Al-N共掺杂实现p型ZnO的机理及其相关器件基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,宽禁带半导体材料ZnO的研究已经引起人们广泛的关注。ZnO是一种Ⅱ-Ⅵ族化合物半导体材料,具有直接宽带隙(室温下3.37eV),属于六方纤锌矿结构。由于ZnO具有较高的激子结合能(室温下为60meV),远大于室温热能(26meV),因而理论上会在室温下获得高效的紫外激子发光和激光。此外ZnO具有高熔点(1975℃),高热稳定性及化学稳定性;ZnO单晶薄膜可以在低于500℃的生长温度下获得,比GaN等其他宽禁带半导体材料的制备温度低很多,因此可以大大减少高温制备所产生的缺陷。另外,ZnO原材料资源丰富、价格低廉,对环境无毒无害,制备工艺简单,具有潜在的巨大商用价值。作为短波长发光器件、低阈值紫外激光器的一种全新的候选材料,ZnO已经成为当今半导体发光材料与器件研究中新的热点。
     为了实现ZnO在发光器件领域的实际应用,必须外延生长晶体质量良好的p型以及n型薄膜,在此基础上,制备ZnO的同质pn结,进而通过掺入Cd、Mg调节ZnO禁带宽度,最终实现ZnO的量子阱和超晶格结构。ZnO中本征施主缺陷(Zn_i和V_o)的形成能很低,因此在实现ZnO的p型转变过程中,存在本征缺陷的严重补偿现象,同时,VA族和IA族元素尽管在理论上可以在ZnO中形成浅的受主能级,但是VA族元素中的N元素在ZnO中的固溶度低,其他的P、As、Sb原子半径大,引起大的晶格畸变和内应力;而IA族元素则很容易形成间隙态起施主作用。施主(Al)-受主(N)共掺杂方法实现ZnO良好的p型特性是近年来由我们浙江大学硅材料国家重点实验室叶志镇教授领导的课题组首先尝试并实现的。共掺杂方法可以一定的条件下提高受主杂质的浓度,从而有利于得到高空穴浓度的p型ZnO薄膜。
     本文以利用Al-N共掺杂方法实现良好的p-ZnO薄膜作为研究的基础,以ZnO的p型掺杂机理为主要研究内容。深入分析了择优取向的ZnO多晶薄膜的生长机理,比较了多种常用的受主杂质在实现p型ZnO方面掺杂机理的异同,并对影响ZnO的p型特性的几个关键因素的作用机理作了深入研究。在实现ZnO的p型转变并深入分析其掺杂机理基础上,我们制备并研究了ZnO与Si的异质结及其接触特性,制备了ZnO的同质结、ZnO/ZnCdO异质结以及ZnO/Au的肖特基二极管的原型器件,并对其性能作了基础性研究。
     C轴择优取向的ZnO薄膜的生长是一种自组装生长过程,在多种衬底上均
In recent years, wide band gap semiconductor materials zinc oxide (ZnO) becomes to attract much more attention than ever before. ZnO is a kind of II-VI compound semiconductor with a wide direct band gap of 3.37 eV at room temperature (RT) and a hexagonal wurtzite structure. Its high exciton binding energy (60 meV at RT), which is much higher than RT heat energy (26 meV), will theoretically favor efficient UV excitonic emission processes at RT. In addition, ZnO has a high melting point (1975℃), high thermal and chemical stability. ZnO single crystal thin film can be obtained at a temperature under 500℃, which is much lower than GaN and other wide band gap semiconductors, so it can greatly reduce the defects formed in high temperature. Furthermore, ZnO is abundant, cheap, innoxious, easy to be prepared and with potential commercial value. As an important candidate of short-wave optoelectronic devices and low-threshold UV laser, ZnO has become a hotspot in the area of semiconductor optoelectronic devices.To realize the application of ZnO in optoelectronic devices, excellent epitaxy n-and p-type thin films are necessary. Based upon that, fabricating the ZnO homoj unction, band-gap engineering through Cd and Mg doping, and finally realized the quatum well and super lattice structure. The formation energy of the intrinsic defects (Zn;and Vo) is very low, so there is a heavy compensation in the p-type doping. At the same time, despite that the shallow acceptor energy in the group V and I, the solution of the group V element is very low. And other group V element, such as P, As, Sb, all has the large lattice mismatch with the substitution for the O atom in ZnO, which can lead to crystallinity distortion and in-plane stress. The group I element can easily form the interstitial state, and act as the shallow compensation donor. Donor (Al)-Acceptor (N) co-doping method is a good way to realize the p-type conduction in ZnO. Our research group, i.e., Professor Ye Zhi-Zhen group of state key laboratory of silicon materials is one of the earliest groups engaging in ZnO film studies. We first try and realize the co-doping p-type ZnO internationally. The co-doping method can increase the solution of the acceptor in fixed condition, so it can help to obtain the high hole concentration p-ZnO thin films.
    In this work, we've fabricated the p-type ZnO thin films with good electrical properties by the Al-N co-doping method, and we mainly focused on the p-type doping mechanism. Based on the deep investigation on the growth mechanism of C-orientation polycrystalline ZnO films, we've proposed the comparison of different acceptor dopants in p-ZnO doping, and analysis several important factor of affecting the p-type conduction. Based upon that, Si/ZnO heterojunction, ZnO-based pn junction, ZnO/ZnCdO heterojunction and ZnO/Au Schottky Barrier Diode have been successfully fabricated, and taken the fundamental research.The formation of the C-axis orientation ZnO thin films is a self-assembled process, and the preferential orientation can be obtained in many different kinds of substrates. It should be mentioned that various substrates can determine diverse formation mechanism. When grown on Si, it will preferential nucleate firstly;while in the case of glass, an amorphous ZnO layer initially forms. So, the crystal quality and electrical properties of the obtained ZnO thin films will depend on the substrate.We have fabricated the stable and reproducible p-ZnO based on the Al-N co-doping method using the DC Reactive Magnetron Sputtering. The as-deposited p-type ZnO thin films show an electrical property, such as resistivity of 20-30Q-cm, hole concentration of 1017-1018cm"3, and hall mobility of 0.5-1 cm2/V-s<= A moderate Al content is necessary for the p-type ZnO realization, instead of the higher or lower content both leading to n-type conduction. Due to the big size mismatch, in the suitable condition other group V elements are inclined to substitute the Zn place and at the same time induce two Zn vacancies, instead of the O place for the good p-type behavior. The active group I elements, such as Li and Na, can form the interstitial states, which always act as the shallow donors, compensate the hole concentration, and finally destroy the p-type properties. The III-V co-doping method can greatly promote the N solution in the ZnO thin films, and Al-N co-doping way is the best candidate.Substrate temperature (Ts) can provide the dynamic force of the nucleation, reaction and motivation during the growth process, responsible for the crystal quality and electrical properties. Higher or lower Ts are both unfavorable for the good as-received ZnO thin films. P-type ZnO can be realized in the range of 380°C-480°Cand 560°C-600°C, while n-type in others. We proposed the H passivation
    Al promotion combined activation model to explain the conduction type variation of n-p-n-p of Ts. The presentation of donor Al can sufficiently enhance the incorporation of N into the ZnO films. Using NH3 as the N source, the ZnO films show p-type when the oxygen partial pressure is 40% and 85%. In the instance of NO and NO2, all the ZnO thin films show n-type. The post annealing treatment under the O2 ambient can greatly improve the p-type properties, while the growth of high temperature buffer layer can obviously enhance the stability and reproducibility of the p-ZnO.Compared with the ZnO homoj unction, the double heteroj unction with n-ZnO/n-ZnCdO/p-ZnO exhibits a better rectifying characteristics, and reverse breakdown voltage can reach as high as 15V, and leakage current 10"6A. The n-ZnO/Au show a good Schottky contact property, while the barrier height is low and ideal factor is relatively high, due to the intrinsic defects and the surface states in the interface.
