共价嫁接铕Eu(Ⅲ)、钌Ru(Ⅱ)配合物杂化材料的制备及发光性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土配合物具有高的发光效率,窄的发射谱线及较长的荧光寿命等优点,过渡金属Ru(II)的配合物也具有稳定的光化学、光物理性质、高的热稳定性、较长的发光寿命等。但其较差的光化学稳定性使其潜在价值不能充分发挥。通常稀土和过渡金属配合物需固定在一种有效的载体中才能进一步改进上述不足和提高已有的优良性能。介孔分子筛具有大的比表面积、规则的孔道结构和良好的热稳定性,将稀土配合物和Ru(II)的配合物与介孔分子筛相结合,可有效改善配合物的光稳定性,提高发光效率,获得优良性能的pH传感器。本论文针对以上问题开展如下工作:
     (一)研究如何通过Si-CH2共价键把Eu(III)配合物共价嫁接到介孔杂化材料MCM-41的骨架上,提高稳定性和发光性能。由此合成了有机配体2-(4’-羟基苯)咪唑[4,5-f]-1,10-邻菲啰啉,通过对其进行有机修饰,合成了可水解的有机改性硅酸酯的衍生物,使其不但能够和稀土金属Eu(III)配位,而且能够与正硅酸乙酯一起进行水解和共缩聚反应制备共价嫁接的有机-无机杂化材料Eu-MCM-41。系统地研究了共价嫁接配合物Eu-MCM-41的结构、激发态寿命和光稳定性,通过对比可知共价嫁接样品具有比物理包埋和纯配合物更好的光稳定性,另外通过共价嫁接方法,有效地解决了稀土配合物漏析问题。
     (二)通过水解共缩聚反应将过渡金属Ru(II)配合物共价嫁接至分子筛MCM–41骨架上。我们在氧气传感性能研究的基础上,研究了其pH光学传感性能。由于MCM–41独特的孔道结构,共价嫁接Ru-MCM-41配合物发光强度随着pH增大逐渐降低,展示了良好的pH传感性能。所获得的pH传感介孔材料的性能可以通过改善载体的微相结构进一步提高,为其在生物传感领域的应用提供了可能。
Rare earth (RE) complexes have been well known to give sharp, intense emission lines upon ultraviolet light irradiation because the effective intramolecular energy transfers from the coordinated ligands to the luminescent central lanthanide ions, which in turn undergoes the corresponding radiative emitting process. Ruthenium(II) complexes also have stable photophysical property and high thermal stability. However, poor photostability limits their practical application. Recently, because their photophysical properties could be modified by interaction of the host structure, the luminescence properties of RE complexes and Ruthenium(II) complexes supported on a solid matrix were studied extensively. Among them, the mesoporous molecular sieves used as a support for RE complexes and Ruthenium(II) complexes have attracted particular attention.
     In this paper, the dissertation is focused on the preparation and characterization of various silica-based mesoporous hybrid materials covalently grafted with Eu(III) complex. Detailed analyses on the matrix structure, stability, and photostability of the final obtained mesoporous hybrid materials are investigated. We have designed and synthesized the 2-phenyl-1H-imidazo [4,5-f] [1,10]phenanthroline functionalized hydrolysable compounds with double functions, i.e., as the second ligand of Eu(III) complexe and as the precursor of the sol-gel process. The covalently-grafting of the organic components to the inorganic framework can be achieved via the hydrolyzation and co-condensation reactions between the TEOS and the as-synthesized compounds. The photostability of the Eu-MCM-41 is superior to those of the pure europium complex and that physically incorporated in MCM-41.
     On the basis of oxygen sensing materials consisted of Ruthenium(II) complexes covalently grafted to mesostructured MCM-41, we also studied its pH senstive fluorescent behavior. The applicability of the principle of direct of covalently-grafting mesoporous material in the development of pH luminescent chemical sensing materials is decreased with the increasing pH. The pH sensing properties of this kind of covalently-grafted functionalized mesoporous powder materials can be further improved via changing the miscrostructure of the supports.
