Tm~(3+)-Yb~(3+)/TiO_2/CdS纳米复合催化剂的制备及光催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过稀土离子Tm3+、Yb3+掺杂和窄带半导体CdS(Eg=2.5eV)的复合,对纳米TiO2进行了改性研究,制备出新型Tm3+-Yb3+ /TiO2/ CdS纳米复合催化剂。稀土离子的上转换发光作用,可以将低能的可见光转化为高能的紫外光,CdS的窄禁带宽度,可以扩展纳米材料的光谱吸收范围,这两种改性方法都能够抑制光生电子和空穴的复合,从而提高二氧化钛纳米复合催化剂的光催化降解效率。主要研究内容如下:
     1.采用溶胶-凝胶法合成了新型稀土离子Tm3+-Yb3+共掺杂的纳米TiO2/CdS复合光催化剂,运用紫外-可见漫反射光谱、X射线衍射、透射电镜和X射线光电子能谱等分析手段对催化剂体相及表面结构进行了详细表征。
     2.以三基色灯为光源,利用Tm3+-Yb3+/TiO2/CdS纳米复合催化剂,进行了光催化降解甲基紫、苯酚的实验研究,考察了光催化剂加入量、甲基紫或苯酚溶液初始浓度、光照时间及pH条件等对降解率的影响。结果表明,催化剂加入量为1.5g/L,甲基紫溶液浓度为20mg/L,并且在pH=2的条件下光照2h后,甲基紫的降解率达到98.13%。当催化剂加入量为4g/L时,光照12h后,苯酚的降解率达到73.52%,添加微量H2O2,光照12h后,苯酚降解率达到88.73%。
     3.对甲基紫和苯酚光催化降解过程的动力学特征进行了研究,并结合复合光催化剂的各种光学特性,讨论了光催化反应过程中的能量转移机理。
Doping the rare-earth ion Tm3+, Yb3+ and compounding the narrow-band semiconductor CdS (Eg=2.5eV) with TiO2 seem to be an effective method. The upconversion luminescence effect of the rare earth ion can produce a higher excitation light. Compounding with the narrowband of CdS can expand the range of the absorption. Both modified methods not only inhibit the recombination of photo-generated electrons and holes, but also improve the photodegradation efficiency.
     1. A new Tm3+-Yb3+/TiO2/CdS nano-composite photocatalyst have been synthesized by a sol-gel method. UV-Vis diffuse reflectance spectra, X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the optical properties, structure and composition of samples.
     2. The photocatalytic degradation methyl violet and phenol were investigated in Tm3+-Yb3+/TiO2/CdS aqueous suspensions under the three-color light irradiation. The effects of the catalyst dosage, initial concentration of methyl violet or phenol, irradiation time and pH wree investigated. The results indicated that the nano-composite catalyst showed very high photocatalytic activity. When the amount of catalyst is controlled 1.5 g/L and the initial concentration of the dye is 20 mg/L in pH=3 system, the degradation efficiency of methyl violet was 98.13%. When the amount of catalyst is controlled 4.0g/L and the irradiation time is 12 h, the degradation efficiency of phenol was 73.52%. The phenol degradation rate reached 88.73% after 12 h with adding trace H2O2.
     3. The kinetic model of the photocatalystic degradation reaction of methyl violet and phenol had been researched and the possible energy transfer mechanism had been discussed also.
引文
[1]Fujishima A,Honda K.Electrochemical Photolysis of water at a Semiconductor electrode[J].Nature,1972,238:37-40.
    [2]高濂.纳米氧化钛光催化材料及应用[M] .北京:化学工业出版社,2002.
    [3]Anil Kumar,Arvind Kumar Jain.Photophysics and photochemistry of colloidal CdS-TiO2 coupled semiconductors-photocatalytic oxidation of indole[J].Journal of Molecular Catalysis A:Chemical,2001,165: 265-273.
    [4]Shouxin Liu,Xiaoyun Chen.A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation[J].Journal of Hazardous Materials,2008,152:48-55.
    [5]E. Bizani,K. Fytianos.Photocatalytic decolorization and degradation of dye solution and wastewaters in the presence of titanium dioxide[J].Journal of Hazardous Materials,2006,85-94.