引文
[1] C. Klingshirn, R. Hauschild, H. Priller, M. Decker, J. Zeller and H. Kalt, ZnO rediscovered -once again!?, Superlattices and Microstructures, 38(2005) 209-222
    [2] J. E. Jaffe, A. C. Hess, Hartree-Fock study of phase changes in ZnO at high pressure, Phys. Rev. B, 48(1993) 7903-7909.
    [3] S. L. King, I. W. Boyd, J. G. E. Gardeniers, Pulsed-laser deposited ZnO for device applications, Appl. Surf. Sci., 96-98(1996) 811-818.
    [4] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan. V. Avrutin, S. J. Cho and H. Morkoc, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98(2005) 041301: 1-103.
    [5] D. C. Look, Recent advances in ZnO materials and devices, Materials science and engineering B, 80(2005) 383-387.
    [6] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, Recent progress in processing and properties of ZnO, Progress in Materials Science, 50(2005) 293-340.
    [7] 李剑光,叶志镇,赵炳辉,袁骏,硅基上直流反应磁控溅射沉积优质ZnO薄膜及其性能研究,半导体学报,17(1996)877-880.
    [8] J. F. Muth, R. M. Kolbas, A. K. Shanna, S. Oktyabrsky, J. Narayan, Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition, J. Appl. Phys. 85(1999) 7884-7887.
    [9] C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback, H. Shen, Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on(01 12) sapphire by metalorganic chemical vapor deposition, J. Appl. Phys, 85(1999) 2595-2602.
    [10] R. Triboulet, J. Perriere, Epitaxial growth of ZnO films, Progress in crystal growth and characterization of materials, 47(2003) 65-138..
    [11] D. C. Look, B. Claflin, P-type doping and devices based on ZnO, Phys. Stat. sol. 241(2004) 624-630.
    [12] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, Recent progress in processing and properties of ZnO, Superlattices & Microstructures 34(2003) 3-32.
    [13] T. Nagase, T. Ooie, A novel approach to prepare zinc oxide films: excimer laser irradiation of sol-gel derived precursor films, Thin Solid Films, 357(1999) 151-158.
    [14] B. Joseph, K. G. Gopchandran, P. V. Thomas, P. Koshy, V. K. Vaidyan, A study on the chemical spray deposition of zinc oxide thin films and their structural and electrical properties, Materials Chemistry and Physics, 58(1999) 71-77.
    [15] T. Schuler, M. A. Aegerter, Optical, electrical and structural properties of sol gel ZnO: Al coatings, Thin Solid Films, 351(1999) 125-131
    [16] S. H. Bae, S. Y. Lee, B. J. Jin, S. Im, Pulsed laser deposition of ZnO thin films for applications of light ernission, Applied Surface Science, 154-155(2000) 458-461
    [17] R. F. Silva, M. E. Zaniquelli, Aluminium doped zinc oxide films: formation process and optical properties J. of NonCrystalline Solids, 247(1999) 248-253.
    [18] D. G. Baik, S. M. Cho, Application of sol-gel derived films for ZnO/n-Si junction solar cells, Thin Solid Films, 354(1999) 227-231
    [19] Y. Nakanishi, A. Miyake, H. Kominami, T. Aoki, Y. Hatanaka, G. Shimaoka, Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation, Applied Surface Science 142(1999) 233-236.
    [20] N. K. Zayer, R. Greef, K. Rogers, A. J. C. Grellier, C. N. Pannell, In situ monitoring of sputtered zinc oxide films for piezoelectric transducers, Thin Solid Films, 352(1999) 179-184.
    [21] H. Xu, X. Liu, D. Cui, M. Li and M. Jiang, A novel method for improving the performance of ZnO gas sensors, Sensors and Actuators B: Chemical, 114(2006) 301-307.
    [22] C. S. Rout, S. H. Krishna, S. R. C. Vivekchand, A. Govindaraj and C. N. R. Rao, Hydrogen and ethanol sensors based on ZnO nanorods, nanowires and nanotubes, Chemical Physics Letters, 418(2006) 586-590.
    [23] S. Chu, W. Walter and J. Liaw, An investigation of the dependence of ZnO film on the sensitivity of Love mode sensor in ZnO/quartz structure, Ultrasonics, 41(2003) 133-139.
    [24] S. Li, L. Liang, J. Li, N. Liu and M. A. Alim, Characterization of water absorbed epoxy insulating coating material used in ZnO varistors by dielectric measurements, Materials letters, 60(2006) 114-119.
    [25] G. Heiland, H. Ibach, Pyroelectricity of Zinc Oxide, Solid State Communications, 4(1966) 353-356.
    [26] 贾锐,曲凡钦,武光明,宋世庚,陶明德,ZnO系低压压敏薄膜喷雾热分解法制备及膜厚对其压敏特性影响的研究,功能材料,30(1999) 636-638.
    [27] Y. Yamamoto, K. Saito, K. Takahashi, M. Konagai, Preparation of boron-doped ZnO thin films by photo-atomic layer deposition Solar Energy, Materials & Solar Cells 65(2001) 125-132.
