Tm掺杂激光晶体荧光双稳特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究基于稀土离子掺杂激光晶体的本征光学双稳态对实现全固态光开关和双稳波长切换等光学功能器件等方面具有重要的潜在应用价值。目前,探索和研究在新型稀土离子掺杂介质中产成光学双稳态的具体物理机理已经成为非线性光学领域的一个重要的研究方向。
     本论文利用速率方程理论,研究基于Tm3+离子掺杂激光晶体的本征光学双稳态,包括单掺Tm3+,Tm3+/Ho3+双掺和Tm3+/Yb3+双掺等掺杂体系。分别建立了系统的速率方程模型,数值分析单掺Tm3+本征光学双稳动力学,以及Tm3+/Ho3+双掺和Tm3+/Yb3+双掺激光晶体的本征光学双稳态。研究结果表明:对于单掺Tm激光晶体,可以观察到双稳现象,改变系统参数可以获得显著的本征光学双稳态,并预言了红外与可见蓝光的发光转换现象;对于Tm3+/Ho3+双掺激光晶体,在一定条件下也会存在双稳态行为;对于Tm3+/Yb3+双掺激光晶体,存在明显的光学双稳行为,改变系统参数可以有效地增强本征光学双稳效应。讨论了掺杂离子浓度的优化,晶体基质的选取,以及双稳迟滞回线的动态调控。
Researches on intrinsic optical bistability based on rare-earth-ion-doped laser crystals are very interesting in various optical functional devices such as all-solid-state optical switch and bistable wavelength switching. Presently, the specific physical mechanism of optical bistability generating from the novel rare-earth ion-doped medium has become an important research direction in the nonlinear optics field.
     In the present paper, the intrinsic optical bistability based on Tm3+-doped laser crystals including Tm3+doped, Tm3+/Ho3+doped and Tm3+/Yb3+doped has been studied by utilizing the rate equation theory. The rate equation models have been built and the intrinsic optical bistability kinetics in Tm3+-doped, Tm3+/Ho3+ doped and Tm3+/Yb3+doped laser crystals have been analyzed numerically. The theoretical results indicates that for Tm3+doped laser crystal, the bistability can be observed, and the obvious intrinsic optical bistability can be obtained by changing system parameters, and luminescence switch phenomenon between infrared and blue fluorescences has been predicted. For Tm3+/Ho3+codoped laser crystal, the bistable behavior can also exist under certain conditions. While for Tm3+/Yb3+ codoped laser crystal, the optical bistable behavior is much stronger, and the intrinsic optical bistability can be enhanced by changing system parameters. In addition, the optimization of doped-ion concentration, selection of crystal mediums and dynamical control of bistable hysteresis loop are discussed in the paper.
引文
[1]吕国辉,叶红安,姜旭,孙秀冬.基于光纤Fabry-Perot滤波器的电光混合光学双稳态[J].光学技术,2006,1(32):8-10.
    [2]常存,常青,柳春郁,邱安平,叶红安.全光纤光学双稳态实验[[J].哈尔滨商业大学学报,2001,17(1):24-26.
    [3]李淳飞.光学双稳态研究20年[J].物理学报,1996,25(5):267-272.
    [4]LI Jun-Qing, CHEN Qiang, LI Qiang-Hua and LI Chun-Fei. A Hybrid optical bistable device based on a fiber Bragg grating[J]. Chin. Phys. Lett., 2002,19(12):1815-1818.
    [5]YE Hong-An, ZHANG Xin-Ming and ZHU Yong. Photo electricity brid optical bistable device using fiber Bragg gratings with two feed signals[J]. Chin. Phys. Lett.,2004,21(5):860-862.
    [6]G. H. Lv, H. A. Ye, et al. Optical bistability by using a tunable fiber laser with fiber Fabry-Perot[J]. Chin. Phys. Lett.,2004,21(11):2201-2204.
    [7]吕厚钧,叶红安,闰江,张伟平,楚雪梅.提高光学双稳态器件静态稳定度的新途径[J].黑龙江大学自然科学学报,1996,13(2):84-87.
    [8]王雨三,张中华.激光物理基础[M].哈尔滨:哈尔滨工业大学出版社,2004:221-235.
    [9]潘炜.光学双稳态[J].青海师专学报,1996,(4):89-91.
