ZnO纳米颗粒气敏性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是一种重要的新型半导体材料,由于其独特的电学、光学特性,近年来引起了极大关注。而纳米ZnO材料具有比表面积大、易于表面修饰等优点,在光电子器件、传感器等领域有广泛的应用前景。对于纳米ZnO气体传感器而言,它属于表面控制型传感器件,除了掺杂作用外,其比表面积对性能也具有极其重要的作用,是纳米ZnO气敏器件研究的重点。
     本文主要利用溶胶—凝胶法制备了不同掺杂以及不同表面修饰的ZnO纳米颗粒,系统研究了ZnO纳米颗粒的相结构,表面形貌和气敏性能,探索了气敏机理。得到了以下几点创新结果:
     首次研究了聚十六烷基吡咯烷酮(polyvinylpyrrolidone,PVP)的表面修饰对ZnO纳米颗粒气敏性能的影响,指出PVP的表面修饰可提高ZnO纳米颗粒的分散性。利用溶胶—凝胶法制备了PVP修饰的ZnO纳米颗粒,研究了不同配比下的PVP修饰的ZnO纳米颗粒的表面形貌和气敏性能,发现Zn~(2+)与PVP的摩尔比为1:1时,传感器对三甲胺(trimethylamine,TMA)具有非常高的灵敏度和选择性,并且重复性较好。研究进一步探讨了PVP修饰的ZnO纳米颗粒气敏性能提高的原因。
     系统研究了掺入不同Mo含量的ZnO纳米颗粒的形貌、结晶性能和气敏性能。采用溶胶—凝胶法制备了掺入Mo的ZnO纳米颗粒,结果表明,ZnO纳米颗粒的结晶性能和形貌都受到掺入量的影响,当Mo元素的含量为10%时,传感器在室温下对NH_3气体的灵敏度和选择性较好,且重复性较好,并提出了掺入Mo的ZnO纳米颗粒NH_3敏性能变化的机理。
     论文研究了掺入Fe_2O_3和Mn_3O_4纳米颗粒的ZnO纳米颗粒气敏特性。通过溶胶—凝胶法分别制备了掺入不同含量的Fe_2O_3和Mn_3O_4纳米颗粒的ZnO纳米颗粒。研究指出,两种物质掺入的ZnO纳米颗粒的结晶性能都受到掺入量的影响。但是,掺入量对形貌的影响却有所不同,Fe_2O_3掺杂的ZnO纳米颗粒的表面形貌与掺入量也有很大的关系,而Mn_3O_4的掺入对ZnO纳米颗粒的形貌几乎没有影响。传感器气敏性能的
It is well known that the specific surface area of material is inverse proportion to the size of material. When the size of material is at the level of nanometer, the amounts of atoms on the surface of material increase rapidly. Due to the larger number of the surface atoms, deficiency of atom coordination and higher surface energy, these surface atoms are easy to interact with other atoms and keep a steady state. The chemical activities of them are fairly high. The sensing mechanism of Zinc oxide gas sensors is based on the surface reaction of ZnO. Therefore, high surface-volume ratio is critical to its sensing properties. It can be concluded that the gas sensing properties of nano-sized ZnO will be improved by doping.In the dissertation, the ZnO nanoparticles doped with Mo, Fe_2O_3, Mn_3O_4 and CdS nanoparticles have been prepared by a sol-gel method. PVP-modified ZnO nanoparticles with different molar ratios of Zn~(2+):PVP were also prepared by sol-gel method. The structure, morphology and sensing properties have been systematically investigated. Moreover, the mechanisms of the gas sensing properties have been elucidated. The significant results achieved in this dissertation are given as below:The gas sensing behavior of PVP-modified ZnO nanoparticles with different molar ratios of Zn~(2+):PVP has been studied prepared by sol-gel method for the first time. The sensor with a molar ratio of Zn~(2+) :PVP = 1:1 showed uniform morphology and fairly excellent sensitivity and selectivity to TMA. The response and recovery characteristics are almost reproducible and rather quick when exposed to TMA and when exposed again to N_2. Finally, the mechanism for the improvement in the gas sensing properties was discussed.The gas sensing behavior of ZnO nanoparticles doped with Mo with different molar ratios of Mo:Zn has been studied prepared by sol-gel method. The doping concentration of Mo affected the structure and morphology of ZnO nanoparticles. The sensor with a composition of Mo:Zn = 10% showed fairly excellent
    sensitivity and selectivity to ammonia at room temperature. The response and recovery characteristics are almost reproducible. Finally, the mechanism for the improvement in NH3-sensing properties was discussed.The gas sensing behavior of ZnO nanoparticles doped with Fe2O3 (Mn3O4) nanoparticles with different percentages of Fe:Zn (Mn:Zn) has been studied prepared by sol-gel method. The doping concentration of Fe (or Mn) affected the structure of ZnO nanoparticles. The doping concentration of Fe2O3 changed the morphology of ZnO. But there was little effect of doping concentration of Mn3O4 on the morphology of ZnO. The sensor with a composition of Fe:Zn = 2% (or Mn:Zn =3.5%) showed fairly excellent sensitivity and selectivity to ammonia at room temperature. The response and recovery characteristics are almost reproducible. Finally, the mechanism for the improvement in NH3-sensing properties was discussed.The gas sensing behavior of ZnO nanoparticles doped with CdS nanoparticles with different percentages of CdS:Zn has been studied prepared by sol-gel method. There was little effect of doping concentration of CdS on the morphology of ZnO. The sensor with a composition of CdS:Zn = 3% showed fairly excellent sensitivity and selectivity to ammonia at room temperature. The response and recovery characteristics are almost reproducible. Finally, the mechanism for the improvement in NH3-sensing properties was discussed.
