H_2O_2溶液反应法制备纳米氧化锌颗粒及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米氧化锌颗粒是重要的氧化物半导体材料,具有广泛的应用范围。本文提出了一种新的制备纳米氧化锌的方法和工艺,对其结构、光、电性能进行了表征,并对纳米氧化锌的应用进行了初步研究。
     我们知道,目前纳米氧化锌颗粒的制备方法很多,但现有各种制备方法通常存在工艺复杂、成本高、粒径与均匀性难以控制、产品纯度低的缺点,很难达到光、电应用所需的要求。因此很有必要研究一种纯度高、粒度可控且均匀性好、生产成本低、可规模化生产的纳米氧化锌颗粒的制备方法。为此,本文发明了一种利用金属锌与双氧水氧化反应生成氢氧化锌溶胶,再通过喷雾热解以及热处理生成粒径可控的纳米氧化锌颗粒的方法。该方法工艺简单、成本低,可以实现规模化生产,特别需要指出的是该方法不同于一般的湿化学方法,因为无需添加沉淀剂因而产品纯度很高。
     本文比较系统地对制备的纳米氧化锌进行了表征。利用XRD分析了影响氧化锌颗粒粒径的因素,包括金属锌与双氧水反应时的反应温度、反应时间、反应物浓度、溶液PH以及产物的热处理温度。实验结果发现,热处理温度对粒径的影响最大,热处理温度从200℃升高到600℃时,纳米氧化锌颗粒的粒径从5nm增大到25nm,因此在本论文发明的方法中,纳米颗粒粒径可以通过控制热处理温度来控制。通过FTIR和Raman光谱研究了纳米氧化锌颗粒的中原子的键合形态,实验发现E_1声子频率随着粒径减小出现较大的蓝移,而E_2声子频率只有在粒径较小时才出现较明显的红移,分析表明氧化锌纳米颗粒内部可能存在应力。利用AFM、SEM和SAXS对氧化锌的形貌进行了表征,AFM和SEM照片显示氧化锌形貌为球形颗粒,SAXS分析结果显示这些颗粒没有明锐的相界面,其质量分形维数为1.9。
     纳米氧化锌由于其优异的光电性能和潜在的应用价值因而成为研究热点之一。本文在成功获得纯度高、粒径可控的纳米氧化锌颗粒的基础之上,进一步研究了纳米氧化锌颗粒的光、电、气敏性质。本文利用紫外可见吸收谱和荧光光谱分别研究了纳米氧化锌颗粒的紫外可见光吸收性能和光致发光性能。经过分析发现,纳米氧化锌颗粒的光学禁带宽度一方面由于量子约束效
ZnO nanoparticle is an important oxide semiconductor material, which is of potential applications in many areas. In this paper, we invented a novel method to prepare ZnO nanoparticles. The crystalline structure, optical and electrical properties of the nanoparticles were characterized, and some of the applications were investigated.Untill now, various techniques have been employed to prepare ZnO nanoparticles, however these methods are usually complex and costly in order to control the particle size, the size uniformity, and the purity, which are very important for optical and electrical device applications. So, it is necessary to find a new method to synthesize ZnO nanoparticles with the following properties: high purity, size controllability, size uniformity, low cost and mass production. In this paper, a novel method for fabricating ZnO nanoparticles was described: Firstly, zinc (Zn) was oxidized in hydrogen peroxide (H_2O_2) solution to form Zn(0H)2 sol;secondly, the sol was sprayed and annealed to form ZnO nanoparticles. Since no precipitation reagent was added, the purity of ZnO nanoparticles prepared by this method is super to that of ZnO nanoparticles prepared by other liquid chemical method.The as prepared ZnO nanoparticles were characterized systematically. The particle size was investigated by X-ray diffraction (XRD). The influence parameters on the particle size, including: oxidation reaction temperature, reaction time, H_2O_2 concentration, solution PH value and processing temperature were investigated by XRD. It is found that the processing temperature has great influence on the particle size. The particle size of ZnO nanoparticles is in the range of 5-25 nm for annealing temperature from 200 ℃ to 600 ℃. By controlling the annealing temperature , the particle size can be easily controlled. The atomic bonding characters oin the nano-particles were investigated by FTIR and Raman spectrum, The El mode frequency shows blue-shift, while the E2 mode frequency shows red-shift as the particle size decreases. These results
    show that there exists the stress in the nano-crystalline ZnO.particles.The microstructure of ZnO nanoparticles was investigated by AFM, SEM and SAXS. Both AFM and SEM results show that nano-ZnO was spheric shaped, and the results of SAXS show that the particles have no sharp interface and the fractal dimensionality is 1.9.The research has been focusing on nano ZnO due to its excellent optical and electrical properties and its prospects in optoelectricals applications. On the basis of the successful preparation of nano ZnO particles with high purity and size controllability, the optical properties, the electrical properties, and gas sensitivity of ZnO nanoparticles were characterized. The optical properties of ZnO nanoparticles were studied by UV-vis absorption and photoluminescence (PL). The optical energy bandgap show typical blue-shift as the partcile size decreases, which is attributed to the quantum effect, but the ultraviolet PL peaks show red shift compared with the optical energy bandgap of the bulk ZnO, which is attributed to the acceptor-exciton complex.At last, we investigated the applications of ZnO nanoparticles. Firstly, we prepared nano-ZnO embed SiO2 glass. The photoluminescence of the nano ZnO embed S1O2 glass and the influence parameters were investigated. Secondly, the mesoporous S1O2 glass was obtained by treating the nano ZnO embedded SiO2 glass in HC1 solution. Thirdly, conductive Al-doped ZnO nanoparticles were prepared, and the measurement of the resistivity of nano-ZnO was discussed. Then, ZnO nanoparticle film based photodetector and photoconductance were investigated. The results show that the nanoparticles with larger particle size has high responsivity. Finally, ZnO nanoparticle films made gas sensor was demonstarted, which can work at room temperature without a heater.
