离子注入掺Er富硅氧化硅材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Er~(3+)在石英基体材料中受激光致发光的波长大约是1540nm,这个波长是石英光纤的最小损耗窗口,因而是以石英光纤为基础的光通讯的标准波长之一。掺铒光纤放大器(EDFA)作为获得光增益的媒质是光纤通讯系统中极其重要的组成部分。当前正在快速发展的城域网(MAN)、局域网(LAN)以及光纤到户(FTTH)等系统中对波分复用(WDM)/密集波分复用(DWDM)光信号能量衰减的补偿需要可集成的紧凑型、低成本掺铒光波导放大器(EDWA)。然而,Er~(3+)在体硅中具有固溶度低和发光强度温度淬灭强的缺点,难以达到设计光波导放大器的要求。一种新颖的敏化发光技术使获得室温高效硅基掺铒发光成为可能。在掺铒的SiO_2中形成Si-nc,利用Si-nc对Er~(3+)的敏化作用可以提高Er~(3+)对泵浦光的有效吸收截面;利用Si-nc带隙和Er~(3+)跃迁能量之间较大的不匹配可以抑制温度淬灭效应。
     本文利用离子注入方法制备了富硅氧化硅(SRSO)和掺铒富硅氧化硅(ErSRSO)材料,研究了材料微观结构和Er的化学状态随退火温度的演变。实验结果表明注入SiO_2的富余Si原子经历了偏析集聚形成a-Si纳米颗粒继而在更高温度转变成nc-Si的演化过程;在900℃以上温度退火,形成非晶SiO_x层包覆nc-Si的壳层结构;约900℃退火,形成具有光学活性的Er-O发光中心。
     研究了富硅氧化硅和掺铒富硅氧化硅的光致发光特性以及退火对他们的影响。结果表明Er~(3+)的出现和浓度升高都对Si-nc的光致发光有淬熄作用,证实了Si-nc与Er~(3+)强耦合模型的正确性;发现壳层结构中残余非晶硅层是激发态Er离子非辐射去激发的通道之一,由此引起的能量背迁移是Er离子光致发光在T>150K温度淬灭的主要因素。
     考虑到Er~(3+)通过Si-nc间接被激发的过程,我们对描述激发态Er~(3+)的速率方程进行了改写。与SiO_2中Er~(3+)直接被激发不同,从ErSRSO系统速率方程的解中得到1/T_(rise)与φ是非线性关系,并被实验结果所证实。根据实验结果拟合得到我们所
The stimulated photoluminescence (PL) of Er ions in a silica host matrix at the standard 1540nm optical communication wavelength corresponds to the minimum attenuation in silica based fibers. EDFAs (Erbium-Doped Fiber Amplifiers) are important components for optical communication system as optical gain media. Compact and cost-effective integrated EDWAs (Erbium-Doped Waveguide Amplifiers) are required to compensate the attenuation of WDM/DWDM ((Dense) Wavelength Division Multiplexing) in MANs (Metropolitan Area Network), LANs (Local Area Network) and FFTH (Fiber to the Home). However, the main drawbacks of Er-doped Silicon for designing integrated EDWA are the low Er solubility and the very strong PL intensity thermal quenching. A novel sensitization technique for Er PL makes the efficient emission from Er-doped silicon-based materials reality. In SiO_2 host, the optical pumped Si-ncs are used as sensitizers for Er~3+ enhanced the Er~3+ effective cross section greatly. The Er PL thermal quenching is restricted due to the large mismatch between the Si-nc bandgap energy and the Er transition energy.The Si-rich silicon oxidation (SRSO) and the Er-doped Si-rich silicon oxidation (ErSRSO) materials were prepared by ion implantation. The evolutions of microstructure and Erbium chemical state with the increasing of annealing temperature were investigated. The excessive Si in SiO_2 host separates out to form amorphous Si nanocluster by thermal treatment. With the increasing of annealing temperature, the a-Si clusters transform to silicon nanocrystals. A shell configuration with Si-nc core enwrapped by amorphous SiO_x obtained at T>900℃. The optical active emission centre related to Er-0 obtained by 900℃ annealing.The PL properties of SRSO and ErSRSO and the influence of the annealing were investigated. The results show that the presence of Er~3+ induced the quenching of