引文
1. S. S. Sunu, E. Prabhu, V. Jayaraman, K. I. Gnanasekar, T.K. Seshagiri, T. Gnanasekaran, Electrical conductivity and gas sensing properties of MoO_3, Sensors and Actuators B, 101 (2004) 161-174
    2. I. Hotovy, J. Huran, P. Siciliano, S. Capone, L. Spiess, V. Rehacek, Enhancement of H_2 sensing properties of NiO-based thin films with a Pt surface modification, Sensors and Actuators B, 103 (2004) 300-311
    3. A. Trinchi, S. Kaciulis, L. Pandolfi M. K. Ghantasala, Y. X. Li, W. Wlodarski, S. Viticoli, E. Comini, G. Sberveglieri, Characterization of Ga_2O_3 based MRISiC hydrogen gas sensors, Sensors and Actuators B, 103 (2004) 129-135
    4. Noriya Izu, Woosuck Shin, Ichiro Matsubara, Norimitsu Murayama, Kinetic behavior of resistive oxygen sensor using cerium oxide, Sensors and Actuators B, 100 (2004) 411-416
    5. Marla L. Frank, Matthew D. Fulkerson, Bruce R. Patton, Prabir K. Dutta, TiO_2-based sensor arrays modeled with nonlinear regression analysis for simultaneously determining CO and O_2 concentrations at high temperatures, Sensors and Actuators B, 87 (2002) 471-479
    6. Hong-Ming Lin, Teh-Yu Hsu, Chin-Yea Tung, Chi-Ming Hsu, HYDROGEN SULFIDE DETECTION BY NANOCRYSTAL Pt DOPED TIO_2-BASED GAS SENSORS, Nanostructured Mataials, 6 (1995) 1001-1004
    7. Aria M. Ruiz, Albert Cornet, Joan Ramon Morante, Study of La and Cu influence on the growth inhibition and phase transformation of nano-TiO_2 used for gas sensors, Sensors and Actuators B, 100 (2004) 256-260
    8. E. Comini, V. Guidi, M. Ferroni, G. Sberveglieri, TiO_2: Mo, MoO_3: Ti, TiO + WO_3 and TiO: W layer for landfill produced gases sensing, Sensors and Actuators B, 100 (2004) 41-46
    9. Ana M. Ruiz, Go Sakai, Albert Comet, Kengo Shimanoe, Joan Ramon Morante, Noboru Yamazoe, Microstructure control of thermally stable TiO_2 obtained by hydrothermal process for gas sensors, Sensors and Actuators B, 103 (2004) 312-317
    10. Yongfa Zhu, Jinjun Shi, Zhenyu Zhang, Chao Zhang, and Xinrong Zhang, Development of a Gas Sensor Utilizing Chemiluminescence on Nanosized Titanium Dioxide, Anal. Chem., 74(2002)120-124
    11. G. De, A. Licciulli, C. Massaro, A. Quirini, R. Rella, P. Siciliano, L. Vasanelli, Sol-gel derived pure and palladium activated tin oxide films for gas-sensing applications, Sensors and Actuators B, 55 (1999) 134-139
    12. S.V. Manorama, C. V. Gopal Reddy and V. J. Rao, TIN DIOXIDE NANOPARTICLES PREPARED BY SOL-GEL METHOD FOR AN IMPROVED HYDROGEN SULFIDE SENSOR, NanoStructured Materials, 11(5)(1999) 643-649
    13. Wu Yuanda, Tong Maosong, He Xiuli, Zhang Yushu, Dai Guorui, Thin film sensors of SnO_2-CuO-SnO_2 sandwich structure to H_2S, Sensors and Actuators B, 79 (2001) 187-191
    14. Dang Duc Vuong, Go Sakai, Kengo Shimanoe, Noboru Yamazoe, Hydrogen sulfide gas sensing properties of thin films derived from SnO_2 sols different in grain size, Sensors and Actuators B, 105 (2005) 437-442
    15. Jun Tamaki, Kengo Shimanoe, Yoshihiro Yamada, Yoshifumi Yamamoto, Norio Miura, Noboru Yamazoe, Dilute hydrogen sulfide sensing properties of CuO-SnO_2 thin film prepared by low-pressure evaporation method, Sensors and Actuators B, 49 (1998) 121-125
    16. G. Sarala Devi, S. Manorama, V. J. Rao, High sensitivity and selectivity of an SnO_2 sensor to H_2S at round 100℃, Sensors and Actuators B, 28 (1995) 31-37
    17. Arijit Chowdhuri, Vinay Gupt, K. Sreenivas, Fast response H_2S gas sensing characteristics with ultra-thin CuO islands on sputtered SnO_2, Sensors and Actuators B, 93 (2003) 572-579
    18. R. B. Vasiliev, M. N. Rumyantseva, S. E. Podguzova, A. S. Ryzhikov, L. I. Ryabova, A. M. Gaskov, Effect of interdiffusion on electrical and gas sensor properties of CuO: SnO_2 heterostructure, Materials Science and Engineering B, 57 (1999) 241-246
    19. R. B. Vasiliev, M. N. Rumyantseva, N. V. Yakovlev, A. M. Gaskov, CuO: SnO_2 thin film heterostructures as chemical sensors to H_2S, Sensors and Actuators B, 50 (1998) 186-193
    20. S. Bose, S. Chakraborty, B.K. Ghosh, D. Das, A. Sen, H.S. Maiti, Methane sensitivity of Fe-doped SnO_ thick films, Sensors and Actuators B, 105 (2005) 346-350
    21. P. Menini, F. Parret, M. Guerrero, K. Soulantica, L. Erades, A. Maisonnat, B. Chaudret, CO response of a nanostructured SnO_2 gas sensor doped with palladium and platinum, Sensors and Actuators B, 103 (2004) 111-114
    22. O. V. Safonova, M. N. Rumyantseva, L. I. Ryabova, M. Labeau, G. Delabouglise, A. M. Gaskov, Effect of combined Pd and Cu doping on microstructure, electrical and gas sensor properties of nanocrystalline tin dioxide, Materials Science and Engineering B, 85(2001)43-49
    23. C. Canevali, C. M. Mari, M. Mattoni, F. Morazzoni, R. Ruffo, R. Scotti, U. Russo, L. Nodari, Mechanism of sensing NO in argon by nanocrystalline SnO_2: electron paramagnetic resonance, Mossbauer and electrical study, Sensors and Actuators B, 100 (2004)228-235
    24. Eddy Marlianto, Muhammad Yahaya, Mohamad Mat Salleh, Conducting Sb-doped SnO_2 as gas sensor, ICSE'96 Proc, Penang, Malaysia, (1996) 229-33
    25. B. Esfandyarpour, S. Mohajerzadeh, S. Famini, A. Khodadadi, E. Asl Soleimani, High sensitivity Pt-doped SnO_2 gas sensors fabricated using sol-gel solution on micromachined (1 0 0) Si substrates, Sensors and Actuators B, 100 (2004) 190-194
    26. Bee-Yu Wei, Ming-Chih Hsu, Pi-Guey Su, Hong-Ming Lin, Ren-Jang Wu, Hong-Jen Lai, A novel SnO_2 gas sensor doped with carbon nanotubes operating at room temperature, Sensors and Actuators B, 101 (2004) 81-89
    27. A. Chaturvedi, V.N. Mishra, R. Dwivedi, S.K. Srivastava, Response of oxygen plasma-treated thick film tin oxide sensor array for LPG, CCl_4, CO and C3H7OH, Microelectronics Journal, 30 (1999) 259-264
    28. S. Shukla, L. Ludwig, C. Parrish, S. Seal, Inverse-catalyst-effect observed for nanocrystalline-doped tin oxide sensor at lower operating temperatures, Sensors and Actuators B, 104 (2005) 223-231
    29. D. Kotsikau, M. Ivanovskaya, D. Orlik, M. Falasconi, Gas-sensitive properties of thin and thick film sensors based on Fe_2O_3-SnO_2 nanocomposites, Sensors and Actuators B, 101 (2004) 199-206
