制备、发光性能及Al表面钝化处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔硅因具有独特的发光性能而成为材料界的研究热点。随着对多孔硅材料研究的不断深入,多孔硅制备和性能研究都有了很大进展,但仍然有许多重要问题没有解决,如发光器件发光强度低、发光寿命短、发光稳定性差等。
     本文采用双槽电化学腐蚀法于光照条件下在n型单晶硅片衬底上制备了n型多孔硅(n-PS),通过室温500~700nm范围内荧光光谱和扫描电镜(SEM)测试系统,研究了光照、腐蚀时间、电解液浓度、腐蚀电流密度及单晶硅掺杂浓度等对n-PS的形成、结构形貌和光致发光(PL)性能的影响。结果表明,通过光照,能获得具有均匀孔分布和良好发光特性的n-PS,在约600nm处产生较强PL峰;随腐蚀时间、HF浓度和电流密度增加,PL峰位先发生蓝移,而后又出现红移;PL发光性能呈先增强后减弱变化趋势,分别在腐蚀时间为20min、HF浓度为6%和电流密度为60mA/cm2时峰强出现极大值;而提高掺杂浓度,PL性能降低。
     进一步采用脉冲电化学腐蚀制备了n-PS,系统探讨了等效腐蚀时间、脉冲频率、占空比等脉冲电化学腐蚀条件对n-PS室温可见区PL性能的影响。结果表明,该法制备的n-PS比同条件下恒流腐蚀法获得的n-PS的PL强度更高,发光峰位蓝移,且等效腐蚀时间、脉冲频率和占空比均显著影响其PL峰位及发光强度;并用SEM观察其表面形貌,显示形貌更均匀,说明脉冲腐蚀是一种制备n-PS更优良的电化学方法。
     为了改善多孔硅的发光性能和稳定性,采用电化学沉积Al3+的方法处理用脉冲腐蚀制备的n-PS,以钝化其表面。通过对沉积Al3+前后n-PS的PL光谱、FT-IR光谱(傅里叶变换红外吸收光谱)和SEM图的研究,探讨了Al3+在多孔硅表面的钝化作用及其对PL性能的影响。结果表明,适量沉积Al3+可有效地改善n-PS的光致发光强度和稳定性。其作用机理是Al3+覆盖于多孔硅表面与硅形成稳定的Si-Al键,能够有效地抑制硅悬键的形成,减少非发光中心,从而减缓发光强度的衰减,稳定其发光性能;但过量的Al3+沉积会造成Al3+大量覆盖在n-PS表面导致发光效率降低。
Porous silicon has received considerable attention due to its special luminous performance. With deeper research of PS, great progress has been made in the preparation method and performance research, but many vital problems still exist now for its application as luminous apparatus, such as low luminous intensity, short luminous life-span and poor luminous stability.
     In this study, n-type porous silicon (n-PS) was prepared on monocrystalline silicon wafer by double-cell electrochemical etching method under lighting condition. The effects of light, etching time, HF concentration, current density and dopant concentration of monocrystalline silicon on formation of n-PS, structure, morphology and photoluminescence (PL) performance were studied by scanning electron microscopy (SEM) and PL spectroscopy with wavelength range of 500~700nm. The results showed that the formation, structure, morphology and PL performance of n-PS were controllable, and n-PS with homogenous pore-size distribution and better PL performance under lighting conditions was obtained. A strong PL peak at about 600nm was observed. With increase of etching time, HF concentration and current density, the PL peak showed red shift at first and then blue shift, and the emission intensity increased at first and then decreased. The maximum value of emission intensity was obtained when the corrosion time, HF concentration and current density was 20min,6% and 60mA/cm2, respectively. The PL performance decreased with increase of the monocrystalline silicon dopant concentration.
     n-PS was also obtained by pulse electrochemical anodization on a phosphorus-doped n-type silicon wafer, which was different from conventional electrochemical anodization method. The effects of equivalent etching time, pulse frequency and pulse duty cycle on PL performance of porous silicon in the visible light range under room temperature were investigated systematically. The results showed that porous silicon obtained by pulse electrochemical etching had higher PL intensity and showed blue shift of luminescent wavelength under the same conditions compared with constant current density anodization. Moreover, the n-PS obtained by pulse electrochemical etching showed a more uniform surface under scanning electron microscope observation, which also proved that pulse electrochemical anodization was a more excellent etching method.