    [6]Fang Jiang,Zheng Zheng,Zhaoyi Xu.Aqueous Cr(VI) photo-reduction catalyzed by TiO2 and sulfated TiO2[J].Journal of Hazardous Materials,2006,134:94-103.
    [7]Rongxin Mu,Zhaoyi Xu.On the photocatalytic properties of elongated TiO2 nanoparticles for phenol degradation and Cr(VI) reduction[J].Journal of Hazardous Materials,2010,176:495-502.
    [8]Jaekyung Yoon,Eunjung Shim.Photocatalytic reduction of Cr(VI) on WO3 doped long TiO2 nanotube arrays in the presence of citric acid[J].Applied Catalysis B:Environmental,2010,94:142-149.
    [9]S. Rengaraj,S. Venkataraj.Preparation,characterization and application of Nd–TiO2 photocatalyst for the reduction of Cr(VI) under UV light illumination[J].Applied Catalysis B:Environmental,2007,77:157-165.
    [10]Lifeng Wang,Makoto Sakurai,Hideo Kameyama.Study of catalytic decomposition of formaldehyde on Pt/TiO2 alumite catalyst at ambient temperature[J].Journal of Hazardous Materials,2009,167:399-405.
    [11]G. Colón,M. Maicu,M.C. Hidalgo,et al.Gas phase photocatalytic oxidation of toluene using highly active Pt doped TiO2[J].Journal of Molecular Catalysis A:Chemical,2010,320:14-18.
    [12]Cai R,Hashimoto K,Kubota Y,et al.Photokilling of malignant cells with ultrafine TiO2 powder[J] Bull Chem Soc Jpn,1991,64:1268-1273.
    [13]Sakai H,Baba R,Hashimoto K,et al.Selective Killing of a Single Cancerous T24 Cell with TiO2 Semiconducting Microelectrode under Irradiation[J].Chemistry Letters,1995,24(3),185.
    [14]Fujishima A , Honda K . Electrochemical Photocatalysis of Water at a Semiconductor Electrode[J]. Nature,1972,238:37-38.
    [15]Steven N. Frank,Allen J. Bard.Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders[J].J. Phys. Chem.,1977,81(15):1484–1488.
    [16]元晶.新型结构纳米二氧化钛可见光催化剂的制备及其活性研究[D]:[硕士学位论文].长春:吉林大学,2005.
    [17]鞠剑峰.纳米TiO2复合材料的制备及其应用研究[D]:[博士学位论文].南京:南京理工大学,2005.
    [18]Gratzel M.Hetetrogeneous Photochemical Electron Transfer[M].Baton·Rouge.FL.1998.
    [19]沈伟韧,起文宽,贺飞,等.TiO2光催化反应及其在废水处理中的应用[J].化学进展,1998,10(4):349-361.
    [20]Amy L. Linsebigler,Guangquan Lu,and Jobn T. Yates.Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results[J].Chem. Rev. 1995,95:735-758.
    [21]王文兰.稀土离子掺杂TiO2纳米晶体的上转换光催化杀菌作用研究[D]:[硕士学位论文].长春,2009.
    [22]Izumi, I.,Fan, F. F.,and Bard, A. J. Heterogeneous photocatalytic decom position of benzoic and adipic acid on platinized TiO2 powder. The photokolbe decarboxylative route to the breakdown of the benzene ring and to the production of butane[J].J. Phys. Chem.,85:218-223,1981.
    [23]Chen X B,Nie Y X,Du W M,et al.Comparison investigation of direct upconversion sensitization luminescence between ErYb: oxyfluoride glass and vitroceramics[J].Optics Communications,2000,184(1-4):289-295.
    [24]Masaaki Kitano,Masaya Matsuoka,Michio Ueshima,et al.Recent developments in titanium oxide-based photocatalysts[J].Applied Catalysis A: General,2007,325(1):1-14.
    [25]M. Jakob,H. Levanon,P. V. Kamat.Charge distributionbe between UV irradiation TiO2 and gold nanoparticles: determination of shift in the fermi level[J].Nano Lett.,2003,3(3):353-358.
    [26]Y.Ishibai,J.Sato,T.Nishikawa,et al.Synthesis of visible-light active TiO2 photocatalyst with Pt-modification: Role of TiO2 substrate for high photocatalytic activity[J].Appl. Catal. B:2008,79(2):117-121.