    30. G. Korotcenkov, I. Boris, V. Brinzari, V. Golovanov, Yu. Lychkovsky, G. Karkotsky, A. Cornet, E. Rossinyol, J. Rodrigue, A. Cirera, Gas-sensing characteristics of one-electrode gas sensors based on doped In_2O_3 ceramics, Sensors and Actuators B, 103 (2004)13-22
    31. Hye-Jung Lee, Jae-Hoon Song, Young-Soo Yoon, Tae-Song Kim, Kwang-Joo Kim, Won-Kook Choi, Enhancement of CO sensitivity of indium oxide-based semiconductor gas sensor through ultra-thin cobalt adsorption, Sensors and Actuators B, 79 (2001) 200-205
    32. Mariko Hanada, Hiroshi Koda, Kazuo Onaga, Katsuyuki Tanaka, Takahiro Okabayashi, Takeshi Itoh, Hideo Miyazaki, Portable oral malodor analyzer using highly sensitive In_2O_3 gas sensor combined with a simple gas chromatography system, Analytica Chimica Acta, 475 (2003) 27-35
    33. G. Korotcenkov, A. Cerneavschi, V. Brinzari, A. Vasiliev, M. Ivanov, A. Cornet, J. Morante, A. Cabot, J. Arbiol, In_2O_3 films deposited by spray pyrolysis as a material for ozone gas sensors, Sensors and Actuators B, 99 (2004) 297-303
    34. J. Goschnick, M. Frietsch, T. Schneider, Non-uniform SiO_2 membranes produced by ion beam-assisted chemical vapor deposition to tune WO3 gas sensor microarrays, Surface and Coatings Technology, 108-109 (1998) 292-296
    35. Z. Ling, C. Leach, R. Freer, A time resolved study of the response of a WO_3 gas sensor to NO_2 using AC impedance spectroscopy, Sensors and Actuators B, 87 (2002) 215-221
    36. Ling Z, Leach C, Freer R, An AC impedance study of the transient response of a WO_3 gas sensor to NO_2, KEY ENGINEERING MATERIALS, 206(2) (2002) 1465-1468
    37. R. Ionescu, E. Llobet, J. Brezmes, X. Vilanova, X. Correig, Dealing with humidity in the qualitative analysis of CO and NO_2 using a WO3 sensor and dynamic signal processing, Sensors and Actuators B, 95 (2003) 177-182
    38. M. Stankova, X. Vilanova, E. Llobet, J. Calderer, C. Bittencourt, J. J. Pireaux, X. Correig, Influence of the annealing and operating temperatures on the gas-sensing properties of rf sputtered WO_3 thin-film sensors, Sensors and Actuators B, 105 (2005) 271-277
    39. Wei-Han Tao, Ching-Hsiang Tsai, H_2S sensing properties of noble metal doped WO_3 thin film sensor fabricated by micromaching, Sensors and Actuators B, 81 (2002) 237-247
    40. A. Hoel, L.F. Reyes, S. Saukko, P. Heszler, V. Lantto, C.G. Granqvist, Gas sensing with films of nanocrystalline WO3 and Pd made by advanced reactive gas deposition, Sensors and Actuators B, 105 (2005) 283-289
    41. Yong-Gyu Choi, Go Sakai, Kengo Shimanoe, Noboru Yamazoe, Wet process-based fabrication of WO_3 thin film for NO_2 detection, Sensors and Actuators B, 101 (2004) 107-111
    42. R. Ionescu, A. Hoel, C.G. Granqvist, E. Llobet, P. Heszler, Low-level detection of ethanol and H_2S with temperature-modulated WO_3 nanoparticle gas sensors, Sensors and Actuators B, 104 (2005) 132-139
    43. M. Stankova, X. Vilanova, J. Calderer, E. Llobet, P. Ivanov, I. Gracia, C. Cane X. Correig, Detection of SO_2 and H_2S in CO_2 stream by means of WO_3-based micro-hotplate sensors, Sensors and Actuators B, 102 (2004) 219-225
    44. M. Bendahan, R. Boulmani, J. L. Seguin, K. Aguir, Characterization of ozone sensors based on WO3 reactively sputtered films: influence of O_2 concentration in the sputtering gas, and working temperature, Sensors and Actuators B, 100 (2004) 320-324
    45. J. Guerin, K. Aguir, M. Bendahan, C. Lambert-Mauriat, Thermal modelling of a WO_3 ozone sensor response, Sensors and Actuators B, 104 (2005) 289-293
    46. Z. Ling, C. Leach, The effect of relative humidity on the NO_2 sensitivity of a SnO_2/WO_3 heterojunction gas sensor, Sensors and Actuators B, 102 (2004) 102-106
    47. M. Blo, M.C. Carotta, S. Galliera, S. Gherardi, A. Giberti, V. Guidi, C. Malagu, G. Martinelli, M. Sacerdoti, B. Vendemiati, A. Zanni, Synthesis of pure and loaded powders of WO_3 for NO_2 detection through thick film technology, Sensors and Actuators B, 103 (2004) 213-218
    48. J. Hubalek, K. Malysz, J. Prasek, X. Vilanova, P. Ivanov, E. Llobet, J. Brezmes, X. Correig, Z. Sv'erak, Pt-loaded Al_2O_3 catalytic filters for screen-printed WO_3 sensors highly selective to benzene, Sensors and Actuators B, 101 (2004) 277-283
    49. Elisabeth W. J. Romer, Ulrich Nigge, Thomas Schulte, Hans-Dieter Wiemhofer, Henny J.M. Bouwmeester, Investigations towards the use of Gd_0.7Ca_0.3CoO_x as membrane in an exhaust gas sensor for NO_x, Solid State Ionics, 140 (2001) 97-103
    50. J. Wo"llenstein, M. Burgmair, G. Plescher, T. Sulima, J. Hildenbrand, H. Bo"ttner, I. Eisele, Cobalt oxide based gas sensors on silicon substrate for operation at low temperatures, Sensors and Actuators B, 93 (2003) 442-448
    51. Lorenzo Malavasi, Cristina Tealdi, Giorgio Flor, Gaetano Chiodelli, Valentina Cervetto, Angelo Montenero, Marco Borella, NdCoO_3 perovskite as possible candidate for CO-sensors: thin films synthesis and sensing properties, Sensors and Actuators B, 105 (2005) 407-411
    52. A. Gurlo, M. Sahm, A. Oprea, N. Barsan, U. Weimar, A p- to n-transition on α-Fe_2O_3-based thick film sensors studied by conductance and work function change measurements, Sensors and Actuators B, 102 (2004) 291-298
    53.李强,程晓丽,高山,霍丽华,赵经贵,王海水,席时权,椭球形α2Fe_2O_3纳米薄膜的制备与气敏性能,应用化学,20(8)(2003)794-796
    54. Yan-Li Liu, Hua Wang, Yu Yang, Zhi-Min Liu, Hai-Feng Yang, Guo-Li Shen, Ru-Qin Yu, Hydrogen sulfide sensing properties of NiFe_2O_4 nanopowder doped with noble metals, Sensors and Actuators B, 102 (2004) 148-154
    55. G. Neri, A. Bonavita, G. Rizzo, S. Galvagno, N. Donato, L.S. Caputi, A study of water influence on CO response on gold-doped iron oxide sensors, Sensors and Actuators B, 101 (2004) 90-96
    56.马丽景,林茂,阎涛,李英霞,黄小崴,陈蔼瑶,宋永吉,纳米γ-Fe_2O_3复合氧化物的制备与气敏性质,化工学报,55(2)(2004)264-267
    57.赵克辉,王承权,阎淘,顾思民,马丽景,白守礼,纳米Fe_2O_3的制备与气敏性质的研究,化工进展,21(8)(2002)579-583
    58. K. Watanabe, T. Okada, I. Choe, Y. Sato, Organic vapor sensitivity in a porous silicon device, Sens. Actuators B: Chem, 33 (1996) 194-197