    [10]吕国辉,叶红安,李俊庆,孙秀冬.基于可调谐光纤激光器的频域光纤光学双稳态及其应用[J].激光与光电子学进展,2005,42(5):37-42.
    [11]郑宇进,允自强,高新,刘秀美.光学双稳态激光光强稳定器的实验研究[J].重庆大学学报,1992,15(5):107-110.
    [12]李淳飞,吴杰等.应用光学双稳原理的高精度光纤传感器[J].光学学报,1992,12(5):422-425.
    [13]李淳飞.光学双稳态及其应用[J].激光杂志,1985,6(6):281-289
    [14]廖延彪.光纤光学[M].北京:清华出版社,2000:112-116.
    [15]Mi. Oh. Jung and Donghan Lee. Strong Optical Bistability in a Simple L-band Tunable Erbium-Doped Fiber Ring Laser[J]. Quantum Electronics, 2004,40 (4):374-377.
    [16]Q. H. Mao, W. Y. John. Lit. Multiwavelength Erbium-Doped Fiber Lasers with Active Overlapping Linear Cavities[J]. Lightwave Technol,2003, 21(1):160-169.
    [17]Q. H. Mao, W. Y. John, Lit. Member. L-Band Fiber Laser With Wide Tuning on Dual-Wavelength Optical Bistability in Linear Overlapping Grating Cavities[J]. Quant. Electron,2003,39(10):1252-1259.
    [18]Q. H. Mao, W. Y. John. Lit. Switchable. Multiwavelength Erbium-Doped Fiber Laser with Cascaded Fiber Grating Cavities [J]. IEEE Photon. Technol. Lett.,2002,14(5):612-614.
    [19]Q. H. Mao, W. Y John. Lit. Optical bistability in an L-Brand dual-wavelength erbium-doped fiber laser with overlapping cavities [J]. IEEE Photon. Technol. Lett.,2002,14(9):1252-1254.
    [20]L.Xu, Bing C. Wang, Varghese Baby, Ivan Glesk, and Paul.R.Prucnal. Optical Spectral Bistability in a Semiconductor Fiber Ring Laser Through Gain Saturation in an SOA[J]. IEEE Photon. Technol. Lett.,2002, 14(2):149-151.
    [21]J. P. Goedegebuer, A. Fischer, H. Porte. Controlled Wavelength Bistability and Multistability of Tunable Semiconductor Lasers[J]. Quantum Electronics,1996,26 (3):242-244.
    [22]N. Furstenau. Bistable Fiber-Optic Michelson Interferometer That Uses Wavelength Control[J]. Optics Letters,1991,16(23):1896-1898.
    [23]N. Furstenau. Bistable Fiber-Optic Michelson Interferometer That Uses Wavelength Control:Erratum[J]. Optics Letters,1992,17(14):1029-1031.
    [24]J. J. Ohtsubo and Y Liu. Optical Bistablity and Multistability in Active Interferometer[J]. Optics Letters,1990,15(13):731-733.
    [25]J. P. Goedgebuer, M. Li, and H. Porte. Demonstration of Bistability and Multistability in Wavelength with a Hybrid Acoustooptic Device[J]. Quantum Electronics,1987,23(2):153-157.
    [26]H. Porte and J. P. Goedgebuer. Bistability in Wavelength Using an Electro-Optically Tuned Dye Laser[J]. Optics Communications,1984,51(5): 331-336.
    [27]Szoke A, Daneu V, Goldhar J, Kurnit N A. Bistable Optical Element and Its Applications. Appl. Phys. Lett.,1969,15,376.
    [28]McCall S L, Gibbs H M, Churchill G G, Venkatesan T N C. Bull. Am. Phys. Soc.,1975,20,636.
    [29]Bonifacio R and Lugiato L A. Cooperative effects and bistability for resonance fluorescence. Optics Communications,1976,19(2),172-175.
    [30]Bowden C M and Sung C C. First-and second-order phase transitions in the Dicke model:Relation to optical bistability. Phys. Rev. A,1979,19, 2392-2401.
    [31]Hellen M P, Gudel H U, Rai J, Rai S, Rand S C. First-and second-order phase transitions in the Dicke model:Relation to optical bistability. Phys. Rev. Lett,1994,73,1103-1106.