引文
[1] Sing S W, Evereet D H, Pierotti R A, et al. Reporting physsorption data for gas/solid systems[J]. Pure Appl Chem, 1985, 57: 603-619.
    [2] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359: 710-712.
    [3] Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J Am Chem. Soc, 1992, 114: 10834-10843.
    [4] Judeinstein P, Sanchez C, Hybrid organic-inorganic material: A land of multi-disciplinarity[J]. J Mater Chem, 1996, 6(4): 511-525.
    [5] Huo Q, Margolese D, Ciesla U, et al. Generalized synthesis of periodic surfactant/inorganic composite materials[J]. Nature, 1994, 378:317-321.
    [6] Huo Q, Maxgolese D I, Clesia U, Demuth D G, et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays[J]. Chem Mater, 1994, 6: 1176-1191.
    [7] Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279: 548-552.
    [8] Huo Q, Margolese D I, Stucky G D, Surfactant control of phases in the synthesis of mesoporous silica-based materials[J].Chem Mater, 1996, 8: 1147-1160.
    [9] Huo Q, Leon R, Petroff P M, et al. Mesostructure design with gemini surfactants: Supercage formation in a three-dimensional hexagonal Array[J]. Science, 1995, 268: 1324-1327.
    [10] Zhao D Y, Huo Q S, Feng J L, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. J Am Chem Soc, 1998, 120: 6024-6036.
    [11] Prouzet E, Cot F, Nabias G, et al. Assembly of mesoporous silica molecular sieves based on nonionic ethoxylated sorbitan esters as structure directors[J]. Chem Mater, 1999, 11:1498-1503.
    [12] Bagshaw S A, Pinnavais T J, Templating of mesoporous molecular sieves by nonionic-polyethylene oxide surfactants[J]. Science, 1995, 269: 1242-1244.
    [13] Tanev P T, Pinnavaia T J, A neutral template route to mesoporous molecular sieves[J]. Science, 1995, 267: 865-867.
    [14] Han Y. J, Kim J M, Stucky G D, Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15[J]. Chem Mater, 2000, 12: 2068-2069.
    [15] Kim S S, Pauly T R, Pinnavaia T J, Non-ionic surfactant assembly of ordered, very large pore molecular sieves from water soluble silicates[J]. Chem Commun, 2000, 1661-1662.
    [16] Davis M E, Saldarriaga C, Montes C, et al. A molecular sieve with eighteen-menbered rings[J]. Nature,1988, 331: 698-699.
    [17] Boury B, Corriu R J P, Auto-organisation of hybrid organic-inorganic materials prepared by sol-gel process[J]. Chem Commun, 2002, 795-802.
    [18] Dessau R M, Schlenber J L, Higgins J B, Framework topology of aluminophosphate AlPO4-8: the first 14 ring molecular sieve[J]. Zeolites, 1990, 10: 522-524.
    [19] Estermann M, McCusber L B, Baerlocher C, A. Merrouche, H. Kessler, A synthetic gallophosphate molecular sieve with a 20 tetrahedral-atom pore opening[J]. Nature, 1991, 352: 320-323.
    [20] Kresge C. T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature[J]. 1992, 359: 710-712.
    [21] Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J Am Chem Soc, 1992, 114: 10834-10843.
    [22]胡冰,稀土掺杂氧化硅介孔分子筛及其衍生硅酸盐纳米棒的研究[D],中国科学院上海硅酸盐研究所硕士学位论文,2003年6月。
    [23] Gallis K W, Landry C C, Synthesis of MCM-48 by a phase transformation process[J]. Chem Mater, 1997, 9: 2035-2038.
    [24]霍城,咔唑取代卟啉铂/钯配合物与介孔分子筛的组装及其组装体的氧气传感性能研究[D],吉林大学博士学位论文,2006年6月。
    [25]张慧东,发光分子/介孔分子筛组装体传感材料的研究[D],吉林大学博士学位论文,2005年4月。
    [26] Zhang H, Sun Y, Ye K, et al. Oxygen sensing materials based on mesoporous silica MCM-41 and Pt(II)-porphyrin complexes [J]. J Mater Chem,2005, 15: 3181-3186.