    [27]H. Li,Zh.Bian,J.Zhu,et al.Mesoporous Au/TiO2 Nano-composites with enhanced photocatalytic activity[J].J. Am. Chem. Soc.,2007,129:4538-4539.
    [28]P. Wang,B. Huang,X. Qin,et al.Ag@AgCl:a highly efficient and stable photocatalyst active under visible light[J].Angew. Chem.,2008,47(41):7931-7933.
    [29]K. Awazu,M. Fujimaki,C. Rockstuhl,et al. A plasmonic photocatalyst consisting of Silver nano- particles embedded in titanium dioxide[J].J. Am. Chem. Soc.,2008,130 (5):1676-1680.
    [30]T. Hirakawa,P. V. Kamat.Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation[J].J. Am. Chem. Soc.,2005,127:3928-3934.
    [31]O. A. Ileperuma,K. Tennakone,W. D. D. P. Dissanayake.Photocatalytic behaviour of metal doped titanium dioxide: studies on the photochemical synthesis of ammonia on Mg/TiO2 catalyst systems[J].Appl. Catal.,1990,62(1):1-5.
    [32]Wonyong Choi , Andreas Termin , Michael R. Hoffmann . The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics[J].J.Phys. Chem.,1994,98(51):13669-13679.
    [33]K. Vinodgopal,Prashant V. Kamat.Enhanced Rates of Photocatalytic Degradation of an Azo Dye Using SnO2/TiO2 Coupled Semiconductor Thin Films[J]. Environ. Sci. Technol., 1995,29 (3):841–845.
    [34]朱永法,张利,等.溶胶-凝胶法制备薄膜型TiO2光催化剂[J].催化学报,1999,20(3):362-364.
    [35]Sato S..Photocatalytic activity of NOx- doped TiO2 in the visible light region[J]. Chem. Phys. Lett., 1986,123(1-2):126-128.
    [36]Asahi R,Morikawa T,Ohwaki T,et al.Visible-light photocatalysis in nitrogen-doped titanium oxides [J].Science,2001,293(5528):269-271.
    [37]Khan S U M,Al-Shahry M,W B Ingler.Efficient photochemical water splitting by a chemically modified n-TiO2 [J].Science,2002,297(5590):2243-2245.
    [38]Bessekhouad Y.,Chaoui N.,Trzpit M.,et al.UV–vis versus visible degradation of Acid Orange II in a coupled CdS/TiO2 semiconductors suspension[J].J. Photochem. Photobiol. A:Chem.,2006,183:218-224.
    [39]Shinguu H.,Bhuiyan M. M. H.,Ikegami T.,et al.Preparation of TiO2/WO3 multilayer thin film by PLD method and its catalytic response to visible light[J].Thin Solid Films,2006,506:111-114.
    [40]Mohammad Hossein Habibi,Hakimeh Vosooghian Habibi.Photocatalytic degradation of some organic sulfides as environmental pollutants using titanium dioxide suspension[J].Journal of Photochemistry and Photobiology A: Chemistry,2005,174:45-52.
    [41]Xing C.,Zhang Y.,Yan W.,et al.Band structure-controlled solid solution of Cd1-xZnxS photocatalyst for hydrogen production by water splitting[J].Int. J. Hydrogen Energy,2006,31:2018-2024.
    [42]Haesselbarth A.,Eychmueller A.,Eichberger R.,et al.Chemistry and photophysics of mixed cadmium sulfide/mercury sulfide colloids[J].J. Phys. Chem.,1993,97:5333-5340.
    [43]Gopidas K. R.,Bohorquez M.,Kamat P. V.Photophysical and photochemical aspects of coupled semiconductors: charge-transfer processes in colloidal cadmium sulfide-titania and cadmium sulfide-silver(I) iodide systems[J].J. Phys. Chem.,1990,94(16):6435- 6440.
    [44]Rabani J.Sandwich colloids of zinc oxide and zinc sulfide in aqueous solutions[J].J. Phys. Chem.,1989,93:707-7713.
    [45]Y. Bessekhouad,D. Robert,J. V. Weber.Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant[J].Journal of Photochemistry and Photobiology A: Chemistry,2004,163(3):569-580.
    [46]Sittinun Tawkaew,Yoshinobu Fujishiro.Synthesis of cadmium sulfide pillared layered compounds and photocatalytic reduction of nitrate under visible light irradiation[J] . Colloids and Surfaces A :Physicochemical and Engineering Aspects,2001,179(2-3):139-144.