    Si-nc PL intensity. It confirms that the model of strong coupling between Si-nc and Er ions is correct. The residual a-Si in shell area after annealing is one of the non-radiative de-excitation channels for the excited Er3+. The Er PL thermal quenching at T>150K is mainly induced by the energy back transfer through this channel.Considering the increase of excited state Er3+ through the energy transfer from nc-Si, we developed the new rate equations governing the populations of excitons in Si-nc and the Er3+ metastable state. A nonlinear relation between l/rm£.and wasobtained. The effective cross section was determined for indirect excitation of ErJ* by fitting the curve of l/rn,c vs.. For our ErSRSO samples, the effective cross sectionis up to four orders of magnitude higher than the Er3+ direct optical absorption.A theoretical model was developed based on Forster theory by analogy with the rare-earth codoped systems. The coupling and energy transfer between Si-nc and ErJ' can be explained by non-radiative dipole-dipole resonance interaction mechanism. By analysis the photoluminescence decays from Si-ncs with and without Er3". we evaluate Forster critical radius Ro of the interaction between optically active Er3* andSi-ncs. The Ro value of our ErSRSO samples is 1.64nm. The energy transfer quantumefficiency evaluated in terms of Rlt and the average separation distance between Si-nc and Er3+is 17.45%.
引文
[1] 黄章勇.光纤通信用光电子器件和组件.北京:北京邮电出版社,2001
    [2] 顾畹仪 全光通讯网 北京:北京邮电大学出版社,1999
    [3] 孙学军,张述军.DWDM传输系统原理与测试.北京:人民邮电出版社,2000
    [4] 纪越峰,光波分复用系统.北京:北京邮电出版社,1999
    [5] www.stcsm.gov.cn
    [6] M. S. Borella. J. P. Jue, D. Banerjee, B. Ramamurthy, and B. Mukherjee, Optical components for WDM lightwave networks Proc. IEEE, 85 (1997) 1274-1307
    [7] Hiroshi Nakano. Technological trends of optical communication devices for DWDM, Nec Device Technology International, 2000, 59-72
    [8] 肖石林,光通信技术,3(1997)210—215
    [9] 余重秀,光通信中的光电子器件讲座(一).物理,30(2001)501—505
    [11] S. Hufner, Optical Spectra of Transparent Rare-Earth Compounds, Academic Press, New York. 1978
    [12] N. S. Bergano, Opt. Photon. New 11 (2000) 21
    [13] E. Desurvire, Erbium-Doped Fiber Amplifiers: Priciples and Applications. John Wiley & Sons, 1994
    [14] G. N. van den Hoven, Erbium-doped Photonic Matweials, PhD Thesis, Utrecht University, The Netherlands 1996
    [15] P. J. Mears, L. Reekie, I. M. Jauncey, D. N. Payne, High-gain rear-earth doped fiber amplifier at 1.54μm, Electron. Lett. 23 (1987) 1026-1028
    [16] H. Yajima, Optical waveguide channel branches in Ti-diffused LiNbO 3 W. K. Appl. Phys. Lett., 222 (1973) 647-649
    [17] H. Takahashi, Y. Ohmori, Electr. Lett. Design and Fabrication of Silica-Based Integrated-Optic 13128 Power Splitter, 27 (1991) 2131-2133
    [18] Y. Ma, S. Park, L. Wang, S. T. Ho, IEEE. Photon. Technol. Lett. Ultracompact Multimode Interference 3-dB Coupler with Strong Lateral Confinement by Deep Dry Etching, 12 (2000) 492-494
    [19] D. S. Levy, R. Scarmozzino, R. M. Osgood, IEEE Photon. Technol. Lett. Length reduction of tapered N×N MMI devices. IEEE Photon. 10 (1998) 830-832