    [27] Huo C, Zhang H, Zhang H, Yang B, et al. Synthesis and assembly with mesoporous silica MCM-48 of platinum(II) porphyrin complexes bearing carbazyl groups: Spectroscopic and oxygen sensing properties[J]. Inorg Chem, 2006, 45: 4735-4742.
    [28] Jeon B S, Hong G Y, Yoo Y K, et al. Spherical BaMgAl10O17:Eu2+ phosphor prepared by aerosol pyrolysis technique for PDP applications[J]. J Electrochem Soc, 2001, 148(9): 128-131.
    [29] Kim E J, Kang Y C, Park H D, et al. UV and VUV characteristics of (YGd)2O3:Eu phosphor particles prepared by spray pyrolysis from polymeric precursors[J]. Mater Rears Bull, 2003, 38: 515-518.
    [30] Legendziewicz J, Gawryszewska P, Ga?decka E, et al. Novel polynuclear compound of europium with N-phosphonomethylglycine: spectroscopy and structure[J]. J Alloys Compd, 1998, 257-277: 356-360.
    [31] Carlos L D,Assun??o M,Mour?o P M, et al. Luminescence of non-hygroscopic polymer electrolytes modified by europium picrate complexes[J]. Electro acta, 1998, 43: 1365-1369.
    [32] Szuszkiewicz W, Keller B, Guzik M, et al. Application of lanthanide (Eu, Nd) spectroscopy as a structural probe of diluted double phosphates[J]. J Alloys Compd, 2002, 341(1-2): 297-306.
    [33] Chuai X H, Zhang H J, Li F Sh, et al. Luminescence properties of Eu(phen)2Cl3 doped in sol–gel-derived SiO2–PEG matrix[J]. Mater Lett, 2000, 46(4): 244-247.
    [34] Welker T. Recent developments on phosphors for fluorescent lamps and cathode-ray tubes[J]. J.Lumin,1991, 49: 49-56.
    [35] Zhang M S, Yin W, Su Q, et al. Encapsulation and luminescence of the nanostructured supramolecular material [Eu(Phen)4](NO3)3/(CH3)3Si–MCM-41[J]. Mater Lett, 2002, 57(4): 940-945.
    [36] Ronda C R. Recent achievements in research on phosphors for lamps and displays[J]. J.Lumin, 1997, 72-74: 49-54.
    [37] Michel J, Digonnet F. Rare-earth-doped fiber lasers and amplifiers [J]. Marcel Dekker Inc, 2001, 329-330.
    [38] Snitzer E. Proposed fiber cavities for optical lasers[J]. J Appl Phys, 1961, 32: 36-39.
    [39] Zhao Y L, Zhao F Y. Synthesis and characterization of aseries rare earth trinary complexes with cinnamic acidando-phenanthroline[J]. J Rare Earths, 2000, 18(4): 318-321.
    [40] Hench L L, West J K, The sol-gel process, Chem Rev[J]. 1990, 90: 33-72.
    [41] Lan E H, Dunn B, Zink J I, Sol-gel encapsulated anti-trinitrotoluene antibodies in immunoassays for TNT[J]. Chem Mater, 2000, 12: 1874-1878.
    [42] Rouse J H, MacNeil B A, Ferguson G S, Sol-gel processing of ordered multilayers to produce composite films of controlled thickness[J]. Chem Mater, 2000, 12:2502-2507.
    [43] Husing N, Schubert U, Aerogels-airy materials: Chemistry structure and properties[J]. Angew Chem Int Ed, 1998, 37: 22-45.
    [44] Bhatia R B, Brinker C J, Aqueous sol-gel process for protein encapsulation[J].Chem Mater, 2000, 12: 2434-2441.
    [45] Brinker C J, Scherer G W, Sol-gel science, the Physics and Chemistry of sol-gel processing[J]. Academic Press, San Diego, CA. 1990.