     In order to improve the PL performance and stability of n-PS, the electrochemical deposition technique was applied to prepare n-PS samples on the surface. The influence of Al-deposited on the photoluminescence of n-PS was studied by PL spectroscopy, Fourier transform infrared spectroscopy and SEM. The results indicated that Al3+ was deposited on PS surface forming stable Al-Si bonds, which could inhibit the formation of dangling Si bonds effectively. Furthermore, the decreased of dangling Si bonds, which were testified to be non-luminescence centers, could retard the attenuation of PL intensity, and stabilized its PL performance. But, on the other hand, excessive Al3+ deposition had a oxidizing effect on room-temperature visible PL of n-PS.
引文
[1]Sujatha L, Bhattacharya E. Sensitivity and stress in pressure sensors with comp-osite silicon/macroporous silicon membranes[C].14th International Workshop on the Physics of Semiconductor Devices,2007,737-740.
    [2]De Stefano L, Alfiefi D, Rea I, et al. An integrated pressure-driven microsystem based on porous silicon for optical monitoring of gaseous and liquid substances[J]. Physcia status solidi A-Applications and materials science,2007, 204(5):1459-1463.
    [3]Badawy W A. Porous silicon modified photovoltaic junctions:An approach to high-efficiency solar cells[C]. MTPR-06:Modem trends in physics research, 2007,888:29-35.
    [4]Canham L T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers[J]. Applied Physics Letters,1990,57(10): 1046-1048.
    [5]Cullis A C, Canham L T. Visible light emission due to quantum size effects in highly porous crystalline silicon[J]. Nature,1991,353:335-338.
    [6]李宏建,欧谷平,彭景翠等.多孔硅基发光材料的研究进展[J].材料导报,2000.14:46-47.
    [7]鲍希茂.发光多孔硅[J].物理学进展,1993,13:280-290.
    [8]Beale M I J, Benjamin J D, Uren M J, et al. An experimental and theoretical study of the formation and microstructure of porous silicon[J]. Journal of Crystal Growth,1985,73(3):622-636.
    [9]Smith R L, Collins S D. Porous silicon formation mechanisms[J], Journal of Applied Physics,1992,71(8):R1-22.
    [10]Lehmann V, Gosele U. Porous silicon formation:A quantum wire effect[J]. Applied Physics Letters,1991,58(8):856-858.
    [11]Lehmann V, Gosele U. Porous silicon:quantum sponge structures grown via a self-adjusting etching process[J]. Advanced Materials,1992,4(2):114-116.
    [12]Zhang S L,Ho K S,Hou Y T, et al. Steplike be havior of pliotoluminescence peak energy and for mation of p-type porous silicon[J]. Applied physics Letters, 1993,62:642-645.
    [13]黄庆安.硅微机械加工技术[M].北京:科学出版社,1996.
    [14]Foll H, Christophersen M, Carstensen J, et al. Formation and appfication of porous silicon[J]. Materials Science and Engineering,2002,39:93-141.
    [15]刘小兵,孙洁林,袁帅等.多孔硅的微结构与发光特性研究[J].物理学报,1997,46(8):1543-1551.
    [16]Lehman V, Gosele U, Porous silicon formation:a quantum wire effect[J]. Applied Physics Letters,1991,58(8):856-858.
    [17]Bisi O, Ossicini S, Pavesi L, Porous silicon:a quantum sponge structure for silicon based optoelectronics[J]. Surface Science Reports,2000,38:8-25
    [18]田斌,胡明,张之圣.用电化学法制备多孔硅[J].天津大学学报,2004,37(9):823-826.
    [19]韩建忠,倪国强,崔梦等.应用于MEMS的多孔硅的制备方法研究[J].电子元件与材料,2004,(23):32-34.
    [20]陈乾旺,李新建,朱苦生等.多孔硅研究的新进展[J].电子显微学报,1997,16(4):493-496.
    [21]Chen Q W, Qian Y T, Chen Z Y, et al. Visible luminescence from silicon wafers subjected to stain etches[J]. Applied Physics Letters,1995,66 (13):1608-1610.
    [22]王晓静,李清山,王佐臣.多孔硅的不同制备方法及其光致发光[J].发光学报,2003,24(2):203-207.