引文
1.朱静:纳米材料和器件,北京:清华大学出版舍,2003,1~8
    2.张志焜,崔作林:纳米技术与纳米材料,北京:国防工业出版社,2000,2
    3.马远荣:纳米科技,汕头:汕头大学出版社,2003,26~148
    4.王永康,王立:纳米材料科学与技术,杭州:浙江大学出版社,2002,236
    5.盖国胜:超微粉体技术,北京:化学工业出版社,2004,324~337
    6.张立德,牟季美:纳米材料和纳米机构北京:科学出版社,2001,5
    7. C.Hamaguchi, T.Mori, T.Wada, K.Terashima, K.Taniguchi, K.Miyatsuji, H.Hihara: Physics of nanometer structure devices, Microelectron.Eng., 1984, 2(1-3): 34-43
    8. P. Ball, L. Garwin: Science at the atomic scale, Nature, 1992, 355:761~763
    9. A.A.Hirsch,T.Massalha, G.Galeczki: Magnetic surface, size and time effects in granular films of iron, J.Magn.mater., 1988, 75:209~224
    10. R. Kubo: Electronic properties of metallic fine particles, Jpa.J.Phys.Soc., 1962, 6: 975~986
    11. L.E.Brus: Electro-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state, J.Chem.Phys., 1984, 80:4403~4409
    12. L.E.Brus: Electronic wave-functions in semiconductor clusters-experiment and theory, J.Chem.Phys., 1986, 90:2555-2560
    13. S. V. Nair, S. Sinha, K. C. Rustagi: Quantum size effects in spherical semiconductor microcrystals, Phys.Rev.B, 1987, 35:4098~4101
    14. C. W. J. Beenakker: Theory of coulomb-blockade oscillations in the conductance of a quantum dot, Phys. Rev. B, 1991, 44:1646-1656
    15. D. L. Feldhein, C.D. Keating: Self-assembly of single electron transistors and related devices, Chem. Soc. Rev., 1998, 27:1~12
    16. M. I. Vexler, A. E. Hdiy, D. Grgec, S. E. Tyaginov, R. Khlil, B. Meinerzhagen, A.F. Shulekin, I.V. Grekhov: Tunnel charge transport within silicon in reversely-biased MOS tunnel structures, Microelectronics J., 2006, 37:114~120
    17. T. Takagahara: Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots, Phy. Rev.B, 1993, 47:4569~4584
    18. M. N. Baibich, J. M. Broto, A. Fert, E Nguyen Van Dau, E Petroff, P. Eitenne, G. Creuzet, A. Friederich, J. Chazelas: Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices, Phys. Rev. Lett., 1988,61:2472~2475
    19. S. Fafard, K. Hinzer, S. Raymond, M. Dion, J. McCaffrey, Y. Feng, S. Charbonneau: Red-Emitting Semiconductor Quantum Dot Lasers, Science 1996, 274:1350~1353
    20. D. J. Bottomley, G. Lupke, M. L. Ledgerwood, X. Q. Zhou, H. M. van Driel: Second harmonic generation from SimGen superlattices, Appl. Phys. Lett., 1993, 63 (17): 2324~2326
    21. D. Herest, E Voolless: Manifestation of nano-sized effects in photoinduced nonlinear optics of CdI2-Cu layered single crystals, Opti. Lasers Eng., 2004, 42:85~89
    22. B. V. Reddy, S. N. Khanna, B. I. Dunlap: Giant magnetic moments in 4d clusters, Phys.Rev.lett., 1993, 70:.3323-3326
    23. A. J. Cox, J. GLouderback, L. A. Bloomfield: Experimental observation of magnetism in rhodium dusters, Phys.Rev.lett., 1993, 71:923-926
    24. W. A. Deheer, P. Milani, A. Chatelain: Spin relaxation in small free iron clusters, Phys.Rev.lett., 1990, 65:488~491
    25. H. Karzel, W. Potzel, M. Kofferlein, W. Schiessl, M. Steiner, U. Hiller, G. M. Kalvius: Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures, Phys. Rev. B, 1996, 53:11425-11438
    26. S. Desgreniers: High-density phases of ZnO: structural and compressive parameters, Phy. Rev. B, 1998, 58:14102~14105
    27. K. K. Kim, N. Koguchi: Fabrication of ZnO quantum dots embedded in an amorphous oxide layer, Appl.Phys. Lett., 2004, 84:3810~3812
    28. Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa: Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films, Appl. Phy. Lett, 1998, :72 : 3270~3272
    29. C. Wang, Z.G Ji, J.H. Xi, J. Du, Z.Z. Ye: Fabrication and characteristics of the low-resistive p-type ZnO thin films by DC reactive magnetron sputtering, Mater. Lett., 2006, 60:912-914
    30. D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, G. Cantwell: Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy, Appl. Phys. Lett., 2002, 81:1830~1832
    31. K. K. Kim, H. S. Kim, D. K. Hwang, J. H. Lim, S. J. Park: Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant, Appl. Phys. Lett., 2003, 83:63~65
    32. J.G Lu, Z. Z. Ye, G. EZhu, Y. J. Zeng, B. H. Zhao, L. P. Zhu: p-type conduction in N-A1 co-doped ZnO thin films, AppL Phys. Lett., 2004, 85:3134~3135
    33. Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukiehev, D. M. Bagnall: Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates, Appl.Phys. Lett., 2003, 83:4719~4721
    34. M. Benetti, D. Cannata, E Di Pietrantonio, E. Verona, E Verardi, N. Scarisoreann, D. Matei, G. Dineseu, A. Moldovan, M. Dinescu: Structural and piezoelectric properties of pulsed laser deposited ZnO thin films, Superlatt. Microstruct., 2006, 39:366-375
    35. J. E Jung, J. B. Lee, J. S. Kim, J. S. Park: Fabrication and characterization of high frequency SAW device with IDTyZnOyAlNySi configuration: role of A1N buffer, Thin Solid Films, 2004, 447-448:605~609
    36. A. A. Vasilie, D. Godovski: Semiconductor sensors for determination of fluorine-containing gas mixtures, Sens. Actu.B, 1993, 14:705~707
    37. N. Hidehito, S. Hideko: Aluminum-doped ZnO thin film gas sensor capable of detecting freshness of sea foods, Sens. Aetuastors B, 1993, 14:715~717
    38. I. S. Jeong, J. H. Kim, H. H. Park, S. Im: n-ZnO/p-Si UV photodetectors employing AlOx films for antireflection, Thin Solid Films,2004, 447-448:111~114
    39. M. J. H. Henseler, W. C. T. Lee, E Miller, S. M. Durbin, R. J. Reeves: Optical and photoelectrical properties of ZnO thin films and the effects of annealing, J. Crystal Growth, 2006, 287:48-53
    40. W.J. Jeong, S. K. Kim, G.. C. Park: Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell, Thin Solid Films, 2006, 506-507: 180~183
    41. E. J. Luna-Arredondo, A. Maldonado, R. Asomoza, D.R. Acosta, M.A. Melendez-Lira, M. de la L. Olvera: Indium-doped ZnO thin films deposited by the sol-gel technique, Thin Solid Films, 2005, 490: 132-136