    [20] T. A. Strasser, M. C. Gupta, Appl. Opt. Achromatic compensation for inte- grated optic grating couplers with focused beams32 (1993) 7454-7461
    [21] T. Hashimoto, and M. S. Yataki, Variable optical fiber attenuators. CLEO, Pacific Rim, 4 (1999) 1151—1152
    [22] B. Barber, C. R. Giles, V. Askyuk, A Fiber Connectorized MEMS Variable Optical Attenuator, IEEE Photon. Technol. Lett., 1998, 10(9): 1262-1264
    [23] C. Marxer, P. Griss, N. F. de Rooij, A variable optical attenuator based on silicon micromechanics IEEE Photon. Technol. Lett., 1999, 11 (2): 233-235
    [24] B. Jalali, S. Yegnanarayanan, T. Yoon, Advances in silicon-on-insulator optoelectronics, J. Sel. Topic. Quan. 1998, 4(6): 938-947
    [25] 魏红振,余金中,张小峰等.SOI集成光电子器件.半导体光电,200l,22(1):7-11
    [26] A. Liu, R. Jones, L. Liao, A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor Nature, 427 (2004) 615-618
    [27] P. G. Kik, A. Polman, Erbium-Doped Optical-Waveguide Amplifiers on Silicon MRS Bulletin 23(4), (1998) 48
    [28] P. G. Kik, A. Polman, Gain limiting processes in Er-doped Si nanocrystal waveguides in SiO_2, Journal of Applied Physics 88 (2000) 1992
    [29] K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, Y. Handa, Aluminium or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass J. Appl. Phys. 59 (1986) 3430-3436
    [30] G. N. van den Hoven, E. Snoeks, A. Polman, J. W. M. van Uffelen, Y. S. Oei, M. K. Smit, Photoluminescence characterization of Er-implanted AI 20 3 films. Appl. Phys. Lett. 62 (1993)3065-3069
    [31] G. N. van den Hoven, A. Polman, E. Alves, M. F. da Silva, A. A. Melo, J. C. Soares, Upconversion in Er-implanted Al_2O_3 waveguides. J. Mat. Res. 12 ( 1997)1401
    [32] T. Hoekstra, Erbium-Doped Y2O3 Integrated Optical Amplifiers, PhD thesis, Twente University of Technology, The Netherlands (1994)
    [33] M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, and A. J. Bruce, Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses," Phys. Rev. B 56, (1997) 9302-9318
    [34] L. H. Slooff, A. Polman, M. P. Oude Wolbers, F. C. J. M. van Veggel. D. N. Reinhoudt, J. W. Hofstraat, Optical Properties of Erbium-Doped Polydentate Hemispherands, J. Appl. Phys. 83. (1998) 497-503
    [35] F. Auzel, Radiationless processes, B. DiBartolo, Ed. (Plenum Press, New York, 1980)
    [36] W. J. Miniscalco. Erbium-doped glasses for fiber amplifiers at 1500 nm. J. Lightwave Technol. 9, ( t991 ) 234-250
    [37] G. N. van den Hoven, E. Shocks, A. Polman, C. van Dam, J. W. M. van Uffelen. and M. K. Smit, Upconversion in Er-implanted Al2O3 waveguides, J. Appl. Phys. 79. (1996) 1258-1266
    [38] E. Snoeks, G. N. van den Hoven, A. Polman, B. Hendriksen, M. B. J. Diemeer, and F. Priolo, Cooperative upconversion in erbium implanted sodalime silicate glass optical waveguides, J. Opt. Soc. Am. B 23. (1995) 1468-1473
    [39] P. G, Kik, A. Polman, Cooperative upconversion as the gain-limiting factor in Er-doped miniature Al 2 O 3 waveguide amplifiers, J. Appl. Phys 93 (2003) 5008-5012