    [46] Cerven G, Corriu R J P, Framery E, Sol-gel process-influence of ageing on the textural properties of organosilsesquioxane materials[J]. J Mater Chem., 2001, 11: 713-717.
    [47]黄智华,丘坤元.溶胶-凝胶化学与无机/有机杂化高聚物的合成[J].大学化学,1995,10(5):1-6.
    [48]余桂郁,杨南如.溶胶-凝胶法工艺过程[J].硅酸盐通报,1993,6:60-66.
    [49]沈军,王钰,周斌.氧化硅气凝胶的超临界制备及纳米结构[J].物理,1995,10(5):299-303.
    [50]奚红霞,黄仲涛.凝胶的干燥[J].膜科学与技术,1997,17(1):1-8.
    [51] Prassas M,Phalippou J,Zaraycki J J.Synthesis of monolithic silica gels by hypercritical solvent evacuation[J].J Mater Sci,1984,19:1656-1665.
    [52] Kapoor M P, Yang Q H, Inagaki S, Organization of phenylene-bridged hybrid mesoporous silisesquioxane with a crystal-like pore wall from a precursor with nonlinear symmetry[J]. Chem Mater, 2004, 16: 1209-1213.
    [53] Goto Y, Inagaki S, Synthesis of large-pore phenylene-bridged mesoporous organosilica using triblock copolymer surfactant[J]. Chem Commun, 2002, 2410-2411.
    [54] Loy D A, Shea K J, Bridged polysilsequioxanes. Highly porous hybrid organic-inorganic materials[J].Chem Rev, 1995, 95: 1431-1442.
    [55] Shea K J, Loy D A, A mechanistic investigation of gelation. The sol-gel polymerization of precursors to bridged polysilsequioxanes[J]. Acc Chem Res, 2001, 34: 707-716.
    [56] Steck E A, Day A R, Reactions of phenanthraquinone and retenequinone with aldehydes and ammonium acetate in acetic acid solution[J]. J Am Chem Soc, 1943, 65: 452-456.
    [57] Jing B, Wu T, Tian C, Zhang M, et al. pH-Dependent luminescence of ruthenium(II) polypyridine complexes[J]. Bull Chem Soc Jpn, 2000, 73: 1749-1755.
    [58] Bian Z, Wang K, Jin L, Syntheses, spectroscopic and crystal structural studies of novel imidazo[4,5-f]1,10-phenanthroline derivatives and their Eu(III) ternary complexes with dibenzoylmethane[J]. Polyhedron, 2002, 21: 313-319.
    [59] Sun L, Zhang H, Peng C, et al. Covalent linking of near-infrared luminescent ternary lanthanide (Er3+, Nd3+, Yb3+) complexes on functionalized mesoporous MCM-41 and SBA-15[J]. J Phys Chem B, 2006, 110: 7249-7258.
    [60] Peng C Y, Zhang H J, Yu J B, et al. Synthesis, characterization, and luminescence properties of the ternary europium complex covalently bonded to mesoporous SBA-15[J]. J Phys Chem B, 2005, 109: 15278-15287.
    [61] Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J Am Chem Soc, 1992, 114: 10834-10843.
    [62] Ogawa M, Nakamura T, Mori J, et al. Luminescence of t ris(2,2’-bipyridine)ruthenium(II) cations ([Ru(bpy)3]2+) adsorbed in mesoporous slica[J]. J Phys Chem B, 2000, 104: 8554-8556.
    [63] Li S W, Song H W, Li W L, et al. Improved Photoluminescence Properties of ernary Terbium Complexes in Mesoporous Molecule Sieves[J]. J Phys Chem B ,2006,110;23164-23169.
    [64] Zhang H, Song H W, Yu H Q, et al. Electrospinning Preparation and Photoluminescence Properties of Rare-Earth Complex/Polymer Composite Fibers[J]. J Phys Chem C ,2007,111:6524-6527.