    [23]Lim P, Brock J R, Trachtenberg I, Laser-induced etching of silicon in hydrofluoric acid[J]. Applied Physics Letters,1992,60(4):486-488.
    [24]Chen Q, Zhu J, Li X G, etal. Photoluminscence in porous silicon obtained by hydorhthermal etching[J]. Applied Physics Letters,1996, VoL.220(4):293-296.
    [25]Gosele U, Lehmann V. Light-emitting porous silicon[J]. Materials Chemistry and Physics,1995,40:253-259.
    [26]Parkhutik V. Porous silicon-mechanisms of growth and applications[J]. Solid-State EleOronics,1999,43:1121-1141.
    [27]Shi J J, Zhu Y F, Baeyens W R G, et al. Recent developments in nanomaterial optical sensors[J]. Trends in Analytical Chemistry,2004,23(5):351-360.
    [28]Badel X, Linnros J, Kleimann P, et al. Metallized and Oxidized Silicon Macropore Arrays Filled with a Scintillator for CCD-Based X-Ray Imaging Detectors[J]. IEEE Transactions on Nuclear Science,2004,51(3):1001-1005.
    [29]Hummel R E.Chang Sung-Sik. Novel technique for preparing porous silicon[J]. Applied Physics Letters,1992,61(16):1965-1967.
    [30]Koch F, Petrova-Koch V, Muschik T, et al. The luminescence of porous Si:The case for the surface state mechanism[J]. Journal of Luminescence,1993,57(1-6): 271-281.
    [31]Wolkin M V, Jorne J, Fauchet P M, et al. Electronic States and luminescence in Porous silicon Quantum Dots; The role of Oxygen[J]. Physical Review Letters, 1999,82(1):197-200.
    [32]秦国刚,贾勇强.多孔硅发强可见光的新物理模型[J].半导体学报,1993,14:648-651.
    [33]Qin G G, Jia Y Q. Mechanism of the visible luminescence in porous silicon[J]. Solid State Communications,1993,86:559-563.
    [34]Fauchet F M. The integration of nanoscale porous silicon light emitters:materials science, properties and integration with electronic circuitry[J]. Journal of Luminescence,1999,80(1):53-64.
    [35]Mixuno H, Koyama H, Koshida N. Oxide-free blue photoluminescence from photochemically etched porous silicon [J], Applied Physics Letters,1996,69(25): 3779-3781.
    [36]Fauchet P M, Behren J V. The Strong Visible Luminescence in Porous Si-licon:Quantum Confinement, not Oxide-Related Defects[J]. Physica Status Solidi(b),1997, Vol.204(1):R7-R8.
    [37]Tsybeskov L, Vandyshev Y V, Fauchet P M. Blue emission in porous silicon:Oxygen-related photoluminescence[J]. Physical Review B,1994, Vol. 49(11):7821-7824.
    [38]Koyama H, Matsushita Y, Koshida N. Activation of blue emission from oxidized porous silicon by annealing in water vapor[J]. Journal of Applied Physics,1998, Vol.83(3):1776-1778.
    [39]Fauchet P M, Ettedgui E, Raisanen A,etal. Can oxidation and other treatments help us understand the nature of light-emitting porous silicon[J]. Materials Research Society Symposium Proceedings,1993,298:271-275.
    [40]Koshida N, Matsumoto N. Fabrication and quantum propeties of nanostructured silicon[J]. Materials Science and Engineering:R,2003,40:169-205.
    [41]方荣川编著.固体光谱学.合肥:中国科学技术大学出版社[M].2001.184-187.
    [42]杨国伟.多孔硅的制备和发光特性[J].半导体光电.1993,14(2):115-120.
    [43]李新建,张裕恒.发光不衰减的多孔硅[J].物理学报,1999,28(4):195-197.
    [44]Li G B, Hou X Y, Yuan S. Passivation of light-emitting porous silicon by rapid thermal treatment in NH3[J]. Journal of Applied Physics,1996,80(10): 5967-5970.
    [45]李谷波,张甫龙,陈华杰.发光多孔硅的表面氮钝化[J].物理学报,1996,45(7):1232-1238.
    [46]Mahmoudi B, Gabouze N, Guerbous L. Long-time stabilization of porous silicon photoluminescence by surface modification[J]. Journal of Luminescence,2007, 127(2):534-540.
    [47]李宏建,彭景翠,许雪梅.钝化多孔硅的光致发光[J].半导体学报,2002,23(1):34-37.