    [28] B. J. Lokhande, P. S. Patil, M. D. Uplane, Studies on structural, optical and electrical properties of boron doped zinc oxide films prepared by spray pyrolysis technique Physica B 302/303(2001) 59-63.
    [29] H. Kim, C. M. Gilmore, J. S. Horwitz, A. Piqué, H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, and D. B. Chrisey, Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices, Appl. Phys. Lett., 76(2000) 259-261.
    [30] K. C. Park, D. Y. Ma, and K. H. Kim, The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering, Thin Solid Films, 305(1997) 201-209.
    [31] K. T. Ramakrishna, H. Gopalaswamy, P. J. Reddy, Effect of gallium incorporation on the physical properties of ZnO films grown by spray pyrolysis J Crystal Growth, 210(2000) 516-520.
    [32] B. M. Ataev, A. M. Bagamadova, V. V. Mamedov, A. K. Omaev, M. R. Rabadanov, Highly conductive and transparent thin ZnO films prepared in situ in a low pressure system J Crystal Growth, 198-199(1999) 1222-1225.
    [33] P. Nunes, E. Fortunato, R. Martins, Influence of the post-treatment on the properties of ZnO thin films Thin Solid Films, 383(2001) 277-280.
    [34] B. Gil and A. V. Kavokin, Giant exciton-light coupling in ZnO quantum dots, Appl. Phys. Lett., 81(2002) 748-750.
    [35] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films, Appl. Phys. Lett., 72(1998) 3270-3272.
    [36] A. Kobayashi, O. F. Sankey, J. D. Dow, Deep energy levels of defects in the wurtzite semiconductors AIN, CdS, CdSe, ZnS, and ZnO, Physics Review B, 28(1983) 946-956.
    [37] M. Kasuga, S. Ogawa, Electronic Properties of Vapor-Grown Heteroepitaxial ZnO Film on Sapphire, Jpn. J Appl. Phys. 22(1983) 794-798.
    [38] B. J. Jin, S. H. Bae, S. Y. Lee, S. Im, Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition, Materials Science Engineering B, 71(2000) 301-305.
    [39] F. Leiter, H. Alves, D. Pfisterer, N. G. Romanov, D. M. Hofmann, B. K. Meyer, Oxygen vacancies in ZnO, Physica B 340-342(2003) 201-204.
    [40] Y. Kanai Admittance Spectroscopy of ZnO Crystals, Jpn. J. Appl. Phys. 29(1990) 1426-1430.
    [41] Y. Kanai, Admittance Spectroscopy of ZnO Crystals Containing Ag, Jpn. J. Appl. Phys. 30(1991) 2021-2022.
    [42] Y. Kanai, Admittance Spectroscopy ofCu-Doped ZnO Crystals, Jpn. J. Appl. Phys. 30(1991) 703-707.
    [43] F. H. Nicoll. ULTRAVIOLET ZnO LASER PUMPED BY AN ELECTRON BEAM, Appl. Phys. Lett. 9(1966) 13-15.
    [44] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, Optically pumped lasing of ZnO at room temperature, Appl. Phys. Lett., 70(1997) 2230-2232.
    [45] P. Yu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature, Solid State Comunications, 103(1997) 459-463.
    [46] T. Minemoto, T. Negami, S. Nishiwaki, H. Takakura, Y. Hamakawa, Preparation of Znl-xMgxO films by radio frequency magnetron sputtering Thin Solid Films, 372(2000) 173-176.
    [47] G. Santana, A. Morales-Acevedo, O. Vigil, L. Vaillant, F. Cruz, G. Contreras-Puente, Structural and optical properties of (ZnO)x(CdO)1-x thin films obtained by spray pyrolysis, Thin Solid Films, 373(2000) 235-238.
    [48] R. E Service. Will UV lasers beat the blues? Science, 276(1997) 895-895.
    [49] S. Limpijumnong, X. Li, S. Wei, and S. B. Zhang, Substitutional diatomic molecules NO, NC, CO, N_2, and O_2: Their vibrational frequencies and effects on p doping of ZnO, Appl. Phys. Lett. 86(2005), 211910: 1-3.
    [50] Y. J. Zeng, Z. Z. Ye, W. Z. Xu, D. Y. Li, J. G. Lu, L. P. Zhu, B. H. Zhao, Dopant source choice for formation of p-type ZnO: Li acceptor, Appl. Phys. Lett. 88(2006) 062107: 1-3.
    [51] A. Valentini, F. Quaranta, M. Rossi, G. Battaglin, Preparation and characterization of Li-doped ZnO films, J. Vac. Sci. Technol. A 9(1991) 286-289.
    [52] Y. Hatanaka, M. Niraula, A. Nakamura, T. Aoki, Excimer laser doping techniques for Ⅱ-Ⅵ semiconductors Appl. Surf. Sci. 175/176(2001) 462-467.
    [53] C. H. Park, S. B. Zhang, S. H. Wei, The impurity perspective Origin of p-type doping difficulty in ZnO, Phys. Rev. B 66(2002) 073202: 1-3.
    [54] S. Fujihara, C. Saski, T. Kimura, Effects of Li and Mg doping on microstructure and properties of sol-gel ZnO thin films, J European Ceramic Society, 21(2001) 2109-2112.
    [55] K. Minegishi, Y. Koiwal, Y. Kikuchi, K. Yano, M. Kasuga, A. Shimizu, Growth of p-type zinc oxide films by chemical vapor deposition, Jpn. J. Appl. Phys. 36(1997) L1453-1455.
    [56] J. G. Lu, Z. Z. Ye, L. Wang, B. H. Zhao, J. Y. Huang, Preparation and properties of N-doped p-type ZnO films by solid-source chemical vapour deposition with the c-axis parallel to the substrate, Chin. Phys. Lett. 19(2002) 1494-1497.
    [57] J. G. Lu, Z. Z. Ye, L. Wang, J. Y. Huang, and B. H. Zhao, Structural, electrical and optical properties of N-doped ZnO films synthesized by SS-CVD Mater. Sci. in Semicond. Proc. 5(2003) 491-496.
    [58] Z. Z. Ye, J. G. Lu, H. H. Chen, Y. Z. Zhang, L. Wang, B. H. Zhao, and J. Y. Huang, Preparation and characteristics of p-type ZnO films by DC reactive magnetron sputtering, J. Cryst. Growth 253(2003) 258-264.