    42. Z.W. Pan, Z. R. Dai, Z. L. Wang: Nanobelts of Semiconducting Oxides, Science, 2001, 291:1947-1949
    43. M. H. Huang, S. Mao, H. N. Feick, H. O. Yah, Y. Y. Wu, H. Kind, E. Weber, R. Russo, ED. Yang: Room-temperature ultraviolet nanowire nanolasers, Science, 2001, 292: 1897~1899
    44. W. I. Park, D. H. Kim, S. W. Jung, G.C. Yia:Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods, Appl. Phys. Lett., 2002, 80:4232~4234
    45. Z. L.Wang,1, X.Y. Kong, J.M. Zuo: Induced Growth of Asymmetric Nanocantilever Arrays on Polar Surfaces, Phys.Rev.Lett., 2003, 91:185502-1~185502-4
    46. X. Y. Kong, Y Ding, R. S. Yang, Z. k. Wang: Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts, Science, 2004, 303:1348~1351
    47. J. G. Lu, Z. Z. Ye, J. Y. Huang, L. P. Zhu, B. H. Zhao, Z. L. Wang, Sz. Fujita: ZnO quantum dots synthesized by a vapor phase transport process, Appl. Phys. Lett., 2006, 88:063110-1~063110-3
    48. M.S. Arnold, P.H. Avouris, Z. W. Pan, Z. L. Wang: Field-Effect Transistors and gas sensors based on Single nanobelts of semiconducting oxides, J. Phys. Chem.B, 2003, 107, 659~663
    49. W. I. Park, J. S. Kim, G. C. Yi, M. H. Bae, H. J. Lee: Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors, AppL Phys.Lett., 2004, 85:5052~5054
    50. Z. Fan, D. Wang, P. C. Chang, W. Y. Tseng, J. G. Lu: ZnO nanowire field-effect transistor and oxygen sensing property, Appl. Phys.Lett., 2004, 85:5923~5925
    51. Z. Fan, P.C. Chang, J. G, Lu, E. C. Walter, R. M. Penner, C.H. Lin, H. P. Lee: Photoluminescence and polarized photodetection of single ZnO nanowires, Appl. Phys. Left., 2004, 85:6128~6130
    52. Y. W. Heo, L. C. Tien, Y. Kwon, D. P. Norton, S. J. Pearton, B. S. Kang, F. Ren: Depletion-mode ZnO nanowire field-effect transistor, Appl. Phys. Lett., 2004, 85: 2274~2276
    53. X. D. Bai, P. X. Gao, Z. L. Wang: Dual-mode mechanical resonance of individual ZnO nanobelts, AppL Phys. Lett., 2003, 82:4806~4808
    54. M. H. Zhao, Z. L. Wang, S. X. Mao: Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope, Nano Lett., 2004, 4: 587~590
    55. Y. W. Heo, L. C. Tien, D. P. Norton, B. S. Kang, E Ren, B. P. Gila, S. J. Pearton: Electrical transport properties of single ZnO nanorods, Appl. Phys. Lett., 2004, 85:2002~2004
    56. J. H. Choy, E.S. Jang, J.H. Won, J.H. Chung, D.J. Jang, Y. W. Kim: Soft solution route to directionally grown ZnO nanorod arrays on Si wafer;room-temperature ultraviolet laser, Adv. Mater., 2003, 15:1911-1914
    57.陈汉鸿:ZnO薄膜和ZnO紫外探测器,浙江大学硕士论文,2002,4~5
    58. A. O. Gamer, E. Leibold, B. van Ravenzwaay: The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin, Toxicology in Vitro, 2006, 20:301~307
    59. J. Villasenor, P. Reyes, G. Pecchi: Photodegradation of Pentachlorophenol on ZnO, J. Chem. Technol. Biotechnol., 1998,72:105~110
    60. H. F. Lin, S. C. Liao, S. W. Hung: The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst, J. Photochem.Photobi.A, 2005, 174:82~87
    61. M. D. Driessen, T. M. Miller, V. H. Grassian: Photocatalytic oxidation of trichloroethylene on zinc oxide: characterization of surface-bound and gas-phase products and intermediates with FT-IR spectroscopy, J. Mol. Catal. A, 1998, 131:149~156
    62. A. Jimenez-Gonzailez, R. Suarez-Parra: Effect of heat treatment on the properties of ZnO thin films prepared by successive ion layer, adsorption and reaction (SILAR), J.Crys.Growth, 1996, 167:649~655
    63. Y. J. He: A novel emulsion route to sub-micrometer polyaniline/nano-ZnO composite fibers, Appl. Surf Sci., 2005, 249:1~6
    64. B. B. Rao: Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour, Mater.Chem.Phys., 2000, 64:62~65
    65. B. Bott, T.A. Jones, B. Mann: The detection and measurement of CO using ZnO single crystals, Sens. Actuators, 1984, 5:65~73
    66. G. Sberveglieri, P. Nelli, S. Groppelli: Oxygen gas sensing characteristics at ambient pressure of undoped and lithium-doped ZnO-sputtered thin films, Mater. Sci. Eng. B, 1990, 7:63~68
    67. H. Nanto, H. Sokooshi, T. Kawai: Aluminum-doped ZnO thin film gas sensor capable of detecting freshness of sea foods, Sens. Actuators B, 1993,14:715~717
    68. H. Nanto, T. Minami, S. Takata: Zinc-oxide thin-film ammonia gas sensors with high-sensitivity and excellent selectivity, J. Appl. Phys., 1986, 60:482~484
    69. Q. A. Xu, J. W. Zhang, K. R. Ju, X. D. Yang, X. Hou: ZnO thin film photoconductive ultraviolet detector with fast photoresponse, J. Crystal Growth, 2006, 289:44~47
    70. H. Cao, Y. G.Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, R. P. H. Chang: Random Laser Action in Semiconductor Powder, Phys. Rev. Lett., 1999, 82:2278~2281
    71. R. N. Viswanath, S. Ramasamy, R. Ramamoorthy, P. Jayavel, T. Nagarajan: Preparation and characterization of nanocrystalline ZnO based materials for varistor applications, Nano. Mater., 1995, 6:993~996
    72. N. V. Russell, A. V. Chadwick, A. Wilson: Nanocrystalline nickel doped zinc oxide gas sensors, Nucl. Inst. Meth. Phys. Res. B, 1995, 97:575~578
    73. Y. Inubushi, R. Takami, M. Iwasaki, H. Tada, S. Ito: Mechanism of Formation of Nanocrystalline ZnO Particles through the Reaction of [Zn(acac)2] with NaOH in EtOH, J. Col.Inter Sci., 1998, 15:220~227
    74. J. Jose, M. A. Khadar: Impedance spectrodcopic analysis of ac response of nanophase ZnO and ZnO-A1203 nanocomposites, Nano. Mater., 1999, 11:1091~1099
    75. A. V. Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink: Identification of the transition responsible for the visible emission in ZnO using quantum size effects, J.Lumin., 2000, 90:123~128
    76. L. Guo, S. H.Yang, C. L.Yang, P. Yu, J. N. Wang, W. K. Ge, G. K. L. Wong: Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties, Appl. Phys.Lett., 2000, 76:2901~2903