    59. A. Foucaran, F. Pascal-Delannoy, A. Giani, A. Sackda, P. Combette, A. Boyer, Porous silicon layers used for gas sensor applications, Thin Solid films, 297 (1997) 317-320
    60. C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, G. Di Francia, F. De Filippo, V. La Ferrara, L. Quercia, L. Lancellotti, Gas detection with a porous silicon based sensor, Sens. Actuators B: Chem., 65 (2000) 257-259
    61. L. Boarino, C. Baratto, F. Geobaldo, G. Amato, E. Comini, A. M. Rossi, G. Faglia, G. Lerondel, G. Sberveglieri, NO_2 monitoring at room temperature by a porous silicon gas sensor, Mater. Sci. Eng.B, 69-70 (2000)210-214
    62. C. Baratto, G. Faglia, E. Comini, G. Sberveglieri, A. Taroni, V. LaFerrara, L. Quercia, G. Di Francia, A novel porous silicon sensor for detection of sub-ppm NO_2 concentrations, Sens. Actuators B:Chem., 77 (2001) 62-66
    63. I. Schechter, M. Ben-Chorin, A. Kux, Gas sensing properties of porous silicon, Anal. Chem., 67 (1995) 3727
    64. D. Stievenard, D. Deresmes, Are electrical properties of an aluminum-porous silicon junction governed by dangling bonds, Appl. Phys. Lett., 67 (11) (1995) 1570
    65. E. Massera, I. Nasti, L. Quercia, I. Rea, G. Di Francia, Improvement of stability and recovery time in porous-silicon-based NO_2 sensor, Sensors and Actuators B, 102 (2004) 195-197
    66.张维新,朱秀文,毛赣如,半导体传感器,天津:天津大学出版社,(1990) 1-47,105-154.250-304
    67.刘仲娥,张维新,宋文洋,敏感元器件与应用,青岛:青岛海洋大学出版社,(1993) 153-219,1-48,220-258
    68. A. Irajizad, F. Rahimi, M. Chavoshi, M.M. Ahadian, Characterization of porous poly-silicon as a gas sensor, Sensors and Actuators B, 100 (2004) 341-346
    69. Isabel Ferreira, Rui Igreja, Elvira Fortunato, Rodrigo Martins, Porous a/nc-Si: H films produced by HW-CVD as ethanol vapour detector and primary fuel cell, Sensors and Actuators B, 103 (2004) 344-349
    70. T. Takashi, Oxygen sensor, Sensors and Actuators B, 14 (1988) 109
    71.郑煜腾,气体感测器的市场分析煜发展概况,科仪新知,18(5)(1995)76-84
    72.曾明汉,触媒燃烧型气体感测器,材料与社会,68(1992)57
    73.叶陶渊,化学感测器中气体感测器的新动向,科仪新知,20(4)(1999)75
    74. Bijan K. Miremadi, and Konrad Colbow, Yutaka Harima, A CdS photoconductivity gas sensor as an analytical tool for detection and analysis of hazardous gases in the environment, Rev. Sci. Instrum. 68 (10)(1997)3898-3903
    75. V. Golovanov, V. Smyntyna, G. Mattogno, S. Kaciulis, V. Lantto, Oxygen interaction of CdS-based gas sensors with different stoichiometric composition, Sensors and Actuators B, 26-27 (1995) 108-112
    76.徐甲强,刘艳丽,牛新书,纳米ZnS的合成及其气敏性能研究,功能材料,33(4)(2002) 425-426,429
    77.牛新书,刘艳丽,徐甲强,室温固相合成纳米ZnS及其气敏性能研究,无机材料学报,17(4)(2002)817-821
    78. L. Mazet, C. Varenne, A. Pauly, J. Brunet, J.P. Germain, H_2, CO and high vacuum regeneration of ozone poisoned pseudo-Schottky Pd-InP based gas sensor, Sensors and Actuators B, 103 (2004) 190-199
    79. Fabin Qiu, Woosuck Shin, Masahiko Matsumiya, Noriya Izu, Ichiro Matsubara, Norimitsu Murayama, Miniaturization of thermoelectric hydrogen sensor prepared on glass substrate with low-temperature crystallized SiGe film, Sensors and Actuators B, 103 (2004) 252-259
    80. D. Tsiulyanu, S. Marian, H.-D. Leiss, Sensing properties of tellurium based thin films to propyamine and carbon oxide, Sensors and Actuators B, 85 (2002) 232-238
    81. Shashwati Sen, K. P. Muthe, Niraj Joshi, S. C. Gadkari, S. K. Gupta, Jagannath, M. Roy, S. K. Deshpande, J.V. Yakhmi, Room temperature operating ammonia sensor based on tellurium thin films, Sensors and Actuators B, 98 (2004) 154-159
    82. D. Tsiulyanu, S. Marian, V. Miron, H.-D. Leiss, High sensitive tellurium based NO_2 gas sensor, Sensors and Actuators B, 73 (2001) 35-39
    83. D. Tsiulyanu, S. Marian, H.-D. Liess, I. Eisele, Effect of annealing and temperature on the NO_2 sensing properties of tellurium based films, Sensors and Actuators B, 100 (2004)380-386
    84. L. Valentini, C. Cantalini, L. Lozzi, S. Picozzi, I. Armentano, J. M. Kenny, S. Santucci, Effects of oxygen annealing on cross sensitivity of carbon nanotubes thin films for gas sensing applications, Sensors and Actuators B, 100 (2004) 33-40
    85. Y. M. Wong, W. P. Kang, J. L. Davidson, A. Wisitsora-at, K. L. Soh, A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection, Sensors and Actuators B, 93 (2003) 327-332
    86. L. Valentini, C. Cantalini, L. Lozzi, I. Armentano, J. M. Kenny, S. Santucci, Reversible oxidation effects on carbon nanotubes thin films for gas sensing applications, Materials Science and Engineering C, 23 (2003) 523-529
    87. Junya Suehiro, Guangbin Zhou, Masanori Hara, Detection of partial discharge in SF_6 gas using a carbon anotube-based gas sensor, Sensors and Actuators B,105 (2005) 164-169
    88. Yoon-Taek Jang, Seung-U Moon, Jin-Ho Ahn, Yun-Hi Lee, Byeong-Kwon Ju, A simple approach in fabricating chemical sensor using laterally grown multi-walled carbon nanotubes, Sensors and Actuators B, 99 (2004) 118-122
    89. C. Cantalini, L. Valentini, I. Armentano, L. Lozzi, J.M. Kenny, S. Santucci, Sensitivity to NO_2 and cross-sensitivity analysis to NH3, ethanol and humidity of carbon nanotubes thin film prepared by PECVD, Sensors and Actuators B, 95 (2003) 195-202
    90. O. K. Varghese, P. D. Kichambre, D. Gong, K. G. Ong, E. C. Dichey, C. A. Grimes, Gas sensing characteristics of muti-wall carbon nanotubes, Sensors and Actuators B, 81 (2001) 32-41
    91. Shu Peng, Kyeongjae Cho, Pengfei Qi, Hongjie Dai, Ab initio study of CNT NO_2 gas sensor, Chemical Physics Letters 387 (2004) 271 - 276
    92. C. Cantalini, L. Valentini, I. Armentano, J.M. Kenny, L. Lozzi, S. Santucci, Carbon nanotubes as new materials for gas sensing applications, Journal of the European Ceramic Society, 24 (2004) 1405-1408
    93. L. Valentini, C. Cantalini, I. Armentano, J.M. Kenny, L. Lozzi, S. Santuccici, Highly sensitive and selective sensors based on carbon nanotubes thin films for molecular detection, Diamond and Related Materials, 13 (2004) 1301-1305