    [59] J. G. Lu, Y. Z. Zhang, Z. Z. Ye, L. Wang, B. H. Zhao, and J. Y. Huang, p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations, Mater. Lett. 57(2003) 3311-3314
    [60] J. Y. Huang, Z. Z. Ye, H. H. Chen, B. H. Zhao, and L. Wang, Growth of N-doped p-type ZnO films using ammonia as dopant source gas, J. Mater. Sci. Lett. 22(2003) 249-251.
    [61] Z. G. Ji, C. X. Yang, K. Liu, and Z. Z. Ye, Fabrication and characterization of p-type ZnO films by pyrolysis of zinc-acetate-ammonia solution, J. Cryst. Growth 253(2003) 239-242
    [62] J. Neugebauer and C. G. Van de Walle, Role of hydrogen in doping of GaN, Appl. Phys. Lett., 68(1996) 1829-1831.
    [63] K. Ogata, D. Kawaguchi, T. Kera, S. Fujita, and S. Fujita, Effects of annealing atmosphere and temperature on acceptor activation in ZnSe: N grown by photoassisted MOVPE, J. Cryst. Growth 159(1996) 312-316.
    [64] X. L. Guo, H. Tabata, T. Kawai. Pulsed laser reactive deposition of p-type ZnO film enhanced by an electron cyclotron resonance source, J Crystal Growth, 223(2001) 135-139.
    [65] X. L. Guo, H. Tabata, T. Kawai., p-type conduction in transparent semiconductor ZnO thin films induced by electron cyclotron resonance N_2O plasma, Optical Materials, 19(2002) 229-233.
    [66] X. L. Guo, J. H. Choi, H. Tabata, and T. Kawai, Fabrication and optoelectronic properties of a transparent ZnO homostructural light-emitting diode, Jpn. J. Appl. Phys. 40(2001) L177-180.
    [67] M. Joseph, H. Tabata, T. Kawai, p-type electrical conduction in ZnO thin films by Ga and N codoping, Jpn J Appl. Phys. 38(1999) L1205-1207.
    [68] M. Joseph, H. Tabata, H. Saeki, K. Ueda, and T. Kawai, Fabrication of the low-resistive p-type ZnO by codoping method, Physica B 302/303(2001) 140-148.
    [69] H. Tabata, M. Saeki, S. L. Guo, J. H. Choi, and T. Kawai, Control of the electric and magnetic properties of ZnO films, Physica B 310(2001) 993-998.
    [70] T. Aoki, Y. Hatanaka, D. C. Look, ZnO diode fabricated by excimer-laser doping, Appl. Phys. Lett. 76(2000) 3257-3258.
    [71] F. Chert, Z. Ye, W. Xu, B. Zhao, L. Zhu, J. Lv, Fabrication of p-type ZnO thin films via MOCVD method by using phosphorus as dopant source, J. Cryst. Growth, 281(2005) 458-462
    [72] Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, and H. W. White, Synthesis of p-type ZnO films, J. Cryst. Growth 216(2000) 330-334.
    [73] Y. R. Ryu, W. J. Kim, H. W. White, Fabrication of homostructural ZnO p-n junctions, J Crystal Growth, 219(2000) 419-422.
    [74] T. Aoki, Y. Shimizu, A. Miyake, A. Nakarnura, Y. Nakanishi, and Y. Hatanaka, p-type ZnO layer formation by excimer laser doping, Phys. Stat. Sol.(B) 229(2002) 911-914
    [75] F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, and J. L. Liu, Photolurninescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy, Appl. Phys. Lett., 87(2005) 152101(1-3).
    [76] I. S. Hauksson, J. Simpson, S. Y. Wang, K. A. Prior, and B. C. Cavenett, Compensation processes in nitrogen doped ZnSe, Appl. Phys. Lett., 61(1992) 2208-2210.
    [77] M. A. Haase, O. E Sankey, J. M. DePuyd t and H. Cheng, Blue-green laser diodes, Appl. Phys. Lett., 59(1991) 1272-1274.
    [78] M. Futsuhara, K. Yoshioka, O. Takai, Optical properties of zinc oxynitride thin films, Thin Solid Films, 317(1998) 322-325.
    [79] Y. Sato, S. Sato, Preparation and some properties of nitrogen-mixed ZnO thin films Thin Solid Films, 281-282(1996) 445-448.
    [80] A. Kamata, H. Mitsuhashi, and H. Fujita, Origin of the low doping efficiency of nitrogen acceptors in ZnSe grown by metalorganic chemical vapor deposition, Appl. Phys. Lett., 63(1993) 3353-3354.
    [81] T. Yamamoto, H. K. Yoshida. Solution using a codoping method to unipolarity for the fabrication of p-type ZnO, Jpn J. Appl. Phys., 38(1999) L166-L169.
    [82] J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu, and L. D. Chen, Deposition and electrical properties of N-In codoped p-type ZnO films by ultrasonic spray pyrolysis, Appl. Phys. Lett., 84(2004) 541-543.
    [83] J. M. Bian, X. M. Li, C. Y. Zhang, W. D. Yu, and X. D. Gao, p-type ZnO films by monodoping of nitrogen and ZnO-based p-n homojunctions, Appl. Phys. Lett., 85(2004) 4070-4072.
    [84] J. M. Bian, X. M. Li, C. Y. Zhang, L. D. Chen, and Q. Yao, Synthesis and characterization of two-layer-structured ZnO p-n homojunctions by ultrasonic spray pyrolysis, Appl. Phys. Lett., 84(2004) 3783-3785.
    [85] J. M. Bian, X. M. Li, L. D. Chen, and Q. Yao, Properties of undoped n-type ZnO film and N-In codoped p-type ZnO film deposited by ultrasonic spray pyrolysis Chem. Phys. Lett. 393(2004) 256-259.
    [86] C. Y. Zhang, X. M. Li, J. M. Bian, W. D. Yu, and X. D. Gao, Structural and electrical properties of nitrogen and aluminum codoped p-type ZnO films, Solid State Commun. 132(2004) 75-78.
    [87] G. D. Yuan, Z. Z. Ye, L. P. Zhu, Q. Qian, B. H. Zhao, R. X. Fan, Craig L. Perkins, S. B. Zhang, Control of conduction type in Al- and N-codoped ZnO thin film, Appl. Phys. Lett., 86(2005) 202106: 1-3.
    [88] G. Yuan, L. Zhu, Z. Ye, Q. Qian, B. Zhao, R. Fan, Effect of substrate temperature on structural, electrical and optical properties of AI-N co-doped ZnO thin films, Thin Solid Films, 484(2005) 420-425.