    [48]王燕,岳瑞峰.多孔硅的XPS研究[J].分析测试学报,2001,20(1):30-33.
    [49]Baran M, Khomenkova L, Korsunska N. Investigation of aging process of Si-SiOx structures with silicon quantum dots[J]. Journal of Applied Physics, 2005,98(11):3515-3519.
    [50]Petrova-koch V, Muschik T, Kux A. Rapid-thermici-oxidized porous Si:The superior photoluminesence Si [J]. Applied Physics Letters,1992,61:943-945.
    [51]Pap A E, Kordas K, Toth G, et al. Thermal oxidation of porous silicon:Study on structure[J]. Applied Physics Letters,2005,86(4):1501-1503.
    [52]陈华杰,李谷波.低温湿氧氧化提高多孔硅发光的稳定性[J].物理学报,1996,45(2):297-303.
    [53]Chen H J, Hou X Y, Li G B. Passivation of porous silicon by wet thermal oxidation[J]. Journal of Applied Physics,1996,79(6):3282-3285.
    [54]Gelloz B, Kojima A, Koshida N. Highly efficient and stable luminescence of nanocrystalline porous silicon treated by high-pressure water vapor annealing[J]. Applied Physics Letters,2005,87(3):1107-1109.
    [55]Gelloz B, Koshida N. Mechanism of a remarkable enhancement in the light emission from nanocrystalline porous silicon annealed in high-pressure water vapor[J]. Journal of Applied Physics,2005,98(12):3509-3515.
    [56]刘小兵.多孔硅的一种新的后处理方法[J].物理学报,1997,46(10):2059-2065.
    [57]Henley W, Koshka Y, Lagowski J. Infrared photoluminescence from Er doped porous Si[J]. Journal of Applied Physics,2000,87:7848-7852.
    [58]Filippov V V, Pershukevich P P, Kuznetsova V V, et al. Photoluminescence excitation properties of porous silicon with and without Er3+-Yb3+-containing complex[J]. Journal of Luminescence,2002,99(3):185-195.
    [59]Weiss S M, Zhang J, Fauchet P M. Tunable silicon-based light sources using erbium doped liquid crystals[J]. Applied Physics Letters,2007,90(3):1112-1114.
    [60]Luo L, Zhang X X, Li K F, et al. Strong near-infrared photoluminescence in erbium/ytterbium codoped porous silicon[J]. Applied Physics Letters,2005, 86(21):2505-2507.
    [61]黄明举,徐国定,张兴堂.Er3+,In3+等金属离子对多孔硅光之发光性质的影响[J].化学物理学报,2000,13(3):321-323.
    [62]彭爱华,谢二庆,姜宁.稀土(Tb,Gd)掺杂多孔硅的光致发光性能研究[J].物理学报,2003,52(7):1792-1796.
    [63]Zheng B, Michel J, Kimerling L C. Room-temperature sharp line electrolumines-cence at 1.54 um from an erbium-doped silicon light-emitting diode[J]. Applied Physics Letters,1994,62(21):2842-2844.
    [64]Kimura T, Yokoi A, Horiguchi H, et al. Electrochemical Er doping of porous silicon and its room-temperature luminescence at 1.54um[J]. Applied Physics Letters,1994,65(8):983-985.
    [65]Dorofeev A M, Gaponenko N V, Bondarenko V P. Erbium luminescence in porous silicon doped from spin-on films [J]. Journal of Applied Physics,1995,77: 2679-2683.
    [66]Polman A. Erbium implanted thin film photonic materials[J]. Journal of Applied Physics,1997,82(1):1-39.
    [67]石建新.掺稀土多孔硅的恒电位电解法制备及其光致发光性能.[博士论文].广州:中山大学,1999.
    [68]赵毅,杨德仁,阙端麟.多孔硅和有机半导体复合的发光特性研究进展[J].材料导报,2002,16(7):48-50.
    [69]Gelloz B, Koshida N. Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode [J]. Journal of Applied Physics,2000,88(7):419-432.
    [70]Mandal N P, Sharma A, Agarwal S C, et al. Improved stability of nanocrystal-line porous silicon after coating with a polymer[J]. Journal of Applied Physics, 2006,100(2):4308-3411.