    94. I. Sayago, E. Terrado, E. Lafuente, M. C. Horrillo, W. K. Maser, A. M. Benito, R. Navarro, E. P. Urriolabeitia, M. T. Martinez, J. Gutierrez, Hydrogen sensors based on carbon nanotubes thin films, Synthetic Metals, 148 (2005) 15-19
    95. C. Cantalini, L. Valentini, L. Lozzi, I. Armentano, J. M. Kenny, S. Santucci, NO_2 gas sensitivity of carbon nanotubes obtained by plasma enhanced chemical vapor deposition, Sensors and Actuators B, 93 (2003) 333-337
    96. L. Valentini, L. Lozzi, C. Cantalini, I. Armentano, J. M. Kenny, L. Ottaviano, S. Santucci, Effects of oxygen annealing on gas sensing properties of carbon nanotube thin films, Thin Solid Films, 436 (2003) 95-100
    97. S. G. Wang, Qing Zhang, D. J. Yang, P. J. Sellin, G.. F. Zhong, Multi-walled carbon nanotube-based gas sensors for NH3 detection, Diamond and Related Materials, 13 (2004)1327-1332
    98. Min-Suk Lee, Jo¨rg-Uwe Meyer, A new process for fabricating CO_2-sensing layers based on BaTiO_3 and additives, Sensors and Actuators B, 68 (2000) 293-299
    99. A. Trinchi, W. Wlodarski, Y. X. Li, Hydrogen sensitive GA2O3 Schottky diode sensor based on SiC, Sensors and Actuators B, 100 (2004) 94-98
    100. V. E. Bochenkov, V. V. Zagorsky, G.. B. Sergeev, Chemiresistive properties of lead nanoparticles, covered by oxide and sulfide layer, Sensors and Actuators B, 103 (2004) 375-379
    101. Y. Gurbuz, W. P. Kang, J. L. Davidson, et al, A novel oxygen gas sensor utilizing thin film diamond diode with catalyzed tin oxide electrode, Sensors and Actuators B, 35-36 (1996)303-307
    102. J. Q. Hu, F. R. Zhu, J. Zhang, et al, A room temperature indium tin oxide/quartz crystal microbalance gas sensor for nitric oxide, Sensors and Actuators B, 93 (2003) 175-180
    103. D. S. Vlachos, D. K. Fragoulis, J. N. Avaritsiotis, An adaptive neural network topology for degradation compensation of thin film tin oxide gas sensors, Sensors and Actuators B, 45 (1997)223-228
    104. A. P. Lee, B. J. Reedy, Application of radiometric temperature determination methods to semiconductor gas sensors, Sensors and Actuators B, 69 (2000) 37-45
    105. D. D. Lee, S. D. Choi, K. W. Lee, Carbon dioxide sensor using NASICON prepared by the sol-gel method, Sensors and Actuators B, 24-25 0995) 607-609
    106. Y. D. Wang, C. L. Ma, X. H. Wu, Electrical and gas-sensing properties of mesostructured tin oxide-based H_2 sensor, Sensors and Actuators B, 85 (2002) 270-276
    107. N.G. Patel, K. K. Makhija, C. J. Panchal, Fabrication of carbon tetrachloride gas sensors using indium tin oxide thin films, Sensors and Actuators B, 23 (1995) 49-53
    108. A. Katsuki, K. Fukui, H_2 selective gas sensor based on SnO_2, Sensors and Actuators B, 52 (1998) 30-37
    109. M. Heule, L. J. Gauckler, Miniaturised arrays of tin oxide gas sensors on single microhotplate substrates fabricated by micromolding in capillaries, Sensors and Actuators B, 93 (2003) 100-106
    110.张立德,牟季美,“纳米材料与纳米结构” 科学出版社,200l
    111.李新勇,张桂兰,汤国庆,陈文驹,“纳米晶体材料研究进展” 化学进展,8(1996) 231-239
    112. Xiaogang Peng, Liberato Manna, Weidong Yang, Juanita Wickham, Erik Scher, Andreas Kadavanich, A. P. Alivisatos, Shape control of CdSe nanocrystals, Nature, 404 (2000) 59-61
    113.邓志杰,郑安生,半导体材料,化学工业出版社,2004,260-26l
    114.庄鸿仪,掺贵金属锌铟氧化薄膜气体感测器之研究,国立成功大学硕士论文,26-39
    115.杨尚仁,共蒸渡法制备锌、铟氧化薄膜与掺钯薄膜气体感测器之研究,国立成功大学化学工程研究所硕士论文,27-46
    116. P. B. Weisz, Effects of electronic charge transfer between adsorbate and solid on chemisorption and catalysis, The Journal of Chemical Physics, 21 (9)(1953) 1531-1538
    117. S. R. Morrison, The Chemical Physics of Surfaces 2~(nd), New York: Plenum Press, (1999) 251
    118. D. Kohl, Surface processes in the detection of reducing gases with SnO_2-based devices, Sensors and Actuators, 18 (1989) 71-113
    119. H. Windischmann and P. Mark, A model for the operation of a thin film SnO_x conductance-modulation carbon monoxide sensor, Journal of the electrochemical society, 126(4) (1979) 627-633
    120. N. Yamazoe, J. Fuchigami, M. Kishikawa and T. Seiyama, Interactions of tin oxide surface with O_2, H_2O, and H_2, Surface Science 86 (1979) 335-344
    121. Yasuhiro Schimizu and Makoto Egashira, MRS Bulletin, 24(6) (1999) 18
    122. H. Ogawan, M. Nishikawa, and A. Abe, J. Appl. Phys. 53 (1982) 4448
    123. J. F. Mcaleer, P. T. Moseley, J. O. W. Norris and D. E. Williams, Tin dioxide gas sensors, Journal of the Chemical Society. Faraday Transactions, 83 (1987) 1323-1346
    124. S. C. Chang, Thin-film semiconductor NOx sensor, IEEE Transactions on Electron Devies, ED-26 (12) (1979) 1875-1880
    125. G. Heiland, Homogeneous semiconducting gas sensors, Sensors and Actuators, 2 (1982) 343-361
    126. Chaonan Xu, Jun Tamaki, Norio Miura and Noboru Yamazoe, Grain size effects on gas sensitivity of porous SnO_2-based elements, Sensors and Actuators B, 3 (1991) 147-155
    127. G. Sberveglieri, S. Groppelli, P. Nelli and A. Camanzi, Bismuth-doped tin oxide thin-film gas sensors, Sensors and Actuators B, 3 (1991) 183-189
    128. Kyung Hyun Cha, Hee Chan Park, Kwang Ho Kim, Effect of palladium doping and film thickness on the H_2-gas sensing characteristics of SnO_2, Sensors and Actuators B, 21 (1994)91-96
    129. G. C. Bond, M. J. Fuller and L. Molloy, Oxidation of carbon monoxide catalysed by palladium on tin oxide: an example of spillover catalysis, Proc. 6th Intern. Congr. Catalysis, London U. K., (1988) 356-364
    130.N. Yamazoe, Y. Kurokawa, and T. Seiyama, Effects of additives on semiconductor gas sensors, Sensors and Actuators B, 4 (1983) 283-289
    131. S. R. Morrison, Selectivity in semiconductor gas sensors, Sensors and Actuators B, 12 (1987)425-440
    132. N. Taguchi, Japn. Pat. (1962) 45-38200
    133. Q. Wu, K. M. Lee and C. C. Liu, Development of chemical sensors using microfabrication and micromaching techniques, Sensors and Actuators B, 13-14 (1993) 1-6
    134.陆凡,陈诵英等,SnO_2超细粉体应用于低温气敏材料,功能材料,(1995)26(4)
    135.康昌鹤,唐省吾等,气、湿敏感器件及其应用,科学出版社,1988:1382147
    136.曹锡章等,无机化学,高等化学出版社
    137.冯勋,张旭东,张峻,李中军,活性纳米ZnO的制备,河南化工,4(2003)19-21
    138.张永康,刘建本,易保华等,精细化工,17(6),(2000):343-345