    [89] G. Yuan, Z. Ye, Q. Qian, L. Zhu J. Huang, B. Zhao, p-type ZnO thin films fabricated by Al-N co-doping method at different substrate temperature, Journal of Crystal Growth, 273(2005) 451-457.
    [90] G. Yuan, Z. Ye, L. Zhu, Y. Zeng, J. Huang, Q. Qian, and J. Lu, p-type conduction in Al-N co-doped ZnO films, Materials Letters, 58(2004) 3741-3744.
    [91] Z. Z. Ye, Q. Qian, G. Yuan, B. Zhao, D. Ma, Effect of oxygen partial pressure ratios on the properties of Al-N co-doped ZnO thin films, J. of Cryst. Growth, 274(2005) 178-182.
    [92] J. G. Lu, Z. Z. Ye, F. Zhuge, Y. J. Zeng, B. H. Zhao, and L. P. Zhu, p-type conduction in N-Al co-doped ZnO thin fihns, Appl. Phy. Lett., 85(2004) 3134-3135.
    [93] J. G. Lu, L. P. Zhu, Z. Z. Ye, Y. J. Zeng, E Zhuge, B. H. Zhao, and D. W. Ma, Improved N-Al codoped p-type ZnO thin films by introduction of a homo-buffer layer, J. Cryst. Growth 274(2005) 425-429.
    [94] Z. Z. Ye, F. Zhu-Ge, J. G. Lu, Z. H. Zhang, L. P. Zhu, B. H. Zhao, and J. Y. Huang, Preparation of p-type ZnO films by Al-N codoping method, J. Cryst. Growth, 265(2004) 127-132.
    [95] F. Zhuge, Z. Z. Ye, L. P. Zhu, J. G. Lu, B. H. Zhao, J. Y. Huang, Z. H. Zhang, L. Wang, and Z. G. Ji, Electrical and optical properties of Al-N co-doped p-type zinc oxide films, J. Cryst. Growth, 268(2004) 163-168.
    [96] Y. J. Zeng, Z. Z. Ye, J. G. Lu, L. P. Zhu, D. Y. Li, B. H. Zhao, J. Y. Huang, Effect of Al content on properties of Al-N codoped ZnO films, Appl. Sur. Sci. 249(2005) 203.
    [97] A. E Kohan, G. Ceder, D. Morgen, First-principles study of native point defects in ZnO, Phys Rev B, 61(2000) 15019-15027.
    [98] P. S. Xu, Y. M. Sun, C. S. Shi, F. Q. Xu, H. B. Pan, The electronic structure and spectral properties of ZnO and its defects, NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 199(2003) 286-290.
    [99] E. J. Tarsa., B. Heying, X. H. Wu, P. Fini, S. P. Denbaars and J. S. Speck, Homoepitaxial growth of GaN under Ga-stable and N-stable conditions by plasma-assisted molecular beam epitaxy, J. Appl. Phys. 82(2000) 5472-5479.
    [100] B. Heying, R. Averbeck, L. F. Chen, E. Haus, H. Riechert, and J. S. Speck, Control of GaN surface morphologies using plasma-assisted molecular beam epitaxy, J. Appl. Phys. 88(2000) 1855-1860.
    [101] H. J. Ko, T. Yao, Y. F. Chen, and S. K, Hong, Investigation of ZnO epilayers grown under various Zn/O ratios by plasma-assisted molecular-beam epitaxy, J. Appl. Phys. 92(2002) 4354-4360.
    [102] H. Kato, M. Sano, K. Miyamoto, and T. Yao, Effect of O/Zn Flux Ratio on Crystalline Quality of ZnO Films Grown by Plasma-Assisted Molecular Beam Epitaxy, Jpn. J. Appl. Phys., Part 242(2003) 2241-2242.
    [103] I. Marki, M. Salt, H. P. Herzig, Practical and theoretical modal analysis of photonic crystal waveguides, J. Appl. Phys. 96(2004) 7-11.
    [104] Y. F. Chen, S. K. Hong, H. J. Ko, V. Kirshner, H. Wenisch, and T. Yao, Effects of an extremely thin buffer on heteroepitaxy with large lattice mismatch, Appl. Phys. Lett. 78(2001) 3352-3354.
    [105] A. Setiawan, H. J. Ko, S. K. Hong, Y. F. Chen, Preparation and some properties of nitrogen-mixed ZnO thin films, Thin Solid Films, 445(2003) 213-218.
    [106] S. H. Lim, J. Washburm, Z. Liliental-Weber, D. Shindo, Transmission electron microscopy of threading dislocations in ZnO films grown on sapphire, J. Vac. Sci. Technol. A 19(2001) 2601-2603.
    [107] J. Sanchez, Q. Liu, M. Skowronski, Nucleation of threading dislocations in sublimation grown silicon carbide, J. Appl. Phys. 91(2002) 1143-1148.
    [108] S. H. Lim, D. Shindo, H. B. Kang, K. Nakamura, Study of defects and interfaces in epitaxial ZnO films on(11(2)over-bar0) A1203 grown by electron cyclotron resonance-assisted molecular beam epitaxy, J. Cryst. Growth, 225(2001) 202-207
    [109] S. Hong, T. Hanada, H. Ko, Y. Chen, T. Yao, ZnO films grown by Control of crystal polarity in a wurtzite crystal: plasma-assisted molecular-beam epitaxy on GaN, Phys. Rev. B 65(2002) 115331: 1-10..
    [110] X. L. Du, M. Murakami, H. Iwaki, Y. Ishitani and A. Yoshikawa, Effects of Sapphire(0001) Surface Modification by Gallium Pre-Exposure on the Growth of High-Quality Epitaxial ZnO Film Jpn. J. Appl. Phys. 41(2002) L1043-1045.
    [111] Y. Wang, X. L. Du, Defect characteristics of ZnO film grown on Formula Not Shown sapphire with an ultrathin gallium wetting layer, J. of Crys. Growth 273(2004) 100-105.
    [112] D. Gerthsen. D. Litivinov, T. Gruber, Origin and consequences of a high stacking fault density in epitaxial ZnO layers, Appl. Phys. Lett. 81(2002) 3972-3974.
    [113] U. Iwata, L. Lindefelt, S. Oberg, and P. R. Briddon, Localized electronic states around stacking faults in silicon carbide, Phys. Rev. B 65(2003) 033203: 1-4.