    77. J.E. Rodriguez-Paez, A. C. Caballero, M. Villegas, C. Moure, P. Duran, J. E Fernandez: Controlled precipitation methods:formation mechanism of ZnO nanoparticles, J. Euro. Cera. Soc., 2001, 21:925~930
    78. J. Jose, M. A, Khadar: Role of grain boundaries on the electrical properties of ZnO-Ag nanocomposites: an impedance spectroscopic study, Acta Mater, 2001, 49: 729~725
    79. A.V. Dijken, J. Makkinje, A. Meijerink: The influence of particle size on the luminescence quantum efficiencyof nanocrystalline ZnO particles, J. Lumin., 2001, 92: 323~328
    80. S. M. Liu, E Q. Liu, Z. G. Wang: Relaxation of carriers in terbium-doped ZnO nanoparticles, Chem. Phys. Lett., 2001, 343:489~492
    81. Y. D. Wang, C. L. Ma, X. D. Sun, H. D. Li: Preparation of nanocrystalline metal oxide powders with the surfactant-mediated method, lnorg. Chem. Commu., 2002, 5:751~755
    82. S. C. Zhang, L. Chi, X. G. Li: Preparation of ZnO nanoparticles by precipitation/mechanochemical method, Intern. J. Nano., 2002, 5/6:563~567
    83. Z. S. Hu, G. Oskam, P. C. Searson: Influence of solvent on the growth of ZnO nanoparticles, J. Col. Inter. Sci., 2003, 263:454~460
    84. S. C. Zhang, X.G. Li: Preparation of ZnO particles by precipitation transformation method and its inherent formation mechanisms, Colloids and Surfaces A, 2003, 226: 35~44
    85. T. Szab6, J. Nemeth, I. Dekany: Zinc oxide nanoparticles incorporated in ultrathin layer silicate films and their photocatalytic properties, Colloids and Surfaces A, 2003, 230:23~35
    86. J. M. Wang, L.Gao: Synthesis and characterization of ZnO nanoparticles assembled in one-dimensional order, Inorg. Chem. Commu., 2003, 6:877~881
    87. Z. J. Wang, H. M. Zhang, L.G. Zhang, Y. S. Yuan, S. G. Yan, C. Y. Wang: Low-temperature synthesis of ZnO nanoparticles by solid-state pyrolytic reaction, Nanotechnology, 2003, 14:11~15
    88. R.H. Wang, J. H. Z. Xin, Y. Yang, H. E Liu, L. M. Xu, J. H. Hu: The characteristics and photocatalytic activities of silver doped ZnO nanocrystallites, Appl. Sur. Sci., 2004, 227:312~317
    89. G.N. Panin, A. N. Baranov, Y. J. Oh, T. W. Kang: Luminescence from ZnO/MgO nanoparticle structures prepared by solution techniques, Cur.Appl.Phys., 2004, 4:647~650
    90. H. H. Wang, C. S. Xie, D. W. Zeng: Controlled growth of ZnO by adding H2O, J.Crys.Grow., 2005, 277:372~377
    91. A. A. Ismail, A. E1-Midany, E. A. Abdel-Aal, H. El-Shall: Application of statistical design to optimize the preparation of ZnO nanoparticles via hydrothermal technique, Mater.Lett., 2005, 59:1924~1928
    92. A. L. Stroyuk, V. V. Shvalagin, S. Y. Kuchmii: Photochemical synthesis and optical properties of binary and ternary metal-semiconductor composites based on zinc oxide nanoparticles, J. Photochem. Photobi. A, 2005, 173:185~194
    93. Z. H. Hu, J. E H. Santos, P. C. Searson: Influence of the reactant concentrations on the synthesis of ZnO nanoparticles, J. Col. Inter. Sci., 2005, 288:313~316
    94. R. D. Yang, S. Tripathy, Y. T. Li, H. J. Sue: Photoluminescence and micro-Raman scattering in ZnO nanoparticles: The influence of acetate adsorption, Chem. Phys. Left., 2005, 411:150~154
    95. C. L. Wang, E. H. Shen, E. B. Wang, L. Gao, Z. K. Kang, C. G. Tian, Y. Lan, C. Zhang: Controllable synthesis of ZnO nanocrystals via a srfactant-assisted alcohol thermal process at a low temperature, Mater. Lett., 2005, 59:2867~2871
    96. H. L Zhou, Z. Li: Synthesis of nanowires, nanorods and nanoparticles of ZnO through modulating the ratio of water to methanol by using a mild and simple solution method, Mater.Chem.Phys., 2005, 89:326~331
    97. M. S. El-Shall, D. Graiver, U. Pernisz, M. I. Baraton: Synthesis and characterization of nanoscale zinc oxide particles: I. Laser vaporization / condensation technique, Nano.Mater., 1995, 6:297~300
    98. R. Wu, C. S. Xie, H. Xia, J. H. Hu, A. H. Wang: The thermal physical formation of ZnO nanoparticles and their morphology, J. Crystal Growth, 2000, 27:274~280
    99. S. C. Lin, S. Y. Chen, S. Y. Cheng: Characterization and composition evolution of multiple-phase nanoscaled ceramic powders produced by laser ablation, Powder Tech., 2004, 148:28~31
    100. L.M. Kukreja, S. Barik, P. Misra: Variable band gap ZnO nanostructures grown by pulsed laser deposition, J. Cryst. Grow., 2004, 268:531~535
    101. C. Janzen, H. Kleinwechter, J. Knipping, H. Wiggers, P. Roth: Size analysis in low-pressure nanoparticle reactors: comparison of particle mass spectrometry with in situprobing transmission electron microscopy, J. Aero.Sci. 2002, 33:833~841
    102. T. Sato, T. Tanigaki, H. Suzuki, Y. Saito, O. Kido, Y. Kimura, C. Kaito, A. Takeda, S. Kaneko: Structure and optical spectrum of ZnO nanoparticles produced in RF plasma, J. Cryst.Grow., 2003, 255:313~316
    103. T.S. Sato, H. S. Suzuki, O. Kido, M. Kurumada, K. S. Kamitsuji, Y. Kimura, H. Kawasaki, S. Kaneko, Y. Saito, C. Kaito: Production of transition metal-doped ZnO nanoparticles by using RF plasma field, J. Cryst.Grow., 2005, 275:e983~e987
    104. S. Hingorani, V. Pillai, P. Kumar, M. S. Multani, D. O. Shah:Microemulsion mediated sythesis of zinc-oxide nanoparticles for varistor studies, Mater.Re.Bull., 1993, 28:1303~1310
    105. M. Singhai, V. Chhabra, P. Kang, D. O. Shah: Syntheis of ZnO nanoparticles for varistor application using Zn-substituted aerosol of microemulsion, Mater.Re.Bull., 1997, 32:239~247
    106. T. Hirai, Y. Asada: Preparation of ZnO nanoparticles in a reverse micellar system and their photoluminescence properties, J. Col.Inter.Sci., 2005, 284:184~189
    107. S.B. Park, Y. C. Kang: Photocatalytic activity of nanometer size ZnO particles prepared by spray pyrolysis, J.Aero.Sci., 1997, 28:s473~s474