    139.石晓波,李春根,汪德先,合成化学,10,(2002):183-185
    140. 张志焜,崔作林,纳米技术与纳米材料,北京:国防工业出版社,(2000),107
    141. EL-shall M S, Graiver D, Pernixz et al, Acs. Symp. Ser, 622, (1996): 79-99
    142. Yun C K, Park S B, J. Mater. Sci, 31(22), (1996): 2409-2416
    143.靳建华,白炳贤,白涛,徐新生,氨水沉淀法制备纳米粉氢氧化锌和氧化锌,无机盐工业,32(6),(2000):7-8
    144.晋传贵,朱伟长,方道来,李怀勇,氧化锌纳米粒子的制备,精细化工,16(2),(1999):26-28
    145. Hohenberger G., Tomamdl G., J. Mater. Res. 7(3), (1992): 546-548
    146. Meulenkamp Eric A, J. Phys. Chem. B, 102 (29), 1998:5566-5572
    147. Shah D. O., Singhal M., Chhabra V., Kang. P., Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol OT microemulsion Mater. Res. Bull. 32(2), (1997): 239-247
    148.余保龙,张桂兰,汤国庆等,物理化学学报,11(7),(1995):587-589
    149.徐甲强,潘庆谊,孙雨安等,无机化学学报,14(3),(1998):355-359
    150. S. Hingorani, V. Pillai, P. Kumar, M. S. Multani and D. O. Shah, Microemulsion mediated synthesis of zinc-oxide nanoparticles for varistor studies, Mater. Res. Bull., 28(12),(1993): 1303-1310
    151.辛显双,周百斌,刘双全,肖芝燕,吕树臣,均匀沉淀法制备纳米氧化锌的工艺条件,化学与粘合,5,(2002):203-205
    152. Ju C. S., Lee M. G., Hong S. S., Hwahak konghak, 35(5), (1997): 655-660
    153. Hui Zhang, Deren Yang, Yujie Ji, Xiangyang Ma, Jin Xu, and Duanlin Que, Low temperature synthesis of flowerlike ZnO nanostructures by Cetyltrimethylammonium Bromide-assisted hydrothermal process, J. Phys. Chem. B, 108 (2004) 3955-3958
    154. Hui Zhang, Deren Yang, Yujie Ji, Xiangyang Ma, Jin Xu, and Duanlin Que, Synthesis of flower-like ZnO nanostructures by an organic-free hydrothermal process, Nanotechnology, 15 (2004)622-626
    155. Hui Zhang, Deren Yang, Dongshen Li, Xiangyang Ma, Shenzhong LI, and Duanlin Que, Controllable growth of ZnO microcrystals by capping molecule assisted hydrothermal process, Crystal Growth & Design, accepted
    156.X.M. Sun, X. Chen, Z.X. Deng, Y.D. Li, A CTAB-assisted hydrothermal orientation growth of ZnO nanorods, Materials Chemistry and Physics 78 (2002) 99-104
    157.Jun Zhang, Lingdong Sun, Chunsheng Liao, Chunhua Yan, A simple route towards tubular ZnO, Chem. Commun. (2002) 262-263
    158. Lionel Vayssieres, Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions, Adv. Mater. 15 (2003) 464-466
    159.Dairong Chen, Xiuling Jiao, Gang Cheng, Hydrothermal synthesis of zinc oxide powders with different morphologies, Solid State Communications 113 (2000) 363-366
    160. Bin Liu, Hua Chun Zeng, Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm, J. Am. Chem. Soc. 125 (2003) 4430-4431
    161. Lionel Vayssieres, Karin Keis, Sten-Eric Lindquist, Anders Hagfeldt, Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO, J. Phys. Chem. B 105 (2001) 3350-3352
    162. Chen Dairong, Jiao Xiuling, Cheng Gang, Hydrothermal synthesis of zinc oxide powders with different morphologies, Solid State Communications, 113 (2000) 363-366
    163. Prudenziati M (ed) Thick-Film Sensors, Amsterdam: Elsevier, (1994)
    164.Brignell J E, White N M and Cranny A W J, Sensor applications of thick-film technology, IEE Proc. I, 135 (1988) 77-84
    165. N. Jayadev Dayan, R. N. Karekar, R. C. Aiyer, S. R. Sainkar, Effect of film thickness and curing temperature on the sensitivity of ZnO: Sb thick-film hydrogen sensor, Journal of Materials Science: Materials in Electronics, 8 (1997) 277-279
    166.N. Jayadev Dayan, R. N. Karekar, R. C. Aiyer. A thick-film hydrogen sensor based on a Zno: MoO_3 formulation, Meas. Sci. Technol., 9(1998) 360-364
    167. F. Hossein-Babaei and F. Taghibakhsh, Electrophoretically deposited Zinc oxide thick film gas sensor, Electronics Letters, 36(21) (2000) 1815-1816
    168. G.S. Trivikrama Rao, D. Tarakarama Rao, Gas sensitivity of ZnO based thick film sensor to NH_3 at room temperature, Sensors and Actuators B, 55 (1999) 166-169
    169. Yasushi Yamada, Katsuji Yamashita, Yumi Masuoka, and Ogita, A thick-film NO_2 sensor fabricated using Zn-Sn-Sb-O composite material, Jpn. J. Appl. Phys., 42 (2003) 7594-7598
    170. N. Jayadev Dayan, S. R. Sainkar, A. A. Belkehar, R. N. Karekar, R. C. Aiyer, On the highly selective ZnO: Al_2O_3 based thick film hydrogen sensors, Journal of Materials Science Letters, 16 (1997) 1952-1954
    171. B.L. Zhu, C. S. Xie, W. Y. Wang, K. J. Huang, J. H. Hu, Improvement in gas sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding TiO_2, Materials Letters, 58 (2004) 624-629
    172. B.L. Zhu, C. S. Xie, A. H. Wang, D. W. Zeng, M. L. Hu, W. Y. Wang, Electrical conductivity and gas sensitivity of Zn-Sb-O thick films, Materials Research Bulletin, 39 (2004) 409-415
    173. Chu Xiangfeng, Jiang Dongli, Aleksandra B. DjuriSic, Yu Hang Leung, Gas-sensing properties of thick film based on ZnO nano-tetrapods, Chemical Physics Letters, 401 (2005) 426-429
    174. B.L. Zhu, C. S. Xie, A. H. Wang, D. W. Zeng, W. L. Song, X. Z. Zhao, The gas-sensing properties of thick films based on tetrapod-shaped ZnO nanopowders, Materials Letters, 59 (2005) 1004-1007
    175.石蔼如,刘克强,海洋与湖沼,28(5)(1997)549-552
    176. A.K. Mukhopadhyay, P. Mitra, D. Chattopadhyay, H. S. Maiti, Influences of fabrication techniques and doping on hydrogen sensitivity of zinc oxide sensors, Journal of Materials Science Letters, 15(5) (1996)431-433
    177. Kwon Chul Han, Hong Hyung-Ki, Yun Dong Hyun, Lee Kyuchung, Kim Sung-Tae, Roh Young-Hoon, Lee Byung-Hoon, Thick-film zinc-oxide gas sensor for the control of lean air-to-fuel ratio in domestic combustion systems, Sensors and Actuators B, 25(1-3)(1995) 610-613
    178.全宝富,沈艳宾,卢革宇等,吉林大学自然科学学报,3(1993)77-80
    179.林颖,鹿崇发,半导体气敏元件应用中的几个问题,仪表技术与传感器,2(1997) 48-49
    180. M. Aslam, V. A. Chaudhary, I. S. Mulla, S. R. Sainkar, A. B. Mandale, A. A. Belhekar, K. Vijayamohanan, A highly selective ammonia gas sensor using surface-ruthenated zinc oxide, Sensors and Actuators A: Physical, 75(2) (1999) 162-167
    181. F. Boccuzzi, E. Guglielminotti and A. Chiorino, IR study of gas-sensor materials: NO interaction on ZnO and TiO_2, pure or modified by metals, Sensors and Actuators B: Chemical, 7 (1-3) (1992) 645-650