    [40] S. Coffa, G. Franzo. F. Priolo, A. Polman, R. Serna, Temperature dependence and quenching processes of the intra-4fluminescence of Er in crystalline Si, Phys. Rev. B 49 (1994) 16313-16315
    [41] Thomas D. Chen, Marlene Platero, M. Agarwal, Byberg JR Tin-vacancy complexes in e-irradiated n-type silicon, Phys. B. 322 (1999) 273-274
    [42] A. Benn, EDWA Gains on EDFAs, Lightwave Europe March (2002) 38
    [43] www.lightwave_europe.com
    [44] http://www.169.com/
    [45] K. Hattori, T. Kitagawa, M. Oguma. M. Wada, J. Temmyo, M. Horiguchi. Erbium-doped silica-based planar waveguide amplifier pumped by 0.98 μm laser diodesElectron. Lett. 29 (1993) 357-359
    [47] R. N. Ghosh, J. Shmulovich, C. F. Kane, M. R. X. de Barros, G. Nykolak, A. J. Bruce, P. C. Becket, 8ro W threshold Er-doped planar wave-guide amplifier, IEEE Photon. Technol. Lett. 8, (1996) 518-520
    [48] J. Shmulovich, A. Wong, Y. H. Wong, P. C. Becket, A. J. Bruce, R. Adar, Er 3+glass waveguide amplifier at 1.5 m on silicon, Electron. Lett. 28, (1992) 1181-1182
    [49] G. N. van den Hoven, R. J. I, M. Koper, A. Polman, Net optical gain at 1.53μm in Er-doped Al_2O_3 waveguides on silicon, Appl. Phys. Lett. 68 (1996) 1886-1888
    [50] G. N. van den Hoven, E. Snoeks, A. Polman, J. W. M. van Uffelen, Y. S. Oei, and M. K. Smit, Photoluminescence characterization of Er-implanted Al_2O_3 films, Appl. Phys. Lett. 62 (1993) 3065-3067
    [51] D. Barbier, J. M. P. Delavaux, A. Kevorkian, P. Gastaldo, and J. M. Jouanno, Proc. OFC'95, San Diego, CA, (1995)
    [52] J. M. P. Delavaux, S. Granlund, O. Mizuhara, L. D. Tzeng, D. Barbier, M. Rattay, F. Saint Andre, Integrated optics Er/Yb amplifier system in ICGb/s fiber transmission experimentA. Kevorkian, IEEE Photon. Technol. Lett. 9, (1997)247-52
    [53] H. J. van Weerden, T. H. Hoekstra, P. V. Lambeck, Th. J. A. Popma, Proc. 8th European conference on integrated optics, Stockholm, Abstract EThA4, 169 (1997)
    [54] Y. C. Yan. A. J. Faber, H. de Waal, A. Polman, P. G. Kik, Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm, Appl. Phys. Lett. 71, (1997) 2922-2924
    [55] 周必忠等,光潜学与光普分析1994,6
    [56] 谢大弢等,掺Eu 3+硅基材料的发光性质,光谱学与光谱分析 18(1998)177
    [57] 雷红兵等,半导体学报19(1998)332
    [58] 万均等,物理学报1998,47
    [59] 雷红兵等,采用 TEOS和H2O源PECVD方法生长氧化硅厚膜,半导体学报120(1999)67-73
    [62] 陈维德等,注铒a-SiOx:H中Er3+发光与薄膜微观结构的关系,半导体学报21(2000)988-993
    [63] 巢明等,Er 3+Al 2 O 3 平面光波导放大器理论计算,大连理工大学学报2001,1-5
    [64] 冉冰等,光电子.激光 2001,4
    [65] Q. Y. Zhang et al. Microstructures and properties of Er-doped Al_2O_3 thin films synthesized by ion beam assisted deposition, Surface and Coatings Technology. 158 (2002) 538-542
    [66] A. Polman, Nature. Schematics showing an energy transfer between an excited Si-ncand an Er3+ ion, Vol. 1 (Sept. 2002), 8-19
    [67] H. Ennen, 1.54-μm luminescence of erbium-implanted Ⅲ-Ⅴ semiconductors and silicon, Appl. Phys. Lett., 43 (1983) 943-945
    [68] J. St. John, J. L. Coffer, Y. Chen, R. F. Pinizzotto, Journal of American Chemical Society 121 (1998)1888.