    108. L. Madler, W. J. Stark, S. E. Pratsinisa: Rapid synthesis of stable ZnO quantum dots, J. Appl. Phys., 2002, 92:6537~6540
    109. M. Abdullah, S. I. Shibamoto, K. Okuyama: Synthesis of ZnO/SiO2 nanocomposites emitting specific luminescence colors, Opti. Mater., 2004, 26:95~100
    110. Z.V. Marinkovic, L. Mancic, O. Milosevic: The nature of structural changes in nanocrystalline ZnO powders under linear heating conditions, J. Euro. Cera.Soc., 2004, 24:1929~1933
    111. Y.J. Jang, C. Simer, T. Ohm: Comparison of zinc oxide nanoparticles and its nano-crystalline particles on the photocatalytic degradation of methylene blue, Mater. Re. Bull., 2006, 41:67~77
    112. K.X. Kang, T. D. Wang, Y. Han, M. D. Tao, M. J. Tu: Sol-gel process doped ZnO nanopowers and their grain growth, Mater.Re.Bull., 1997, 32:1165~1171
    113. S. Fujihara, H. Naito, T. Kimura: Visible photoluminescence of ZnO nanoparticles dispersed in highly transparent MgF thin-films via sol_gel process, Thin Solid Films, 2001, 389:227~232
    114. Y.J. He: Preparation of polyaniline/nano-ZnO composites via a novel pickering emulsion route, Powder Tech., 2004, 147:59~63
    115. G.H. Ning, X. P. Zhao, J. Li: Structure and optical properties of MgxZnl-xO nanoparticles prepared by sol-gel method, Optical Mater, 2004, 27:1~5
    116. M. Ristic, S. Music, M. Ivanda, S. Popovic: Sol-gel synthesis and characterization of nanocrystalline ZnO powders, J.4lloy.Comp., 2005, 397: L1~L4
    117. C. Lorenz, A. Ernmeding, J. Fricke, T. Schmidt, M. Hilgendorff, L. Spanhel, G.Muller: Aerogels containing strongly photoluminescing zinc oxide nanocrystals, J. Non-Crys.Sol., 1998, 238:1~5
    118. G. Shi, C. M. Mo, W. L. Cai, L. D. Zhang: Photoluminescence of ZnO nanoparticles in alumina membrane with ordered pore arrays, Solid Stat. Commu., 2000, 115:253~256
    119. S.E. Dapurkar, S. K. Badamali, P. Selvam: Nanosized metal oxides in the mesopores of MCM-41 and MCM-48 silicates, Catalysis Today, 2001, 68:63~68
    120. M. Abdullah, S. Shibamoto, K. Okuyama: Synthesis of ZnO/SiO2 nanocomposites emitting specific luminescence colors, Opt. Mater., 2004, 26:95~100
    121. G.W. Meng, Y. T. Tian, S. H. Sun, X. Liu, L. D. Zhang: Photoluminescence of ZnO nanoparticles loaded into porous anodic alumina hosts, J.Phys.: Condens. Matter., 2002, 14:12651~12656
    122. C. Cannas, M. Mainas, A. Musinu, G.. Piccaluga: ZnO/SiO2 nanocomposites obtained by impregnation of mesoporous silica, Com.Sci. Tech., 2003, 63:1187~1191
    123. S. Chakrabarti, D. Das, D. Ganguli, S. Chaudhuri: Tailoring of room temperature excitonic luminescence in sol-gel zinc oxide-silica nanocomposite films, Thin Solid Films, 2003, 441:228~237
    124. S.M. Abrarov, S. U. Yuldashev, S. B. Lee, T. W. Kang: Suppression of the green photoluminescence band in ZnO embedded into porous opal by spray pyrolysis, J.Lumin., 2004, 109:25:-29
    125. Y. Xiong, L. Z. Zhang, G. Q. Tang, G. L. Zhang, W. J. Chen: ZnO nanoparticles included within all-silica MCM-41: preparation and spectroscopic studies, J.Lumin., 2004, 110:17~24
    126. S.M. Abrarov, S. U.Yuldashev, T. W. Kim, S. B. Lee, H. Y. Kwon, T. W. Kang: Dominant ultraviolet-blue photoluminescence of ZnO embedded into synthetic opal, J.Lumin., 2005, 114:118~124
    127. H. Amekura, K. Kono, N. Kishimoto, C. Buchal: Formation of zinc-oxide nanoparticles in SiO2 by ion implantation combined with thermal oxidation, Phys.Re.Section B, 2006,242:96~99
    128. H.M. Lin, S. J. Tzeng, P. J. Hsiau, W. L. Tsai: Electrode effects on gas sensing properties of nanocrystalline zinc oxide, Nano. Mater., 1998, 10:465~477
    129. Y.X. Liu, Y. C. Liu, D. Z. Shen, G.. Z. Zhong, X. W. Fan, X.G..Kong, R. Mu, D. O. Henderson: Preferred orientation of ZnO nanoparticles formed by post-thermal annealing zinc implanted silica: Solid Stat. Commu., 2002, 121:531~536
    130. R. Wu, J. Wu, C. S. Xie, J. Zhang, A. Wang: Morphological characteristic of Zn/ZnO nanopowders and the optical properties, Mater. Sci. Eng A, 2002, 328 196~200
    131. F. Rataboul, C. Nayral, M. J. Casanove, A. Maisonnat, B. Chaudret: Synthesis and characterization of monodisperse zinc and zinc oxide nanoparticles from the organometallic precursor [Zn(C6H11)2], J. Organ. Chem., 2002, 643-644:307~312
    132. D.W. Zeng, C. S. Xie, B. L. Zhu, W. L. Song, A. H. Wang: Synthesis and characteristics of Sb-doped ZnO nanoparticles, Mater.Sci.Eng. B., 2003, 104:68~72
    133. M. Grassi, D. A. W. Soares, A. A. A. de Queiroz, A. H. A. Bressiani, J.C. Bressiani: Organometallic chemical vapor deposition of compound semiconductors, Mater. Sci.Eng B, 2004, 112:179~181
    134. B.L. Zhu, C. S. Xie, D. W. Zeng, W. L. Song, A. H. Wang: Investigation of gas sensitivity of Sb-doped ZnO nanoparticles, Mater. Chem.Phys., 2005, 89:148~153
    135. T. Tsuzuki, P. G. McCormick: ZnO nanoparticles synthesized by mechanochemical processing, Scrip. Mater., 2001, 44:1731~1734
    136. M. Driess, K. Merz, R. Schoenen, S. Rabe, F. E. Kruis, A. Roy, A. Birkner: From molecules to metastable solids: solid-state and chemical vapour syntheses (CVS) of nanocrystalline ZnO and Zn, Comptes Rendus Chimie, 2003, 6:273~281
    137. A.V. Ghule, B. Lo, S. H. Tzing, K. Ghule, H. Chang,Y. C. Ling: Simultaneous thermogravimetric analysis and in situ thermo-Raman spectroscopic investigation of thermal decomposition of zinc acetate dihydrate forming zinc oxide nanoparticles, Chem. Phys. Lett., 2003, 381:262~270
    138. Y. Yang, X. ELi, J. B. Chen, H. L. Chert, X. M. Bao: ZnO nanoparticles prepared by thermal decomposition of b-cyclodextrin coated zinc acetate, Chem. Phys. Lett., 2003, 373:22~27
    139. H.Y. Lu, S.Y. Chu, S. S. Tan: The characteristics of low-temperature-synthesized ZnS and ZnO nanoparticles, J.Crys.Grow., 2004, 269:385~391