    [65] Li H R, Lin J, Zhang H J, Li H C, Fu L S, Meng Q G. Novel, covalently bonded hybrid materials of europium (terbium) complexes with silica[J]. Chem Commun, 2001, 1212-1213.
    [66] Li H, Fu L, Liu F, Wang S, Zhang H. Mesostructured thin film with covalently grafted europium complex[J]. New J. Chem., 2002, 26: 674-676.
    [67] Li H R, Lin J, Zhang H J, Fu L S, Meng Q G, Wang S B. Preparation and luminescence properties of hybrid materials containing europium(III) complexes covalently bonded to a silica matrix[J]. Chem. Mater., 2002, 14: 3651-3655.
    [68] Peng C, Zhang H, Meng Q, Li H, Yu J, Guo J, Sun L. Synthesis of SBA-15 functionalized with covalently bonded ternary europium complex[J]. Inorg. Chem. Commun., 2005, 8: 440-443.
    [69] Sun L, Zhang H, Peng C, Yu J, Meng Q, Fu L, Liu F, Guo X. Covalent linking of near-infrared luminescent ternary lanthanide (Er3+, Nd3+, Yb3+) complexes on functionalized mesoporous MCM-41 and SBA-15[J]. J. Phys. Chem. B, 2006, 110: 7249-7258.
    [70] Sun L, Yu J, Zhang H, Meng Q, Ma E, Peng C, Yang K. Near-infrared luminescent mesoporousmaterials covalently bonded with ternary lanthanide [Er(III), Nd(III), Yb(III), Sm(III), Pr(III)] complexes[J]. Microporous and Mesoporous Mater., 2007, 98: 156-165.
    [71] Peng C, Zhang H, Yu J, Meng Q, Fu L, Li H, Sun L, Guo X. Synthesis, characterization, and luminescence properties of the ternary europium complex covalently bonded to mesoporous SBA-15[J]. J. Phys. Chem. B, 2005, 109: 15278-15287.
    [72] Sprintchnik G, Sprimtchnik H W, Kirsch P P. Preparation and photochemical reactivity of surfactant ruthenium(II) complexes in monolayer assemblies and at water-solid interfaces[J]. J. Am. Chem.Soc, 1977, 99(15):4947-4954.
    [73] Malins C, Fanni S, Glever H G, et al. The preparation of a sol-gel glass oxygen sensor incorporating a covalently bonded fluorescent dye[J]. Anal Commun, 1999, 36:3-4.
    [74] Ding J J, Li B, Zhang H R, Lei B F, Li W L. Oxygen-sensing properties of ormosil hybrid matrials doped with ruthenium(II) complexes via a sol-gel process [J]. Mater. Lett., 2007, 61: 3374.
    [75] Murtagh M T, Shahriari M R, Krihak M. A study of the effects of organic modification and processing technique on the luminescence quenching behavior of sol-gel oxygen sensors based on a Ru(II) complex[J]. Chem. Mater., 1998, 10: 3862-3869.
    [76] Lei B F, Li B, Zhang H, et al. Mesostructured silica chemically doped with Ru(II) as a superior optical oxygen sensor[J]. Adv. Funct. Mater., 2006, 16: 1883-1891.
    [77] Li H, Yu J, Liu F, et al. Preparation and luminescence properties of in situ formed lanthanide complexes covalently grafted to a silica network[J]. New J Chem, 2004, 28: 1137-1141.
    [78] Ossipov D, Zamaratski E. Chattopadhyaya J. Chimica Acta., 1999, 82:2186.
    [79] Matsui K, Tominaga M, Arai Y, Satoh H, Kyoto M. J. Non-Cryst. Solids, 1994, 169-295.
    [80] Li X, King T A. J. Spectroscopic studies of sol-gel-derived organically modified silicates[J]. Non-Cryst. Solids, 1996, 204: 235-242.
    [81] Wrighton M, Morse D L. The nature of the lowest excited state in tricarbonylchloro-1,10-phenanthrolinerhenium(I) and related complexes[J]. J. Am. Chem. Soc., 1974, 96:998-1003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700