    [32]Hehlen M P, Gudel H U, Shu Q, Rai J, Rai S, Rand S C. Cooperative optical bistability in the dimer system Cs3Y2Br9:10%Yb3+. J. Chem. Phys.,1996, 104 1232.
    [33]Hellen M P, Kuditcher A, Rand S C, Luthi S R. Intrinsically Bistable Luminescence of Yb3+Ion Pairs in CsCdBr3. Phys. Rev. Lett.,1999,82,3050-3053.
    [34]Gemlin D R, Luthi S R, Gudel H U. The Role of Laser Heating in the Intrinsic Optical Bistability of Yb3+-Doped Bromide Lattices. J. Phys. Chem. B,2000,104 (47),11045-11057.
    [35]Kuditcher A, Hellen M P, Florea C M, Winick K W, Rand S C. Intrinsic Bistability of Luminescence and Stimulated Emission in Yb-and Tm-Doped Glass. Phys. Rev. Lett.,2000,84,1898-1901.
    [36]Rodenas A, Jaque D, Garcia Sole J. A. Speghini and M. Bettinelli, E. Cavalli. Bistable chromatic switching in Yb3+-doped NdPO4 crystals. Phys. Rev. B., 2006,74,035106.
    [37]Martin IR, Goutaudier C, Guy S, Guyot Y, Boulon G, Cohen A M T, Joubert M F. Room-temperature photon avalanche upconversion in Tm3+:Y2O3 crystals. Phys. Rev. B,1999,60,7252-7257.
    [38]Bell M J V, Sousa D F, Oliveira S L, Lebullenger R, Hernandes A C, Nunes LAO. Photon avalanche upconversion in Tm3+-doped fluoroindogallate glasses. J. Phys.:Condens. Mater.,2002,14(23),5651-5664.
    [39]牛艺,王增梅,刘英才,尹衍升,袁多荣.Tm3+掺杂硅酸镓镧(La3Ga5SiO14)晶体的结构与光学性能研究.物理学报,2007,56(5):2968-2973.
    [40]韩琳,宋峰,邹昌光,苏静,闫立华,田建国,张光寅.Tm3+离子掺杂的钨酸钇钠晶体中浓度猝灭效应的研究.物理学报,2007,56(7):4187-4193.
    [41]Joubert M F, Guy S, Jacquier B. Model of the photon-avalanche effect. Phys. Rev. B,1993,48,10031-10037.
    [42]Joubert M F. Photon avalanche upconversion in rare earth laser materials. Opt. Mater.,1999,11,181-203.
    [43]Babu P, Seo H J, Jang K H, Balakrishnaiah R, Jayasankar C K, Joshi A S. Optical spectroscopy and energy transfer in Tm3+-doped metaphosphate laser glasses. J. Phys.:Condens. Matter.,2005,17(32),4859-4876.
    [44]Martin I R, Rodriguez V D, Guyot Y, Guy S, Boulon G, Joubert M F. Room temperature photon avalanche upconversion in Tm3+-doped fluoroindate glasses. J. Phys.:Condens. Mater.,2000,12(7),1507-1516.
    [45]张新陆,王月珠,鞠有伦.能量传递上转换对Tm, Ho:YLF激光器阈值的影响.物理学报,2005,54(1):117-122.
    [46]张新陆,王月珠.能量传递上转换对Tm,Ho:YLF调Q激光器上能级寿命的影响.物理学报,2006,55(3):1160-1164.
    [47]Redmond S M, Rand S C. Intrinsic chromatic switching of visible luminescence in Yb3+,Er3+:CsCdBr3. Opt. Lett.,2003,28(3),173-175.
    [48]Noginov M A, Vondrova M, Casimir D. Analysis of intrinsic optical bistability in Tm-doped laser-related crystals. Phys. Rev. B,2003,68, 195119.
    [49]Ramirez M O, Jaque D, Montes M, Sole G J, Bausa L E, Lvleva L. Thermal hysteresis in the luminescence of Cr3+ions in Sr0.6Ba0.4 (NbO3)2. Appl. Phys. Lett.,2004,84,2787.
    [50]Lahoz F, Martin I R, Briones A. Infrared-laser induced photon avalanche upconversion in Ho3+-Yb3+codoped fluoroindate glasses. J. Appl. Phys., 2004,95,2957.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700