    [47]Ranjit K T,Cohen H,Willner I,et al.Lanthanide oxide-doped titanium dioxide: Effective photocatalysts for the degradation of organic pollutants[J].J Mater Sci,1999,34(21):5273-5280.
    [48]W. G. Becker,M. M. Truong,C. C. Ai,et al.Interfacial factors that affect the photoefficiency of semiconductor-sensitized oxidations in nonaqueous media[J].J. Phys. Chem.,1989,93 (12):4882–4886.
    [49]Toshio. Uchihara,Michio. Matsumura,Junichi. Ono,et al.Effect of EDTA on the photocatalytic activities and flatband potentials of cadmium sulfide and cadmium selenide[J].J. Phys. Chem.,1990,94 (1):415–418.
    [50]N. Bloembergen. Solid state infrared quantum counters[J].Phys. Rev. Lett.,1959,2 (3):84-85.
    [51]F. Auzel,C. R. Acad[J].Sci. Paris: B,1966,262B:1016.
    [52]L. F. Johnson,H. J. Guggenheim.Infrared-pump visible laser[J]. Appl. Phys. Lett.,1971,19 (2):44-47.
    [53]A. Bahtat,M. Bouazaoui,M. Bahtat,et al.Up-conversion fluorescence spectroscopy in Er3+:TiO2 planar wave guides prepared by a sol-gel process[J].Journal of Non-Crystalline Solids,1996,202:16-22.
    [54]Gudel H U,Pollnau M.Near infrared to visible photon upconversion processes in lanthanide doped chliride, bromide and iodide lattices[J].J Alloys and Compounds,2000,(303-304):307-314.
    [55]Balda R,Lacha L M,Mendioroz A,et al.Upconversion processes in Nd3 +doped fluoroarsenate glasses [J].J Alloys and Compounds,2001,323-324:255-259.
    [56]Soderlund M,Tammela S,Poyhonen P,et al.Amplified spontaneous emission in cladding pumped Lband erbium doped fiber amplifiers [J].IEEE Photon Technol Lett,2001,13(1):22-24.
    [57]Niedbala R S,Feindt H,Kardos K,et al.Detection of Analytes by Immunoassay Using Upconverting Phosphor Technology[J].Analytical Biochemistry,2001,293(1):22–30.
    [58]Hampl J,Hall M,Mufti N A,et al.Upconverting Phosphor Reporters in Immunochromatographic Assays[J].Analytical Biochemistry,2001,288(2):176-187.
    [59]F. Auzel.Upconversion and Anti-Stokes Processes with f and d Ions in Solids[J].Chem. Rev.,2004,104 (1):139–174.
    [60]J.S Chivian,W.E Case,D. D Eden.The photon avalanche: A new phenomenon in Pr3+-based infrared quantum counters[J].Appl. Phys. Lett.,1979,35:124.
    [61]于晖,尚庆坤,王红丹,等.纳米TiO2基质掺杂稀土离子Er3+和Yb3+的上转换发光特性[J].分子科学学报,2007,23(2):118-119.
    [62]王文兰,尚庆坤,于辉,等.Er3+-Yb3+共掺纳米TiO2上转换光催化杀菌作用研究[J].分子科学学报,2008,24(5):337-340.
    [63]潘超,李琪,乔庆东.焙烧过程对TiO2纳米晶型参数的影响[J].化工科技,2004,12(1):26-28.
    [64]李彩云,范英芳.不同化学环境对Er3+离子的配位场能级结构的影响[J].分子科学学报,2001,17(1):35-41.
    [65]陈顺玉,李旦振,付贤智.SnO2掺杂对TiO2/Si纳米复合材料性能的影响[J].分子科学学报,2007,23(1):18-21.
    [66]张希艳,卢利平,等.稀土发光材料[M].北京:国防工业出版社,2005.
    [67]朱菊红.新型CdS/TiO2纳米材料的合成及其光催化降解发酵废液初探[D]:[硕士学位论文].天津:天津大学,2007.
    [68]Nefedov V.I.,Gati D.,Dzhurinskii B.F.,et al.Simple and coordination compounds[J].Russian Journal of Inorganic Chemistry,1975,20,2307-2314.