    [114] U. Iwata, L. Lindefelt, S. Oberg, and P. R. Briddon, Cubic polytype inclusions in 4H-SiC, J. Appl. Phys. 93(2003) 1577-1585.
    [115] C. Stampfl and D. W. Van, Energetics and electronic structure of stacking faults in AIN, GaN, and InN, Phys. Rev. B 57(1998) R15052-R15055.
    [116] Y. Yan, G. M. Dalpian, M. M. Al-Jassim, and S. Wei, Energetics and electronic structure of stacking faults in ZnO, Phys. Rev. B 70(2004) 193206: 1-4.
    [117] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makina, M. Sumiya, K. Ohtani, S. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Repeated temperature modulatiun epitaxy for p-type doping and light-emitting diode based on ZnO, Nature materials, 4(2005) 42-46..
    [118] W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, S. M. Liu, X. Zhou, R. Zhang, Y. Shi, Y. D. Zheng, Y. Hang, C. L. Zhang, Blue-yellow ZnO homostructural light-emitting diode realized by metalorganic chemical vapor deposition technique, Appl. Phys. Lett. 88(2006) 092101: 1-3.
    [119] Y. R. Ryu, T. S. Lee, J. H. Leem, H. W. White, Fabrication of homostructural ZnO p-n junctions and ohmic contacts to arsenic-doped p-type ZnO, Appl. Phys. Lett, 83(2003) 4032-4034.
    [120] Y. R. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, Y. S. Park, C. J. Youn, ZnO devices: Photodiodes and p-type field-effect transistors, Appl. Phys. Lett. 87(2005) 153504: 1-3.
    [121] T. S. Jeong, M. S. Han, J. H. Kim, C. J. Youn, Y. R. Ryu, H. W. White, Crystallinity-damage recovery and optical property of As-implanted Zno crystals by post-implantation annealing, J. Cryst. Growth, 275(2005) 541-547.
    [122] X. L. Guo, H. Tabata, T. Kawai, Epitaxial growth and optoeleetronic properties of nitrogen-doped ZnO films on(1120) A1203 substrate, J. Cryst. Growth, 237(2002) 544-547.
    [123] S. T. Uzemen, G. Xiong, J. Wilkinson, B. Mischuek, K. B. Ucer, R.T. Williams. roduction and properties of p-n junctions in reactively sputtered ZnO, Physiea B, 308-310(2001) 1197-1200.
    [124] S. J. Jiao, Z. Z. Zhang, Y. M. Lu, D. Z. Shen, B. Yao, J. Y. Zhang, B. H. Li, D. X. Zhao, X. W. Fan, Z. K. Tang, ZnO p-n junction light-emitting diodes fabricated on sapphire substrates, Appl. Phys. Lett. 88(2006) 031911: 1-3.
    [125] 叶志镇,徐伟中,曾昱嘉,江柳,赵炳辉,朱丽萍,吕建国,黄靖云,汪雷,李先杭,MOCVD法制备ZnO同质发光二极管,半导体学报,26(2005) 2264-2266.
    [126] T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, Band gap engineering based on MgxZnl-xO and CdyZnl-yO ternary alloy films, Appl. Phys. Lett. 78,(2001) 1237-1239.
    [127] Y. Zhang, J. He, Z. Ye, L. Zou, J. Huang, L. Zhu, B. Zhao, Structural and photoluminescence properties of Zn0.8Mg0.2O thin films grown on Si substrate by pulsed laser deposition, Thin Solid Films, 458(2004) 161-164.
    [128] T. Gruber, C. Kirchner, R. Kling, F. Reuss, and A. Waag, ZnMgO epilayers and ZnO-ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region, Appl. Phys. Lett. 84(2004) 5359-5361.
    [129] Z. Ye, D. Ma, J. He, J. Huang, B. Zhao, X. Luo, Z. Xu, Structural and photoluminescent properties of ternary Zn_(1-x)Cd_xO crystal films grown on Si(111) substrates, J Cryst. Growth, 256(2003) 78-82.
    [130] D. W. Ma, Z. Z. Ye, and L. L. Chen, Dependence of structural and optical properties of Zn1-xCdxO films on the Cd composition, Phys. Status Solidi A 201(2004) 2929-2933
    [131] J. Chen, F. Ren, Y. Li, D. P. Norton, S. J. Pearton, A. Osinsky, J. W. Dong, P. P. Chow, J. F. Weaver, Measurement of Zn0.95Cd0.050/ZnO(0001) heterojunction band offsets by x-ray photoelectron spectroscopy Appl. Phys. Lett. 87(2005) 192106: 1-3.
    [132] A. G. Milnes and D. L. Feucht, Heterojunctions and metal-semiconductor junctions, Academic Press New York(1972)(Chap. 6, 7).
    [133] J. Bardeen, Surface states and rectification at a metal semiconductor contact, Phys. Rev., 71(1947) 717-727.
    [134] E. H. Rhoderick, Metal-semiconductor contacts, IEEE Proc. 129(1)(1982) 1-14.
    [135] V. L. Rideout, A review of the theory, technology and applications of metal-semiconductor rectifiers, Thin Solid Films, 48(1978) 261-291.
    [136] A. Rusu, C. Bulucea, Enhanced breakdown voltage in planar metal-overlap laterally diffused(MOLD) schottky diodes, Appl. Phys. Lett. 27(1975) 620-622.
    [137] Naotake Toyama, Capacitance decrease due to stress in a Cu-doped, n-type Si Schottky diode, Appl. Phys. Lett. 46(1985) 892-894.
    [138] F. Huang, O. Kenneth, A Schottky diode clamped merged drain CMOS structure Solid-State Electronics, 46(2002) 1251-1257.
    [139] M. Badila, G. Brezeanu, J. Millan, P. Godignon, V. Banu, Silicon carbide Schottky and ohmic contact process dependence, Diamond and Related Materials, 11(2002) 1258-1262.
    [140] B. Huang, W. Ke, J. Hsu, Successive current-voltage measurements of a thick isolated diamond film, Materials Chemistry and Physics, 72(2001) 214-217.
    [141] 叶志镇,陈汉鸿,刘榕,张吴翔,赵炳辉,直流磁控溅射ZnO薄膜的结构和室温PL谱,半导体学报,22(2001) 1015-1018.
    [142] C. A. Mead, Surface barriers on ZnSe and ZnO, Phys. Lett. 18,(1965) 218-218.