    [69] C. E. Chryssou, A. J. Kenyon, T. S. lwayama, C. W. Pitt, D. E. Hole, Evidence of energy coupling between Si nanocrystals and Er~(3+) in ion-implanted silica thin films, Appl. Phys. Lett. 75 (1999) 2011-2013
    [70] G. Franzo. V. Vinciguerra, F. Priolo, The excitation mechanism of rare-earth ions in silicon nanocrystals, Applied Physics A. 69 (1999) 3-12
    [71] P. G. Kik, M. L. Brongersma, A. Polman, Size-dependent electron-hole exchange interaction in Si nanocrystals, Applied Physics Letters 76 (2000) 351-353
    [72] P. G. Kik, M. L. Brongersma, A. Polman, Appl. Phys. Lett. 76 (2000) 24
    [73] A. J. Kenyon, Increasing the e± ciency of erbium-based sources using silicon quantum dots,Phil. Trans. T. Soc. Lond. A 361, (2003) 345-362
    [74] H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, J. Schneider, 1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy, Appl. Phys. Lett. 46 (1985) 381-383
    [75] A. G. Cullis, L.T. Canham, Visible light emission due to quantum size effects in highly porous crystalline silicon, Nature 353 (1991) 335
    [76] E. Kasper, F. Schaffier, Materials Science and Technology. Academic Press. Boston (1991) 223
    [77] 王启明 提高Si基材料高效率途径的探索 物理学进展16(1996)75-87
    [78] W. L. Walson, P. F. Szajowski, L E. Brus, Quantumconfinementin size-selected surface oxidized silicon nanocrystals, Sciences 262 (1993) 242-253
    [79] R. Tsu, Silicon-based quantum wells, Nature 364(1993) 19-32
    [80] Z. H. Lu, D. J. Lockwood J. M. Baribeau, quantum confinement and light emission in SiO_2/Si superlattices, Nature 378 (1995) 258-270
    [81] D. Leong, M. Harry, K. J. Reeson, A Silicon/iron di-silicide light-emitting diode operating at 1.5um, Nature, 387 (1997) 686-696
    [82] P. G. Kik, A. Polman, Exciton-erbium interactions in Si nanocrystal-doped SiO_2J. Appl. Phys. 88 (2000) 1992-1998
    [83] J. St. John, J. L. Coffer, Y. Chen, and R. F. Pinizzotto, Formation of Europium Oxide Structures on Crystalline Silicon By Spark Processing, J. American Chem. Soci. 121 (1998)1888
    [84] C. E. Chryssou, A. J. Kenyon, T. S. Iwayama, C. W. Pitt, D. E. Hole, Evidence of energy coupling between Si nanocrystals and Er~(3+) in ion-implanted silica thin films, Appl. Phys. Lett. 75 (1999) 2011-2013
    [85] G. Franzo, V. Vinciguerra, F. Priolo, The excitation mechanism of rare-earth ions in silicon nanocrystals, Applied Physics A. 69 (1999) 3-12
    [86] P. G. Kik, M. L. Brongersma, A. Polman, Size-dependent electron-hole exchange interaction in Si nanocrystals, Applied Physics Letters 76 (2000) 351-353
    [87] H. S. Han. S. Y. Seo, J. H. Shin, Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide, Appl Phys. Lett. 79 (2001) 4568-4570
    [88] M, Fujii, M. Yoshida, S. Hayashi, K. Yamamoto, J. Appl. Phys. 84 (1998) 4525
    [89] P. G. Kik, and A. Polman, Exciton-erbium interactions in Si nanocrystal-doped SiO_2, J. Appl. Phys. 88, (2000) 1992-1998
    [90] S. Y. Seo and J. H. Shin, Resonance frequency shifts caused by the friction of a drop of water in air: An approach to estimate shear forces in scanning probe microscopies, Appl. Phys. Lett. 78, (2001) 2709-2081
    [91] S. Lanzerstorfer, J. D. Pedarnig, R. A. Gunasekaran, D. Bauerle, W. Jantsch, 1.54μm Emission of pulsed-laser deposited Er-doped films on Si, J. Lumin 80 (1999) 353-356