    [69]Martensson N.,Malmquist P.A.,Svensson S.,et al.[J].Nouv. J. Chim,1977,1,191.
    [70]Yu X. R.,Liu F.,Wang Z. Y.,et al.[J].Electron, Spectrosc. Relat. Phemon.,1990, 50, 159.
    [71]Houng M.P.,Fu S.L.,Wu T.S..[J].J. Mater. Sci. Lett.,1986,5,96.
    [72]Gonbeau D.,Guimon C.,Pfister-Guillouzo G.,et al.[J].Surf. Sci.,1991,254,81.
    [73]Hoffmann M R,Martin S T,Choi W,et al.Environmental applications of semiconductor photocatalysis[J].Chemical Review,1995,95(1):69-96.
    [74]Stylidi M,Kondarides D I,Verykios X E.Visible light-induced photocatalytic degradation of acid orange 7 in aqueous TiO2 suspensions[J].Applied Catalysis B: Environmental,2004,47(3):189-201.
    [75]Sung-Suh H M,Choi J R,Hah H J,et al.Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation[J].Journal of Photochemistry and Photobiology A: Chemistry,2004,163(1 - 2):37 - 44.
    [76]Bessekhouad Y,Robert D,Weber J V.Bi2S3 /TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant[J].Journal of Photochemistry and Photobiology A: Chemistry,2004,163(3):569 - 580.
    [77]苏碧桃,白洁.共轭高分子PF/TiO2纳米复合材料的合成与催化性能[J].精细化工,2006,23(9):837-840.
    [78]Choi W Y,Termin A,Hoffmann M R,et al.The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics[J].J Phys Chem,1994,98(51):13669-13679.
    [79]Madhusudan Reddy K,Baruwati Babita,Jayalakshmi M,et al.S-, N- and C-doped titanium dioxide nanoparticles: synthesis, characterization and redox charge transfer study[J].Journal of Solid State Chemistry,2005,178 (11):3352-3358.
    [80]Xu A W,Gao Y,Liu H Q.The Preparation, Characterization, and their Photocatalytic Activities of Rare-Earth-Doped TiO2 Nanoparticles[J].Journal of Catalysis,2002,207(2):151-157.
    [81]Wu L,Yu J C,Fu X Z.Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation[J].Journal of Molecular Catalysis A: Chemical,2006,244:25232.
    [82]李书珍,王磊,李林,等.光催化降解水中苯酚的研究[J].河南化工,2005,22(1):14-16.
    [83]S.K.Kan,M.Singh,D.Sud.Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts[J].Journal of Hazardous Materials,2007,141:581-590.
    [84]B. Neppolian,H. C. Choi,S. Sakthivel,et al.Solar/UV-induced photocatalytic degradation of three commercial textile dyes[J].Journal of Hazardous Materials B 2002,89:303-317.
    [85]张金龙,陈峰,何斌.光催化[M].上海:华东理工大学出版社,2004:151一152.
    [86]赵天亮,宁平,陈芳媛.含酚废水治理技术研究进展[J].环境与健康杂志,2007,24(8):648-650.
    [87]粟方星,马克勤,陈中芳,等.两步法处理高含量甲基酚废水的研究[J].离子交换与吸附,1999,15(2):163-170.
    [88]Li Z,Wu MH,Jiao Z,et al.Extraction of phenol from wastewater by Noctanoylpyrrolidine[J].Journal of Hazardous Materials,2004,B114:111- 114.
    [89]Korbahti BK,Tanyolac A.Continuous electrochemical treatment ofphenolic wastewater in a tubular reactor[J].Water Research,2003,37:1505-1514.
    [90]Chinhan C,Poheng L.Evaluation of sequencing batch reactor performancewith aerated and unaerated FILL periods in treating phenol-containing wastewater[J].Bioresource Technology,2006,5:33-38.
    [91]国家环境保护总局.水和废水监测分析方法[M].第四版.北京:中国环境科学出版社,2002.
    [92]赵宝顺,肖新颜,张会平.纳米二氧化钛光催化降解苯酚水溶液[J].精细化工,2005,22(5):339-341.
    [93]Lin Sheng H,Wang Chuen S.Treatment of high strength phenolic wastewater by a new two-step method [J].Journal of Hazardous Materials,2002,90 (2):205-216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700