    [71]Wan M X, Li Y M. Rectifying effect of polyaniline(PANI)/n-type porous silicon heterojunction[J]. Chinese Journal of Polymer Science,1999,17(1):49-55.
    [72]Li W, Andrienko I, Aneman H. Current-voltage characteristics of Schottky barrier structures on porous silicon, and effect of an organic stabilizer film[J]. Applied Physics Letters,2000,88(1):316-320.
    [73]Harraz F A. Electrochemical polymerization of pyrrole into nanostructured p-t-ype porous silicon[J]. Journal of the Electrochemical Society,2006,153(5): C349-C356.
    [74]Borini S. Cross-linked PMMA on porous silicon:A effective nanomask for selective silicon etching[J]. Journal of the Electrochemical Society,2005,152(6): G482-G486.
    [75]Monastyrskii L, Lesiv T, Olenych I, et al. Composition and properties of thin solid films on porous silicon surface[J]. Thin Solid Films,1999,344:335-337.
    [76]刘小兵,史向华.多孔硅表面的A1203钝化处理[J].半导体光电,2001,22(4):285-288.
    [77]Malinovska D D, Nikolaeva M. Transport mechanisms and energy band diagram in ZnO/porous Silicon light-emitting diodes[J]. Vacuum,2002,69(1-3):227-231.
    [78]Zhang P, Kim P S, Sham T K. Nanostructured CdS prepared on porous silicon substrate:Structure, electronic, and optical properties[J]. Journal of Applied Physics,2002,91(9):6038-6043.
    [79]Zhang P, Kim P S, Sham T K. XANES studies of CdS nano-structures on poro-us silicon[J]. Journal of Electron Spectroscopy and Related Phenomena,2001, 119(2-3):229-233.
    [80]Rozhin A G, Klyui N I, Litovchenko V G. Light emission of the silicon carbide nano-clusters embedded into porous silicon[J]. Materials Science and Engineering C,2002,19:229-231.
    [81]Zhou X T, Zhang R Q, Peng H Y, et al. Highly efficient and stable photolumines-cence from silicon nano-wires coated with SiC[J]. Chemical Physics Letters, 2000,332:215-218.
    [82]Huang Y M. Photoluminescence of copper-doped porous silicon[J]. Applied Physics Letters,1996,69(19):2855-2857.
    [83]Suh K Y, Kim Y S, Lee H H. Blue potoluminescence from in situ Cu-doped porous silicon[J]. Journal of Applied Physics,2002,91:10206-10208.
    [84]Chen C H, Chen Y F. Strong and stable visible luminescence from Au-passivated porous silicon[J]. Applied Physics Letters,1999,75(17):2560-2562.
    [85]Hirschman K D, Tsyheskov L, Duttagupta S P, et al. Silicon-based visible light-emitting devices integrated into microeleclronic circuits [J]. Nature,1996, 384:338-341.
    [86]崔昊杨,李宏建,谢自芳.多孔硅传感器的研究进展[J].材料导报,2004,18(3):35-37.
    [87]Pramanik C, Islam T, Saha H, et al. Design,fabrication,testing and simulation of porous silicon based smart MEMS pressure sensor[C].18th International Conference on VLSI Design/4th International Conference on Embedded Systems Design,2005:235-240.
    [88]Ma G L, Xu A G,Ran G Z, et al. Experimental study of the organic light emitting diode with a p-type silicon anode[J]. thin solid films,2006,496(2): 665-668.
    [89]唐旭东,吴正中.纳米多孔硅光源矿山照明灯[J].煤炭科学技术,2002,30(2):46-48.
    [90]张智慧,李楠.多孔陶瓷材料制备方法[J].材料导报,2003,17(7):30-31.
    [91]Ma Wen, ShenWeip ing, Dong Hongying, et al. Process and development of porous ceramic materials[J]. PowderMetallurgy Technology,2002,20 (6):365-368.
    [92]朱时珍,赵振波.多孔陶瓷材料的制备技术[J].材料科学与工程,1996,14(3):33-38.
    [93]Zheng J P, Jiao K L, Shen W P. Applied Physics Letters,1992,61 (4):459-461.
    [94]Moretti L, Rea I, Stefano L D, et al. Periodic versus aperiodic:Enhancing the sensitivity of porous silicon based optical sensors[J]. Applied Physics Letters, 2007,90(19):1112-1114.