    [92] T. Shimizu, M. Ohshima. T. Niimi. S. Nakao, K. Saitoh, T. Fujita, N. ltoh. Visible photoluminescence related to Si precipitates in Si-implanted SiO2, J. Phys.: Condens. Matter 5 (1993) L375-L380
    [93] K. S. Min, K. V. Shcheglov, C. M. Yang, H.A. Atwater, M. L. Brongersma. A. Polman, Defect-related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO_2, Appl. Phys. Lett. 69 (1996) 2033-2035
    [94] T. Komoda, J. Kelly, F. Cristiano, A. Nejim, P. L. F. Hemment, Nucl. Instrum. Methods Phys. Res. B 96 (1995) 387
    [95] 朱唯干著,邹世昌,林成鲁译背散射技术分析,原子能出版社,北京
    [96] D. Nesheva, C. Raptis, I. Bineva. Z. Aneva, and Z. Levi, Raman scattering and pbotoluminescence from Si nanoparticles in annealed SiO+x thin films. J. Appl. Phys. 92 (2002) 4678-4683
    [97] R. J. Temkin, An analysis of the radial distribution function of SiOx. J. Non-Cryst. Solids, 17 (1975) 215-230
    [98] H. R. Philipp, Optical properties of non-crystalline Si, SiO, SiOx and SiO_2. J. Phys. Chem. Solids, 32 (1971) 1935-1945
    [99] H. Watanabe, K. Haga. T. Lohner, J. Non-Cryst. Solids, 164 (1993) 1085
    [100] P. Bruescb. Th. Stockmeier, F.Stucki and EA. Buffat, Physical properties of semi-insulating polycrystalline silicon. I. Structure, electronic properties, and electrical conductivity, J. Appl. Phys. 73 (1993) 7677-7689
    [101] E. Desurvire in" Erbium-Doped Fiber Amplifiers- Principles & Applications. Wiley-lnterScience, New York, 1994, p 210-211.
    [102] A. Terrasi, G Franzo, S. Coffa, F. Priolo, F. D. Acpito, and S. Mobilio, Evolution of the local environment around Er upon thermal annealing in Er and O co-implanted Si, Appl. Phys. Lett. 70 (1997) 1712-1714
    [103] C. E. Chryssou, A. J. Kenyon, T. S. lwayama, C. W. Pitt. D. E. Hole, Evidence of energy coupling between Si nanocrystals and Er~(3+) in ion-implanted silica thin films, Applied Physics Letters 75 (1999) 2011-2013
    [104] G. Franzo, V. Vinciguerra, F. Priolo, The excitation mechanism of rare-earth ions in silicon nanocrystals, Applied Physics A. 69 (1999) 3-12
    [105] P. G. Kik, M. L. Brongersma, A. Polman, Size-dependent electron-hole exchange interaction in Si nanocrystals, Applied Physics Letters 76 (2000) 351-353
    [106] 施敏著,赵鹤鸣,钱敏,黄秋萍译,半导体器件物理与工艺苏州大学出版社 苏州 2002
    [107] 方容川,固体光谱学,中国科学技术大学出版社 合肥 2001
    [108] M. Fujii, M. Yoshida, S. Hayashi and K. Yamamoto, Photoluminescence from SiO_2 films containing Si nanocrystals and Er: Effects of nanocrystalline size on the photoluminescence efficiency of Er~(3+), J. Appl. Phys. 84 (1998) 4525-4531
    [109] 张立德,牟季美,纳米材料和纳米结构,科学出版社 北京 2001
    [110] W. Jantsch, S. Lanzerstorfer, L. Palmetschofer, M. Stepikhova, H. Preier, Different Er centers in Si and their use for electroluminescence devices. J. Lumin. 80 (1999) 9-17
    [111] S. Lanzerstorfer, L. Palmetshofer, W. Jantsch. On the environment of optically active Er in Si-electroluminescence devices, Appl. Phys. Lett. 72 (1998) 809-811
    [112] A. J. Kenyon, Increasing the e± ciency of erbium-based sources using silicon quantum dots, Phil. Trans. T. Soc. Lond. A 361. (2003) 345-362