    [143] A. Y. Polyakov, N. B. Smirnov, E. A. Kozhukhova, V. I. Vdodin, K. Ip, Y. W. Heo, D. P. Norton, and S. J. Pearton, Electrical characteristics of Au and Ag Schottky contacts on n-ZnO, Appl. Phys. Lett. 83(2003) 1575-1577.
    [144] R. C. Neville and C. A. Mead, Surface barriers on Zinc oxide, J. Appl. Phys. 41(1970) 3795-3800..
    [145] B. J. Koppa, R. F. Davis, and R. J. Nemanich, Gold schottky contacts on oxygen plasma-treated, n-type ZnO(000-1), Appl. Phys. Lett. 82(2003) 400-402.
    [146] N. Ohashi, J. Tanaka, T. Ohgaki, H. Haneda, M. Ozawa, and T. Tsurumi, Isothermal capacitance transient spectroscopy for deep levels in Co- and Mn-doped ZnO single crystals, J. Mater. Res. 17,(2002) 1529-1535.
    [147] F. D. Auret, S. A. Goodman, M. Hayes, M. J. Legodi, H. A. van Laarhoven, and D. C. Look, Electrical characterization of 1.8 MeV proton-bombarded ZnO Appl. Phys. Lett. 79(2001) 3074-3076.
    [148] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, ZnO Schottky ultraviolet photodetectors, J. Cryst. Growth 225(2001) 110-113.
    [149] H. Sheng, S. Muthukumar, N. W. Emanetoglu, and Y. Lu, Schottky diode with Ag on(11-20) epitaxial ZnO film, Appl. Phys. Lett. 80(2002) 2132-2134.
    [150] J. C. Simpson and J. F. Cordora, Characterization of deep levels in zinc oxide, J. Appl. Phys. 63(1988) 1781-1783.
    [151] S. -H. Kim, H. -K. Kim, and T. -Y. Seong, Effect of hydrogen peroxide treatment on the characteristics of Pt Schottky contact on n-type ZnO, Appl. Phys. Lett. 86,(2005) 112101: 1-3
    [152] K. Ip, B. P. Gila, A. H. Onstine, E. S. Lambers, Y. W. Heo, K. H. Baik, D. P. Norton, S. J. Pearton, S. Kim, J. R. Laroche, F. Ren, Improved Pt/Au and W/Pt/Au Schottky contacts on n-type ZnO ozone cleaning, Appl. Phys. Lett. 84(2004) 5133-5135.
    [153] K. Ip, Y. W. Heo, K. H. Baik, D. P. Norton, S. J. Pearton, S. Kim, J. R. LaRoche, and F. Ren, Temperature-dependant characteristics of Pt Schottky contacts on n-type ZnO, Appl. Phys. Lett. 84(2004) 2835-2837.
    [154] 郑伟涛,薄膜材料与薄膜技术,化学工业出版社,2004,P68-73
    [155] 杨烈宇,关文铎,顾卓明,材料表面薄膜技术,人民交通出版社,1991,P23-26
    [156] 刘榕,溅射ZnO薄膜结构与光学性能研究,浙江大学硕士学位论文,2000,P15-19
    [157] [日]金原粲著,杨希光译,薄膜的基本技术,科学出版社,1982,P44-60
    [158] D. C. Look, Electrical and optical properties of p-type ZnO, Semiconductor science and technology, 20(2005) s55-s61
    [159] X. Jiang, C. L. Jia, B. Szyszka, Manufacture of specific structure of aluminium-doped zinc oxide films by patterning the substrate surface, Appl. Phys. Lett. 80(2002) 3090: 1-1.
    [160] N. Fujimura, T. Nishihara, S. Goto, J. Xu, T. Ito, J., Control of preferred orientation for ZnOx films: Control of self-texture, Crystal Growth, 130(1993) 269-279.
    [161] Y. Kajikawa, Texture development of non-epitaxial polycrystalline ZnO films, J. Cryst. Growth, 289(2006) 387-394.
    [162] H. S. Lee, J. Y. Lee, T. W. Kim, D. W. Kim, W. J. Cho, Formation mechanism of preferential c-axis oriented ZnO thin films grown on p-Si substrates, J. Mater. Sci. 39(2004) 3525-3528.
    [163] K. S. Kim, H. W. Kim, C. M. Lee, Effect of growth temperature on ZnO thin films deposited on SiO_2 substrate, Mater. Sci. Eng. B 98(2003) 135-139.
    [164] S. V. Prasad, S. D. Walck, J. S. Zabinski, Microstructural evolution in lubricious ZnO films grown by pulsed laser deposition, Thin Solid Films 360(2000)107-117.
    [165] J. H. Choi, H. Tabata, T. Kawai, Initial preferred growth in zinc oxide thin films on Si and amorphous substrates by a pulsed laser deposition, J. Crystal Growth 226(2001) 493-500.
    [166] L. Znaidi, G. J. A. A. Soler Illia, S. Benyahia, C. Sanchez, A. V. Kanaev, Oriented ZnO thin films synthesis by sol-gel process for laser application, Thin Solid Films 428(2003) 257-262.
    [167] L. Znaidi, G. J. A. A. Soler Illia, R. Le Guennic, C. Sanchez, A. V. Kanaev, Elaboration of ZnO thin films with preferential orientation by a soft chemistry route, J. Sol-Gel Sci. Technol. 26(2003) 817-821.
    [168] K. Govender, D. S. Boyle, P. B. Kenway, P. O. Brien, Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution?, J. Mater. Chem. 14(2004) 2575-2591.
    [169] M. K. Puchert, P. Y. Timbrell, R. N. Lamb, Postdeposition annealing of radio frequency magnetron sputtered ZnO films, J. Vac. Sci. Technol. A 14(1996) 2220-2230.
    [170] S. Fujihara, C. Sasaki, T. Kimura, Crystallization behaviour and origin of c-axis orientation in sol-gel-derived ZnO: Li thin films on glass substrates, Appl. Surf. Sci. 180(2001) 341-350.
    [171] Y. X. Liu, Y. C. Liu, D. Z. Shen, G. Z. Zhong, X. W. Fan, X. G. Kong, R. Mu, D. O. Henderson, Preferred orientation of ZnO nanoparticles formed by post-thermal annealing zinc implanted silica, Solid State Commun. 121(2002) 531-536.
    [172] S. Hayamizu, H. Tabata, H. Tanaka, and T. Kawai, Preparation of crystallized zinc oxide films on amorphous glass substrates by pulsed laser deposition, J. Appl. Phys. 80(1996) 787-791.