    [95]张厥宗.硅单晶抛光片的加工技术[M].北京:化学工业出版社材料科学与工程出版中心,2005,34.
    [96]Abrmof P G, Beloto A F, Ueta A Y. X-ray investigation of nanostructured stain-etched porous silicon[J]. Journal of Applied Physics,2006,99(2): 4304-4308.
    [97]Xu Y K, Adachi S. Properties of light-emitting porous silicon photoetched in aqueous HF/FeCl3 solution[J]. Journal of Applied Physics,2007,101(10): 3509-3514.
    [98]Adachi S, Kubota T. Light-emitting porous silicon synthesized by photoetching in aqueous HF/I2 solution[J]. Electrochemical and Solid-State Letters,2007, 10(2):H39-H42.
    [99]Wehrspohn R B, Chazalviel J N, Ozanam F, et al. Macropore formation in highly resistive p-type crystalline silicon[J]. Journal of the Electrochemical Society, 1998,145(8):2958-2963.
    [100]Adachi S, Tomioka K. Visible Light emission from porous silicon prepared by photoetching in alkaline solution[J]. Electrochemical and Solid-State Letters, 2005,8(10):G251-G253.
    [101]Liu H, Wang Z L. Etching silicon wafer without hydrofluoric acid[J]. Applied Physics Letters,2005,87(26):1913-1915.
    [102]Hou X Y, Fan H L, Xu L, et al. Pulsed anodic etching:An effective method of preparing light-emitting porous silicon[J]. Applied Physics Letters,1996,68: 2323-2325.
    [103]Li H J, Peng J C, Yan Y H, et al. Surface passivation of porous silicon by carbonfilm[J].发光学报,2000,21(2):104-108.
    [104]Ke J H, Zhen Y H. Effect of fabrication conditions and ageing time on photoluminescence of porous silicon[J].半导体学报,2002,23(1):38-42.
    [105]Smith R L, Collins S D. Porous silicon formation mechanisms[J]. Journal of Applied Physics,1992,71(8):R1-22.
    [106]Pavesi L, Glxardini R, Bellutti P. Porous silicon n-p light emitting diode [J]. Thin Solid Films.1997,297:272-276.
    [107]Tu C Z, Jiang C C, Jia Z H, et al. Study on nature of humidity sensitivity of porous silicon[C]. Technical Digest of the 7th International Meeting on Chemical Sensors.1998,345-347.
    [108]Cesele G, LinsmeierJ, Drach V, et al. Temperature-dependent thermal conduct-ivityy of porous silicon [J]. Applied Physics Letters,1997,30:2911-2916.
    [109]Foucaran A, Pascal-Delannoy F, Gnai A. et al. Porous silicon layers used for gas sensor application [J]. Thin Solid Films.1997,297:317-320.
    [110]Biersack J P, Ziegler J F, The Calculation of Ion Ranges in Solids with Analytic Solutions, edited by H[J]. Ryssel and H. Glawischnig (Springer, Berlin,1982), pp.157-176.
    [111]Ziegler J F, Biersack J P, Littmark U. The Stopping and Range of Ions in Matter[M] (Pergamon, New York,1985).
    [112]王晓静,李清山.多孔硅的光致发光机制[J].发光学报,2004,25(4):396-400.
    [113]Hinton B R W, Arnott D R, Ryan N E. The inhibition of aluminum corrosion by cerous cations [J]. Metals Forum,1984,7(4):211-217.
    [114]Mansfeld F, Breslin C B, Pardo A, et al Surface medication of stainless steel: green technology for corrosion protection [J]. Surfce and Coatings technology, 1997,90(30):224-228.
    [115]Johnson B Y, Edington J, Williams A, et al. Microstructural characteristics of cerium oxide conversion coatings obtained by various aqeous deposition methods [J]. Materials Charaction,2005,54(1):41-48.
    [116]Rudd A L, Breslin C B, Mansfeld F. The corrosion protection afforded by rare earth conversion coatings applied to magnesium [J]. Corrosion Science,2000,42: 275-288.
    [117]Texas Instruments Incorporated. TMS320F28xx DSP System Control and Interr-upts Reference Guide [Z].2003.
    [118]Gu L, Hu X D, Chen L Y, et al. Automaticlly changeable scan control of linear CCD with CPLD substituting for microcontroller [J]. Journal of Optoelectronics-Laser(光电子·激光),2003,14(8):830-834.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700