    [113] F. Priolo, G. Franzo, F. Iacona, D. Pacifici, V. Vinciguerra, Excitation and non-radiative de-excitation processes in Er-doped Si nanocrystals, Materials Science and Engineering B 81 (2001) 9-15
    [114] D. Kovalev, J. Diener, H. Heckler, G. Polisski, N. Kunzner, F. Koch, Optical absorption cross sections of Si nanocrystals, Physical Review B 61 (2000) 4485-4487
    [115] P. G. Kik A. Polman in: L. Pavesi, Towards the First Silicon Laser. Kluwer Academic Publishers (2003) 383
    [116] Thomas D. Chen, Marlene Platero, M. Agarwal, Phys. B. 322 (1999) 273-274
    [117] Jung H. Shin, R. Sema, G. N. Van Den Hoven, A. Polman, W. G. J. M. H. Van Srak, A. M. Vredenberg, Luminescence quenching in erbium-doped hydrogenated amorphous silicon, Appl. Phys. Lett. 68 (1996) 997-999
    [118] P. N. Favennec, H. L. Haridon, D. Moutonnet, M. Salvi, and M. Gauneau, Optical activation of implanted in silicon by oxygen impurities, Jpn. J. Appl. Phys. 29. (1990) L524-L526
    [119] J. Michel, J. L. Benton, R. F. Ferrante. D. C. Jacobson, D. G. Eaglesham, E. A. Fitzgerald, Y. H. Xie, J. M. Poate and L. C. Kimerling, Impurity enhancement of the 1.54-μm Er~(3+) luminescence in silicon, J. Appl. Phys. 70, ( 1991 ) 2672-2678
    [120] F. Priolo, G. Franzo, S. Coffa, A. Polman, S. Libertino, R. Barklie and D. Carey, The erbium-impurity interaction and its effects on the 1.54 μm luminescence of Er~(3+) in crystalline silicon, J. Appl. Phys. 78, (1995) 3874-3882
    [121] A. Polman, G. N. van den Hoven, J. S. Custer, J. H. Shin, R. Serna and P. F. A. Alkemade, Erbium in crystal silicon: Optical activation, excitation, and concentration limits, J. Appl. Phys. 77, 1256 (1995)
    [122] S. Coffa, G. Franzo. F. Priolo, A. Polman and R. Serna, Temperature dependence and quenching processes of the intra-4fluminescence of Er in crystalline Si, Phys. Rev. B 49, (1994) 16313-16320
    [123] F. Priolo, G. Franzo, and S. Coffa, and A. Carnera, Excitation and nonradiative deexcitation processes of Er~(3+) in crystalline Si, Phys. Rev. B 57, (1998) 4443-4455
    [124] T. Gregorkiewicz, D. T. X. Yhao, J. M. Langer, H. H. P. Th. Bekman. M. S. Bresler. J. Michel, and L. C. Kimerling, Energy transfer between shallow centers and rare-earth ion cores: Er~(3+) ion in silicon Phys. Rev. B 61, (2000) 5369-5375
    [125] 邹英华,孙陶亨 激光物理学 北京大学出版社北京,1991
    [126] G. Franzo, E. C. Moreira, D. Pacifici, F. Priolo, F. Iacona, C. Spinella, Nucl. Instr. Meth. Phys. Res. B 140 (2001) 175-177
    [127] C. E. Chryssou, A. J. Kenyon, C. W. Pitt, Broad-band and flashlamp pumping of 1.53: m emission from erbium-doped silicon nanocrystals, Mater. Sci. Engi. B 81(2001) 19-22
    [129] F. Priolo, G. Franzo, D. Pacifici, V. Vinciguerra, F. lacona, A. lrrera, Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals, J. Appl. Phys. 89 (2001) 264-270
    [130] A. J. Kenyon, Increasing the e± ciency of erbium-based sources using silicon quantum dots, Phil. Trans. T. Soc. Lond. A 361 (2003) 345-362
    [131] L. Brus, Wise FW Raman-scattering study of exciton-phonon coupling in PbS nanocrystals, J. Phys. Chem. Solids 59 (1998) 459-465
    [132] R. C. Powell. Z. G. Soss, Singlet exciton energy transfer in organic solids, Journal of Luminescence 11 (1975) 1-45
    [133] A. J. Kenyon, Increasing the e± ciency of erbium-based sources using silicon quantum dots, Phil. Trans. T. Soc. Lond. A 361 (2003) 345-362