    140. L.Z. Zhang, G. Q. Tang: Preparation, characterization and optical properties of nanostructured ZnO thin films, Opt.Mater., 2004, 27:217~220
    141. C.C. Hwang, T. Y. Wu: Synthesis and characterization of nanocrystalline ZnO powders by a novel combustion synthesis method, Mater.Sci.Eng. B, 2004, 111:197~206
    142. Y.J. Li, R. Duan, P. B. Shi, G. G. Qin: Synthesis of ZnO nanoparticles on Si substrates using a ZnS source, J.Cryst.Grow., 2004, 260:309~315
    143. Y.C. Zhang, X. Wu, X. Y. Hu, R. Guo: Low-temperature synthesis of nanocrystalline ZnO by thermal decomposition of a "green" single-source inorganic precursor in air, J. Cryst.Grow., 2005, 280:250~254
    144. N.I. Kovtyukhova, B. R. Martin, J. K. N. Mbindyo, T. E. Mallouk, M. Cabassi, T. S. Mayer: Layer-by-layer self-assembly strategy for template synthesis of nanoscale devices, Mater.Sci.Eng. C, 2002, 19:255~262
    145. H.A. Ali, A. A. Iliadis, R. F. Mulligan, A. V. W. Cresce, E Kofinas, U. Lee: Properties of self-assembled ZnO nanostructures, Solid-Stat. Electro., 2002, 46:1639~1642
    146. A.S. Ryzhikov, R. B. Vasiliev, M. N. Rumyantseva, L. I. Ryabova, G. A. Dosovitsky, A. M. Gilmutdinov, V. E Kozlovsky, A. M. Gaskov: Microstructure and electrophysical properties of SnO2, ZnO and In203 nanocrystalline films prepared by reactive magnetron sputtering, Mater. Sci. Eng B, 2002, 96:268~274
    147. A. Dierstein, H. Natter, E Meyer, H. O. Stephan, C. Kropf, R. Hempelmann: Electrochemical deposition under oxidizing conditions (EDOC):a new synthesis for nanocrystalline metal oxides, Scripta Mate., 2001, 44:2209~2212
    148. Y. L Liu, Y. C. Liu, Y. X. Liu, D. Z. Shen, Y. M. Lu, J. Y. Zhang, X. W. Fan: Structural and optical properties of nanocrystalline ZnO films grown by cathodic electrodeposition on Si substrates, Physica B, 2002, 322:31~36
    149. S.J. Chen, L. H. Li, X. T. Chen, Z. L Xue, J. M. Hong, X. Z. You: Preparation and characterization of nanocrystalline zinc oxide by a novel solvothermal oxidation route, J.Crys.Grow. 2003, 252:184~189
    150. X.Y. Ma, H. Z., Y. J. Ji, J. Xu, D. R. Yang: Sequential occurrence of ZnO nanopaticles, nanorods, and nanotips during hydrothermal process in a dilute aqueous solution, Mater Lett., 2005, 59:3393~3397
    151. L L Wu, Y. S. Wu, Y. Z. Lu: Self-assembly of small ZnO nanoparticles toward flake-like single crystals, Mater. Re. Bull., 2006, 41:128~133
    152. S.C. Liufu, H. N. Xiao,Y. P. Li: Effect of MA-Na copolymer adsorption on the colloidal stability of nano-sized ZnO suspension, Mater. Lett., 2005, 59:3494~3497
    153. L C. Damonte, L. A. Mendoza Zelis, B. Mari Soucase, M. A. Hernandez Fenollosa: Nanoparticles of ZnO obtained by mechanical milling, Powder Tech., 2004, 148:15~19
    154.陈宏军:氧化锌纳米粉末之制备与研究,大同大学硕士论文,2004,8-9
    155. D.W. Bahnemann, C. Kormann, M. R. Hoffmann: Preparation and Characterization of Quantum Size Zinc Oxide: Fluoresence and Non Linear Optical Effects, J. Phys.Chem., 1987, 91:3789~3798
    156. V.A. Fonoberov, A. A. Balandin: Origin of ultraviolet photoluminescence in ZnO quantum dots: Confined excitons versus surface-bound impurity exciton complexes, Appl.Phys.Lett., 2004, 85:5971~5973
    157. X.M. Teng, H. T. Fan, S. S. Pan, C. Ye, G. H. Li: Photolumineseence of ZnO thin films on Si substrate with and without ITO buffer layer, J.Phy.D:Appl.Phys., 2006, 39:471~476
    158.刘志甫:氧化锌薄膜的制备及其性能的研究,中科院上海硅酸盐研究所博士论文,2004,13~14
    159. S.A. Studenikin, N. Golego, M. Cocivera: Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis, J.4ppl.Phys., 1998, 84:2287~2294
    160. S. Choopun, R. D. Vispute, W. Noch: Oxygen pressure-tuned epitaxy and optoelectronic properties of laser-deposited ZnO films on sapphire, Appl.Phys.Lett., 1999, 75: 3947-3949
    161. B.J. Jin, S. Im, S. Y. Lee: Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition, Thin Solid Films, 2000, 366:107~110
    162. B.X. Lin, Z. X. Fu: Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Appl.Phys.Lett., 2001, 79:943~945
    163. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. oigt, B. E. Gnade: Mechanisms behind green photoluminescence in ZnO phosphor powders, J.Appl.Phys., 1996, 79:7983~7990
    164. E. G. Bylander: Surface effects on the low-energy cathodoluminescence of zinc oxide, J. Appl. Phys. 1978, 49:1188~1195
    165. H.J. Egelhaaf, D. Oelkrug: Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO, J.Cryst.Growth, 1996, 161:190~194
    166. X.L. Wu, G, G, Siu, C. L. Fu, H. C. Ong: Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films, Appl.Phys.lett., 2001, 78: 2285~2287
    167. M. Liu, A. H. Kitai, P. Mascher: Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese, J.Lumin., 1992, 54:35~42
    168. K. E Lin, H. M. Cheng, H. C. Hsu, L. J. Lin, W. E Hsieh: Band gap variation of size-controlled ZnO quantum dots synthesized by sol-gel method, Chem. Phys. Lett., 2005, 409:208~211
    169. L. Yang, G. Z. Wang, C. J. Tang, H. Q. Wang, L. D. Zhang: Synthesis and photoluminescence of corn-like ZnO nanostructures under solvothermal-assisted heat treatment, Chem. Phys.Lett., 2005, 409:337~341
    170. S. Mahamuni, K. Borgohain, B. S. Bendre: Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots, J.Appl.Phys., 1999, 85:2861~2865
    171. H.P. He, Y. X. Wang,Y. M. Zou: Photoluminescence property of ZnO-SiO2 composites synthesized by sol-gel method, J.Phys.D: Appl. Phys., 2003, 36:2972~2975
    172. C.M. Mo, Y. H. Li,Y. S. Liu: Enhancement effect of photoluminescence in assemblies of nano-ZnO particles/silica aerogels, J.Appl.Phys., 1998, 83:4389-4391
    173. U. ozgur, Y. I.Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, H. Morkocd: A comprehensive review of ZnO materials and devices, J.Appl.Phys., 2005, 98: 041301-1-041301-103.