    [173] N. H. Tran, A. J. Hartrnann, R. N. Lamb, Structural order ofnanocrystalline ZnO films, J. Phys. Chem. B 103(1999) 4264-4268.
    [174] A. Wander, N. M. Harrison, An ab-initio study of ZnO(11-20), Surf. Sci. 468(2000) L851-L855.
    [175] A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T. S. Turner, G. Thornton, N. M. Harrison, Stability of polar oxide surfaces, Phys. Rev. Lett. 86(2001) 3811-3814.
    [176] F. Claeyssens, C. L. Freeman, N. L. Allan, Y. Sun, M. N. R. Ashfold, J. H. Harding, Growth of ZnO thin films-experiment and theory, J. Mater. Chem. 15(2005) 139-148.
    [177] L. G. Wang, A. Zunger, Cluster-doping approach for wide-gap semiconductors: the case of p-type ZnO, Phys. Rev. Lett. 90(2003) 256401: 1-4.
    [178] Y. Yan, S. B. Zhang, S. T. Pantelides, Control of doping by impurity chemical potentials: predictions for p-type ZnO, Phys. Rev. Lett. 86(2001) 5723-5726.
    [179] Y. Miao, Z. Ye, W. Xu, F. Chen, X. Zhou, B. Zhao, L. Zhu, J. Lu, p-type conduction in phosphorus-doped ZnO thin films by MOCVD and thermal activation of the dopant, Appl. Surf. Sci. in press.
    [180] K. Nakahara, H. Takasu, P. Fons, A. Yamada, K. Iwata, K. Matsubara, R. Hunger, S. Niki, Growth of N-doped and Ga+N-codoped ZnO films by radical source molecular beam epitaxy, J. Cryst. Growth, 237-239(2002) 503-508.
    [181] L. L. Chen, J. G. Lu, Z. Z. Ye, Y. M. Lin, B. H. Zhao, Y. M. Ye, J. S. Li, L. P. Zhu, P-type behaviour in In-N codoped ZnO thin films, Appl. Phys. Lett. 87(2005) 252106: 1-3.
    [182] T. Yamamoto, Codoping method for solutions of doping problems in wide-band-gap semiconductors, Phys. Stat. Sol. 193(2002) 423-433.
    [183] 刘恩科,朱秉生,罗晋生,半导体物理学(第六版),电子工业出版社,2003,P154
    [184] W. J. Fan, A. P. Abiyasa, S. T. Tan, S. E Yu, X. W. Sun, J. B. Xia, Y. C. Yeo, M. F. Li, T. C. Chong, Electronic structures of wurtzite ZnO and ZnO/MgZnO quantum well, J. Cryst. Growth, 287(2006) 28-33.
    [185] 李云奇,真空镀膜技术与设备,东北工学院出版社,1992,P99-117
    [186] 顾培夫,薄膜技术,浙江大学出版社,1990,P42-56
    [187] 王力衡,黄运添,郑海涛,薄膜技术,清华大学出版社,1991,P62-67.
    [188] D. M. Carballeda-Galicia, R. Castanedo-Perez, O. Jimenez-Sandowal, S. Jimenez-Sandoval, G. Torres-Delgado, C. I. Zuniga-Romero, Thin Solid Films 371(2000) 105-108.
    [189] K. Tominaga, M. Katatoka, H. Manabe, T. Ueda, I. More, Transparent ZnO: Al films prepared by co-sputtering of ZnO: Al with either a Zn or an Al target, Thin Solid Films 291(1996) 84-87.
    [190] B. S. Li, Y. C. Liu, Z. Z. Zhi, D. Z. Shen, Y. M. Lu, J. Y. Zhang, X. W. Fan, R. X. Mu, D. O. Henderson, Optical properties and electrical characterization of p-type ZnO thin films prepared by thermally oxiding Zn3N2 thin films, J. Mater. Res. 18(2003) 8-13.
    [191] E. C. Lee, Y. S. Kim. Y. G. Jin, K. J. Chang, Compensation mechanism for N acceptors in ZnO, Physical Review B. 64(2001) 085120: 1-5.
    [192] S. -H. Wei, S. B. Zhang, Chemical trends of defect formation and doping limit in Ⅱ-Ⅵ semiconductors: The case of CdTe, Phys. Rev. B 66(2002) 155211: 1-3.
    [193] 曹锡章,宋天佑,王杏乔,无机化学(第三版,上册),高等教育出版社,1994,P181
    [194] X. Li, B. Keyes, S. Asher. S. B. Zhang, S. Wei, T. J. Coutts, S. Limpijumnong, C. G. Van De Walle, Hydrogen passivation effect in nitrogen-doped ZnO thin films, Appl. Phys. Lett. 86(2005) 122107: 1-3.
    [195] S. B. Zhang, S. -H. Wei, and Y. Yan, The thermodynamics of codoping: how does it work? Physica B 302/303(2001) 135-139.
    [196] H. Matsui, H. Saeki, T. Kawai, H. Tabata, B. Mizobuchi, N doping using N2O and NO sources: From the viewpoint of ZnO, J. Appl. Phys. 95(2004) 5882-5888.
    [197] G. Blatter, F. Greuter, Carder transport through grain boundaries in semiconductors, Phys. Rev. B, 33(1985) 3952-3966.
    [198] T. L. Tansley, D. F. Neely, Adsorption, desorption and conductivity of sputtered zinc oxide thin films, Thin Solid Films 121(1984) 95-107
    [199] D. H. Zhang, H. L. Ma, Scattering mechanisms of charge carriers in transparent conduction oxide films Appl. Phys. A 62(1996) 487-492.
    [200] 陈汉鸿,ZnO薄膜和ZnO紫外探测器,浙江大学硕士学位论文,2002,P53-55
    [201] 吕建国,ZnO半导体光电材料的制备及其性能的研究,浙江大学博士学位论文,2005,P130-135.
    [202] F. Zhuge, L. Zhu, Z. Ye, J. Lu, J. Huang, F. Wang, Z. Ji, ZnO p-n homojunctions and ohmic contacts to Al-N co-doped p-type ZnO, Appl. Phys. Lett. 87(2005) 092103: 1-3.
    [203] S. B. Zhang, S. -H. Wei, and A. Zunger, P vs n, Doping asymmetry and defect physics in ZnO, Phy. Rev. B 63,(2001) 075205.
    [204] W. T. Lim, C. H. Lee, Highly oriented ZnO thin films deposited on Ru/Si substrates, Thin Solid Films, 353(1999) 12-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700