    [134] Th. Forster, Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Physik 2 (1948) 55-75
    [135] Th. Forster, in Comparative Effects of Radiation, edited by M. Burton, J. S. Kirby-Smith, and J. L Magee (Wiley, New York, 1960), p. 300-315
    [136] D. L. Dexter, A theory of sensitized luminescence in solids, J. Chem. Phys. 21 (1953) 836-850
    [137] R. C Powell, R. G. Kepler, Evidence for Long-Range Exciton-Impurity Interaction in Tetracene-Doped Anthracene Crystals. Molecular Crystals and Liquid Crystals 11 (1970) 349-353
    [138] S. I. Golubov, Y. V. Konobeev, Physica Status Solidi (b) 79 (1977) 79-86
    [139] R. C. Powell, Thermal and Sample-Size Effects on the Fluorescence Lifetime and Energy Transfer in Tetracene-Doped Anthracene, Phys. Rev. B 2 (1970) 2090-2097
    [140] P. D. Laible. R. S. Knox, Th. G. Owens, Detailed balance in Forster-Dexter excitation J. Phys. Chem. B 102 (1998) 1641-1646
    [141] C. R. Kagan, C. B. Murray, M. Nirmal, M. G. Bawendi, Electronic Energy Transfer in CdSe Quantum, Phys. Rev. Lett. 76 (1996) 1517-1520
    [145] J. F. Philipps, T. Torfer, H. Ebendorff-Heidepriem, D. Ehrt, R. Sauerbrey. Energy transfer and upconversion in erbium-ytterbium-doped fluoride phosphate glasses, Appl. Phys. B 72 (2001) 399-403
    [146] H. You, X. Wu. H. Cui, G. Hong, The structural and luminescence properties of porous silicon, J Luminescence Jan. (2003) 519-521
    [147] G. Ajithkumar and N. V. Unnikrishnan, Energy transfer from Mn~(2+) to Nd~(3+) in phosphate glasses, Solid State Communications, 104 (1997) 29-34
    [148] Richard C. Powell, Physics of Solid-State Laser Materials. Springer 1998, Chapter 5
    [149] A. Suchocki, J. M. Langer, Auger effect in the Mn2+ luminescence of CdF_2: (Mn,Y) crystals, Phys. Rev. B 39 (1989) 7905-7909
    [150] R. C. Powell, Physics of Solid-State Laser Materials, Springer 1998, Chapter 5
    [151] G. Hebbink, Ph. D. thesis, Luminescent Materials based on Lanthanide Ions, 2002, University of Twente (The Netherlands)
    [152] G. Ajithkumar, N. V. Unnikrishnan, Energy transfer from Mn~(2+) to Nd~(3+) in phosphate glasses, Solid State Communications 104 (1997) 29-34
    [153] F. Priolo, G. Franzo, D. Pacifici, V. Vinciguerra, F. Iacona, A. lrrera, Excitation and non-radiative de-excitation processes in Er-doped Si nanocrystals, J.Appl. Phys. 89, (2001) 264-268
    [154] L. Pavesi, Carrier and defect dynamics in photoexcited semi-insulating epitaxial GaN layers, J. Appl. Phys. 80 (1996) 216-222
    [155] X. Chen, B. Henderson, K.P. O'Donnell, Luminescence decay in disordered low-dimensional semiconductors, Appl. Phys. Lett. 60 (1992) 2672-2680
    [156] J. Linnros, N. Lalic, A. Galeckas, V. Grivickas, Analysis of the stretched exponential photoluminescence decay from nanometer-sized silicon crystals in SiO_2, J. Appl. Phys. 86 (1999) 6128-6134.
    [157] M. Fujii, S. Hayashi, K. Watanabe, Resonant Excitation of Er3+ by the Energy Transfer from Si Nanocrystals, J. Appl. Phys. 90 (2001) 4761-4679
    [158] PG Kik and A. Polman, Exciton-erbium interactions in Si nanocrystal-doped SiO_2, J. Appl. Phys. 88 (2000) 1992-1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700