    182. F. Boccuzzi, A. Chiorino, S. Tsubota, M. Haruta, An IR study of CO-sensing mechanism on Au/ZnO, Sensors and Actuators B: Chemical, 24-25 (1995) 540-543
    183. H. Okuma, T. Takahashi, Katsura Masaki, et al. Toshiba Review, (International Edition), 118 (1978) 31-34
    184.徐甲强,胡平,秦建华,Ru-ZnO气敏材料的敏感特性研究,功能材料,29(3)(1998) 281-283
    185. S. Ri, K. Hamano, Z. Nakagawa, Journal of the Ceramic Society of Japan, 94 (4) (1986) 419-424
    186.沈茹娟,贾殿赠,乔永民,王疆瑛,纳米ZnO的固相合成及其气敏特性,无机材料学报,16 (4) (2001) 625-629
    187. B. Bhooloka Rao, Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour, Materials Chemistry and Physics, 64 (2000) 62-65
    188.胡一帆,掺CeO_2,Y2O_3和La_2O_3的ZnO多孔陶瓷的气敏特性及导电机制,华中理工大学硕士学位论文,1988
    189.王晓平,稀土掺杂ZnO半导体气敏传感器的性能研究,湘潭大学自然科学学报,2l (4)(1999)109-111
    190. Y. Anno, T. Maekawa, J. Tamaki, Y. Asano, K. Hayashi, N. Miura, N. Yamazoe, Zinc-oxide-based semiconductor sensors for detecting acetone and capronaldehyde in the vapour of consomme soup, Sensors and Actuators, 25(1-3) (1995) 623-627
    191. Masataka Kudo, Tomomi Kosaka, Yoshiaki Takahashi, Hisao Kokusen, Noriyuki Sotani, Sadao Hasegawa, Sensing functions to NO and O_2 of Nb_2O_s-or Ta_2O_s-loaded TiO_2 and ZnO, Sensors and Actuators B, 69 (2000) 10-15
    192. A. R. Raju and C. N. R. Rao, Gas-sensing characteristics of ZnO and copper-impregnated ZnO, Sensors and Actuators B: Chemical, 3(4) (1991) 305-310
    193. S. Basu and A. Dutta, Modified heterojunction based on zinc oxide thin film for hydrogen gas-sensor application, Sensors and Actuators B: Chemical, 22(2) (1994) 83-87
    194. Masaru Miyayama, Kazuyasu Hikita, Gakuji Uozumi, Hiroaki Yangagida, A. c. impedance analysis of gas-sensing property in CuO/ZnO heterocontacts, Sensors and Actuators B: Chemical, 24-25 (1995) 383-387
    195.胡英,周晓华,魏红军,CuO-ZnO异质结半导体陶瓷气敏机理的研究,功能材料与器件学报,6(4)(2000)408-412
    196. Ying Hu, Xiaohua Zhou, Qiang Han, Quanxi Cao, Yunxia Huang, Sensing properties of CuO-ZnO heterojunction gas sensors, Materials Science and Engineering B, 99 (2003) 41-43
    197. Sang-Jin Jung, Hiroaki Yanagida, The characterization of a CuO/ZnO heterocontact-type gas sensor having selectivity for CO gas, Sensors and Actuators B: Chemical, 37 (1996) 55-60
    198. Dang Hyok Yoon, Ji Haeng Yu, Gyeong Man Choi, CO gas sensing properties of ZnO-CuO composite, Sensors and Actuators B: Chemical, 46 (1998) 15-23
    199. Byoung-Chui Shin, Masaru Miyayama, Hiroaki Yanagida, Carbon monoxide (CO) gas sensitivity of CuO-infiltrated ZnO ceramics, Journal of Materials Science Letters, 13 (10) (1994) 719-722
    200. Alan V. Chadwick, Nigel V. Russell, Adam R. Whitham and Alan Wilson, Nanocrystalline metal oxide gas sensors, Sensors and A ctuators B: Chemical, 18 (1-3) (1994) 99-102
    201. Hong Youl Bae, Gyeong Man Choi, Electrical and reducing gas sensing properties of ZnO and ZnO-CuO thin films fabricated by spin coating method, Sensors and A ctuators B: Chemical, 55 (1999) 47-54
    202. Ji Haeng Yu, Gyeong Man Choi, Selective CO gas detection of CuO- and ZnO-doped SnO_2 gas sensor, Sensors and A ctuators B: Chemical, 75 (2001) 56-61
    203. Seok Taek Jun and Gyeong Man Choi, CO gas-sensing properties of ZnO/CuO contact ceramics, Sensors and Actuators B: Chemical, 17 (3) (1994) 175-178
    204. Y. Nakamura, Yoshioka H., Miyayama M, et al, Journal of the Electrochemical Society, 137 (3) (1990) 940-943
    205. Nakamura Y., Zhuang H. K., Akira Okada, et al, Journal of the Electrochemical Society, 145(2) (1998) 632-638
    206. Jeong Duk Choi, Gyeong Man Choi, Electrical and CO gas sensing properties of layered ZnO-CuO sensor, Sensors and A ctuatorsB: Chemical, 69(1) (2000) 120-126
    207.Hikita K.., Miyayama M., Yanagida H., Journal of the Ceramic Society of Japan, 102 (1994)810-817
    208. Jung S- J., Nakamura Y., Kishimoto A., et al., Journal of the Ceramic Society of Japan, 104(1996)415-421
    209. Ji Haeng Yu, Gyeong Man Choi, Electrical and CO gas-sensing properties of ZnO/SnO_2 hetero-contact, Sensors and Actuators B: Chemical, 61(1) (1999) 59- 67
    210. Yu J. H., Choi G. M., Current-voltage characteristics and selective CO detection of Zn_2SnO_4 and ZnO/Zn_2SnO_4, SnO_2/Zn_2SnO_4 layered-type sensors, Sensors and Actuators B: Chemical, 72(2) (2001) 141-148
    211.Enrico Traversa, Masaru Miyayama, Hiroaki Yanagida, Gas sensitivity of ZnO/La_2CuO_4 heterocontacts, Sensors and A ctuators B: Chemical, 17 (3) (1994) 257-261
    212. Nakamura Y., Koyama R., Koumoto K., et al. Journal of the Ceramic Society of Japan, 99 (1153) (1991) 823-825
    213. H. Nanto, H. Sokooshi, T. Kawai, T. Usuda, Zinc oxide thin- film trimethylamine sensor with high sensitivity and excellent selectivity, J. Mater. Sci. Lett., 11 (1992)235-237
    214. H. Nanto, H. Sokooshi, T. Usuda, Smell sensor using aluminium- doped zinc oxide thin films prepared by sputtering technique, Sensors and Actuators B 10, (1993) 79-83
    215.H. Nanto, H. Sokooshi, T. Kawai, Aluminium-doped ZnO thin film gas sensor capable of detecting freshness of sea foods, Sensors and Actuators, 13-14 (1993) 715-717
    216.Tae-Ha Kwon, Sung-Hyun Park, Jee-Youl Ryu, Hyek-Hwan Choi, Zinc oxide thin film doped with Al_2O_3, HO_2 and V_2O_5 as sensitive sensor for trimethylamine gas, Sensors and Actuators B, 46 (1998) 75-79
    217. J. F. Chang, H. H. Kuo, I. C. Leu, M. H. Hon, The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor, Sensors and Actuators B, 84 (2002) 258-264
    218.F. Paraguay D., M. Miki-Yoshida,U, J. Morales, J. Solis, W. Estrada L., Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour, Thin Solid Films, 373 (2000) 137-140
    219.B. L. Zhu, D. W. Zeng, J. Wu, W. L. Song, C. S. Xie, Synthesis and gas sensitivity of In-doped ZnO nanoparticles, Journal of Materials Science: Materials in Electronics, 14 (2003)521-526
    220. G. Sberveglieri, S. Groppelli, P. Nelli, A. Tintinelli, G. Giunta, A novel method for the preparation of NH_3 sensors based on ZnO-In thin films, Sensors and Actuators B, 24-25 (1995) 588-590