    174. A. E Kohan, G. Ceder, D. Morgan, C. G. Van de Walle: First-principles study of native point defects in ZnO, Phys.Rev.B, 2000, 61:15019~15027
    175. C. G. Van de Walle: Defect analysis and engineering in ZnO, Physica B, 2001, 899:308~903
    176. S.F.J. Cox: Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide, Phys.Rev.Lett., 2001, 86:2601~2604
    177. Y.M. Strzhemechny: Remote hydrogen plasma doping of single crystal ZnO, Appl. Phys. Lett., 2004, 84:2545~2547
    178. S. Y. Myong, S. J. Baik, C. H. Lee, W. Y. Cho, K. S. Lim: Extremely Transparent and Conductive ZnO:A1 Thin Films Prepared by Photo-Assisted Metalorganic Chemical Vapor Deposition (photo-MOCVD) Using A1C13(6H20) as New Doping Material, Jpn. J. Appl.Phys. Part 2, 1997, 36:L1078-L1081
    179. B.M. Ataev, A. M. Bagamadova, A. M. Djabrailov, V. V. Mamedo, R. A. Rabadanov: Highly conductive and transparent Ga-doped epitaxial ZnO films ort sapphire by CVD, Thin Solid Films, 1995, 260:19~20
    180. V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M. E. V. Costa, R. Martins: Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature, Thin Solid Films, 2003, 427:401~405
    181. Z. E Lin, E K. Shan, Y. X. Li, B. C. Shin, Y. S. Yu: Epitaxial growth and properties of Ga-doped ZnO films grown by pulsed laser deposition, J.Cryst. Growth, 2003, 259: 130~136
    182. H.J. Ko, Y. E Chen, S. K. Hong, H. Wenisch, T. Yao, D. C. Look: Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam e.pitaxy, Appl.Phys. Lett., 2000, 77:3761~3763
    183. W. Walukiewicz: Defect formation and diffusion in heavily doped semiconductors, Phys. Rev. B, 1994, 50:5221~5225
    184. C. G. Van de Walle, D. B. Laks, G. E Neumark, S. T. Pantelides: First-principles calculations of solubilities and doping limits: Li, Na, and N in ZnSe, Phys. Rev. B, 1993, 47:9425~9434
    185.李青山,张金朝:热处理对掺锑二氧化锡纳米导电粉粒度和性能的影响,无机材料学报,2002,17:489~496
    186.吴湘伟,陈振华,黄培云:有机酸酐在纳米掺锑氧化锡粉体制备中的应用,磋酸盐学报,2004,32:1534~1537
    187.杜尚丰:一种制备具有高电导率的超细氧化锌粉体的共沉淀方法,CN200310121344.X.
    188. Y. Liu, C. R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, M. Wraback: Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD, J. Electro. Mater., 2000, 29:69~74
    189. W. Yang, R. D. Vispute, S. Choopun: Ultraviolet photoconductive detector based on epitaxial Mg0.34Zn0.66O thin films, Appl.Phys.Lett., 2001, 78: 2787~2789
    190. P. Sharma, A. Mansingh, K. Sreenivas: Ultraviolet photoresponse of porous ZnO thin films prepared by unbalanced magnetron sputtering, Appl.Phys.Lett., 2002, 80:553~555.
    191. T. Seiyama, A.Kato, K. S. Fujiishi, M. Nagatani: A new detector for gaseous components using semiconductive thin films, Anal. Chem., 1962, 34:1502~1503
    192. Y. Anno, T. Maekawa, J. Tamaki, Y. Asano, K. Hayashi, N. Miura, N. Yamazoe: Zinc-oxide-based semiconductor sensors for detecting acetone and capronaldehyde in the vapour of consomme soup, Sens. Actuators B, 1995, 24-25:623-627
    193. N.J. Dayan, S. R. Sainkar, R. N. Karekar, R. C. Aiyer: Formulation and characterization of ZnO:Sb thick-film gas sensors, Thin Solid Films, 1998, 325:254~258
    194. S. T Shishiyanu, T. S. Shishiyanu, O. I. Lupan: Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor, Sens. Actuators B, 2005, 107:379~386
    195. Y. Shimizu, M. Egashira: Basic aspects and challenges of semiconductor gas sensors, MRS. Bulletin, 1999, 24:18~24
    196. W.G. Grpel, K. D. Schierbaum: SnO2 sensors: current status and future prospects, Sens. Actuators B, 1995, 26:1~12
    197. S.R. Morrison: Semiconductor gas sensors, Sens. Actuators, 1981-1982;2." 329-341
    198. X.L. Cheng, H. Zhao, L. H. Huo, S. Gao, J. G. Zhao: ZnO nanoparticulate thin film: preparation, characterization and gas-sensing property, Sens. Actuators B, 2004, 102:248~252
    199. N.V. Russell, A. V. Chadwick, A. Wilson: Nanocrystalline nickel doped zinc oxide gas sensors, Phys. Res. B, 1995, 97:575~578
    200. H. Gonga, J. Q. Hu, J. H. Wang, C. H. Ong, E R. Zhu: Nano-crystalline Cu-doped ZnO thin film gas sensor for CO, Sens. Actuators B, in press (Available online 2 November 2005)
    201. C. Baratto, G. Sberveglieri, A. Onischuk, B. Caruso, S. D. Stasio: Low temperature selective NO2 sensors by nanostructured fibres of ZnO, Sens. Actuators B, 2004, 100:261~265
    202. J.O. Xu, Y. P. Chert, D. Y. Chen, J. N. Shen: Hydrothermal synthesis and gas sensing characters of ZnO nanorods, Sens. Actuators B, 2006, 113: 526~531
    203. J.Y. Xu, Q. Y. Pan, Y. A. Shun, Z. Z. Tian: Grain size control and gas sensing properties of ZnO gas sensor, Sens. Actuators B, 2000, 66:277~279
    204. L.F. Dong, Z. L. Cui, Z. K. Zhang: Gas sensing properties of nano-ZnO prepared by arc plasma method, Nanostructured mater., 1997, 8:815~823