    221. A. Trinchi, Y.X. Li, W. Wlodarski, S. Kaciulis, L. Pandolfi, S.P. Russo, J. Duplessis, S. Viticoli, Investigation of sol-gel prepared Ga-Zn oxide thin films for oxygen gas sensing, Sensors and Actuators A, 108 (2003) 263-270
    222. K. Y. Cheong, Norani Muti, S. Roy Ramanan, Electrical and optical studies of ZnO: Ga thin films fabricated via the sol-gel technique, Thin Solid Films, 410 (2002) 142-146
    223. M. Egashira, N. Kanehara, Y. Shimizu and H. Iwanaga, Gas-sensing characteristics of Li~+-doped and undoped ZnO whiskers, Sensors and Actuators, 18 (3-4) (1989) 349- 360
    224. S. W. Oh, Y. H. Kim, D. J. Yoo, S. M. Oh and S. J. Park, Sensing behavior of semconducting metal oxides for the detection of organophosphorus compounds. Sensors and Actuators B: Chemical, 13(1-3) (1993) 400- 403
    225. Inoue K. -I., Miyayama M., Journal of Eiectroceramics, 2 (1) (1998) 41-48
    226. Lin F. C., Takao Y., Shimizu Y., et al., Journal of the American Ceramic Society, 78(9)(1995) 2301-2306
    227. N. Jayadev Dayan, S. R. Sainkar, R. N. Karekar, R. C. Aiyer, Formulation and characterization of ZnO: Sb thick-film gas sensors, Thin Solid Films, 325(1-2) (1998) 254-258
    228.王玉卿,李和太,韦春才等,氟里昂气体传感器的研制,沈阳工业大学学,16(1)(1994)81-85
    229. Lin F. C., Takao Y., Shimizu Y., et al., Hydrogen-sensing mechanism of zinc oxide varistor gas sensors, Sensors and Actuators B: Chemical, 25 (1-3) (1995) 843-850
    230. Shimizu Y., L in F. C., Takao Y., et al. Journal of the American Ceramic Society, 81 (6) (1998) 1633-1643
    231.沈瑜生,尚文,刘杏芹,ZnO-CdO二元体系的导电机制和气敏效应,云南大学学报(自然科学报),19(1)(1997)88-92
    232.徐甲强,朱文会,陈源,ZnO气敏陶瓷的制备与气敏性能研究,功能材料,24(1)(1993)30-33
    233.张天舒,沈瑜生,晋传贵,ZnSnO_3陶瓷材料气敏特性与导电机理,应用化学,11 (2)(1994)31-34
    234. Matsushima S., S. Kunitsugu, K. Kobayashi, et al., Journal of the Ceramic Society of Japan, 103(1195) (1995) 302-303
    235. Ji Haeng Yu and Gyeong Man Choi, Electrical and CO gas sensing properties of ZnO-SnO_2 composites, Sensors and Actuators B: Chemical, 52 (3) (1998) 251-256
    236. Hong-Ming Lin, Shah-Jye Tzeng, Peng-Jan Hsiau, and Wen-Li Tsai, Electrode effects on gas sensing properties of nanocrystalline Zinc oxide, Nanostructured Materials, 10 (3) (1998) 465-477
    237. B.L. Zhu, C.S. Xie, D.W. Zeng, W.L. Song, A.H. Wang, Investigation of gas sensitivity of Sb-doped ZnO nanoparticles, Materials Chemistry and Physics, 89 (2005) 148-153
    238. C. Baratto, G. Sberveglieri, A. Onischuk, B. Caruso, S. di Stasio, Low temperature selective NO_2 sensors by nanostructured fibres of ZnO, Sensors and Actuators B, 100 (2004) 261-265
    239. L. F. Dong, Z. L. Cui and Z. K. Zhang, GAS SENSING PROPERTIES OF NANO-ZnO BY ARC PLASMA METHOD, Nanostructured Materials, 8 (7) (1997) 815-823
    240. Q. wan, Q. H. Li, Y. J. Chen, and T. H. Wang, X. L. He, X. G. Gao, and J. P. Li, Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires, Applied Physics Letters, 84 (16) (2004) 3085-3087
    241. Q.H. Li, Y. X. Liang, Q. Wan, and T. H. Wang, Oxygen sensing characteristics of individual ZnO nanowire transistors, Applied Physics Letters, 85 (26) (2004) 6389-6391
    242. Xu, Jiaqiang, Pan, Qingyi, Shun, Yu'an, Tian, Zhizhuang, Grain size control and gas sensing properties of ZnO gas sensor Sensors and Actuators B, 66 (2000) 277-279
    243.董立峰,崔作林,电弧等离子体制备纳米ZnO的气敏特性,材料研究学报,12(4) (1998)407-410
    244.沈茹娟,贾殿赠,梁凯,无机化学学报,纳米氧化锌的固相合成及其气敏特性,16(6)(2000)906-910
    245.徐甲强,王焕新,张建荣,沈嘉年,微波水解法制备纳米ZnO及其气敏特性研究,无机材料学报,19(6)(2004)1441-1445
    246. Takeluchi M., Kashimura S., Ozawa S., Vacuum, 41 (7-9) (1989) 1636-1637
    247. Yoon D. H., Choi G. M., Microstructure and CO gas sensing properties of porous ZnO produced by starch addition, Sensors and Actuators B: Chemical, 45 (3) (1997) 251-257
    248. C. Li, D. Zhang, B. Lei, S. Han, X. Liu, and C. Zhou, Surface treatment and doping dependence of In_2O_3 nanowires as ammonia sensors, J. Phys. Chem. B, 107 (2003) 12451-12455
    249. S. Shukla, S. Seal, L. Ludwig, C. Parish, Nanocrystalline indium oxide-doped tin oxide thin film as low temperature hydrogen sensor, Sensors and Actuators B, 97 (2004) 256-265
    250. A. M. Taurino, M. Epifani, T. Toccoli, S. lannotta, P. Siciliano, Innovative aspects in thin film technologies for nanostructured materials in gas sensor devices, Thin Solid Films, 436 (2003) 52-63
    251.M. Ivanovskaya, D. Kotsikau, G. Faglia, P. Nelli, Influence of chemical composition and structural factors of Fe_2O_3/In_2O_3 sensors on their selectivity and sensitivity to ethanol, Sensors and Actuators B, 96 (2003) 498-503
    252. M. Ivanovskaya, D. Kotsikau, G. Faglia, P. Nelli, S. Irkaev, Gas-sensitive properties of thin film heterojunction structures based on Fe_2O_3-In_2O_3 nanocomposites, Sensors and Actuators B, 93 (2003) 422-430
    253.M. Ivanovskaya, P. Bogdanov, Effect of Ni" ions on the properties of In_2O_3-based ceramic sensors, Sensors and Actuators B, 53 (2003) 44-53
    254. T. Doll, A. Fuchs, I. Eisele, G. Faglia, S. Groppelli, G. Sberveglieri, Conductivity and work function ozone sensors based on indium oxide, Sensors and Actuators B, 49 (1998) 63-67
    255. F. Naomi, H. Akihide, I. Satoshi, A. Yasukazu, Y. Yukio, M. Norio, Y. Noboru, Application of semiconductor gas sensor to quality control of meat freshness in food industry, Sensors and Actuators B, 24-25 (1995) 797-800
    256. Q. Tang, W. Zhou, W. Zhang, S. Ou, K. Jiang, W. Yu, and Y. Qian, Size-controllable growth of single crystal In(OH)_3 and In_2O_3 nanocubes, Crystal Growth & Design, 5(2005)147-150
    257. A. Gurlo, N. Barsan, U. Weimar, M. Ivanovskaya, A. Taurino, and P. Siciliano, Polycrystailine well-shaped blocks of indium oxide obtained by the sol-gel method and their gas-sensing properties, Chem. Mater. 15(2003) 4377-4383
    258. L. A. Perez-Maqueda, L. Wang, and E. Matijevic, Nanosize indium hydroxide by peptization of colloidal precipitates, Langmuir, 14 (1998) 4397-4401
    259. S. Avivi, Y. Mastai, and A. Gedanken, Sonohydrolysis of In~(3+) ions: formation of needlelike particles of indium hydroxide, Chem. Mater., 12 (2000) 1229-1233

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700