    205.徐甲强,王焕新,张建荣,沈嘉年:微波水解法制备纳米ZnO及其气敏特性研究,无机材料学报,2004,19:1441~1445
    206.王林,张覃轶,祝柏林,王爱华,谢长生:激光烧结纳米ZnO气敏传感器制备及其气敏特性研究,传感技术学报,2003,16:491~494
    207. S.R.Morrision,J.P.Bonnelle:Surface state additives in the catalytic oxidation of carbon monoxide,J.CataL,1972,25:416~424
    208. K.I. Tanaka: Intermediate of oxygen exchange reaction over illuminated Titanium dioxide, J. Phys. Chem., 1974, 78 (5): 555~556
    209. P. E Guo, H. B. Pan: Selectivity of Ti-doped In2O3 ceramics as an ammonia sensor, Sens. Actu. B, 2006, 114:762~767
    210. I. Gonza lez-Gonza'lez, J. D. Jesu's, D. A. Tryk, G. Morell, C. R. Cabrera: Oxygen effect on the electrochemical behavior of n-type sulfur-doped diamond, Diamond and Related Materials, 2006, 15:221~224
    211. H.C. Lee, W. S. Hwang, G. B. L, Y. M. Lu: Effects of O2/Ar flow ratio on the alcohol sensitivity of tin oxide film, Appl. Surf. Sci., 2006, 252:3502~3508
    212. S.R. Morrison: Selectivity in semiconductor gas sensors, Sens. Actuators, 1987, 12:425~440
    213.冯乙已:SnO2/SiO2纳米复合材料的制备、机构和物性研究,中国科学院固体物理研究所博士论文,2003,99~100
    214.姚宝殿:SiO2、IEO2介孔固体及ZnO2/SiO2、Au/TiO2组装体系的制备和物性研究,中国科学院固体物理研究所博士论文,2000,37~46
    215. Z.G. Ji, S.C. Zhao, C. Wang, K. Liu: ZnO nanoparticle films prepared by oxidation of metallic zinc in H2O2 solution and subsequent process, Mater. Sci. Eng. B, 2005, 117:63~66
    216. A.L.Patterson: The Scherrer formula for X-Ray particle size determination, Phys. Rev.,1939, 56:978~982
    217. N. Ashkennov, B. N. Mbenkum, C. Bundesmann, V. Riede, M. Lorenz, D. Spemann, E. M. Kaidashev, A. Kasic, M. Schubert, M. Grundmann, G. Wagner, H. Neumann, V. Darakchieva, H. Arwin, B. Monemar: Infrared dielectric functions and phonon modes of high-quality ZnO films, J,4ppl.Phys., 2003, 93:126~133
    218. C.A. Arguello, D. L. Rousseau, S. P. S. Porto: First-order Raman effect in wurtzite-type crystals, Phys.Rev., 1969, 181:1351~1363
    219. K.A. Alim, V. A. Fonoberov, A. A. Balandin: Origin of the optical phonon frequency shifts in ZnO quantum dots, Appl. Phys. Lett., 2005, 86:053103-1-053103-3
    220. M.J. Seong, O. I. Mic'ic', A. J. Nozik, A. Mascarenhas, H. M. Cheong: Size-dependent Raman study of InP quantum dots, Appl.Phys.Lett., 2003, 82:185~187
    221. M. Rajalakshmi, A. K. Arora, B. S. Bendre, S. Mahamuni: Optical phonon confinement in zinc oxide nanoparticles, J. Appl.Phys., 2000, 87:2445~2448
    222. J. Zuo, C. Y. Xu, Y. P. Liu, Y. T. Qian: Crystallite size effects on the Raman spectra of Mn_3O_4, Nanostructured materials, 1998, 10:1331~1335
    223. I.H.Campbell, EM.Fauchet: The effects microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors, Solid State Commun. 1986, 58:739~741
    224. C. Martinet, R. A. B. Devine: Analysis of the vibrational mode spectra of amorphous SiO2 films, J. Appl. Phys., 1995, 77:4343~4348
    225. P.T. Liu, T.C. Chang, T. M. Tsai, Z. W. Lin, C. W. Chen, B. C. Chen, S. M. Sze: Dielectric characteristics of low-permittivity silicate using electron beam direct patterning for intermetal dielectric applications, Appl. Phys. Lett., 2003, 83:4226~4228
    226. Z.C. Feng, J.W. Yu, J. Zhao, T.R. Yang, R. P. G. Karunasiri, W. Lu, W. E. Collins: Optical and material properties of sandwiched Si/SiGe/Si heterostructures, Surf. Coat. Tech., 2006, 200:3265~3269
    227. Y. G. Cao, X. L. Chen, Y. C. Lan, Y. P. Xu, T. Xu, J. K. Liang.. Synthesis, Raman scattering, and infrared spectra of a new condensed form of GaN nanophase material,J.Mater.Res.Rap Commun., 2000, 15:267~269
    228.荣利霞:蔚聚物、纳米氧化物及多孔炭的小角散射研究,中国科学院高能物理研究所博士论文,2003,72~74
    229.柳义:SAXS中的粒度分布分析与亚微体系的表征,中国科学院高能物理研究所博士论文,2001,14~15
    230. M.S. Tokumotoa, S.H. Pulcinelli, C,V. Santilli, A.E Craievich: SAXS study of the kinetics of formation of ZnO colloidal suspensions, J. Non-Cryst. Solids, 199, 247: 176~182
    231. G.Porod: The x-ray small-angle scattering of close-packed colloid systems. I, Kolloid-Z.,1951, 124:83~114
    232.邵元智,任山,张庆堂,武辉,蔡志苏:纳米镍粉内团聚的小角X射线散射的分形表征.中国有色金属学报,2004,14:574-579
    233.李志宏:SAXS方法及其在胶体和介孔材料研究中的应用,中国科学院山西煤炭化学研究所博士论文,2002,67~68
    234.刘恩科,朱秉升,罗晋生:半导体物理北京:电子工业出版社,2004.326~329
    235.季振国:半导体物理杭州:浙江大学出版社,2005.
    236. E.M. Wong, P. Searson: ZnO quantum particle thin films fabricated by electrophoretic deposition, Appl.Phys.Lett., 1999, 74:2939~2941
    237. Y. Du, M. S. Zhang, J. Hong, Y. Shen, Q. Chen, Z. Yin: Structural and optical properties of nanophase zinc oxide, Appl.Phys.4, 2003, 76:171~176
    238. Y. Feng, Y. X. Zhou, Y. Q. Liu, G. B. Zhang, X. Y. Zhang: Photoluminescence spectra of nano-structured ZnO thin films, J. Lumin., 2006, 119-120:233~236
    239. H.W. Hou, Y. J. Xiong, Y. Xie, Q. Li, J. Y. Zhang, X. B. Tian: Structure-direct assembly of hexagonal pencil-like ZnO group whiskers, J.Solid Stat. Chem. 2004, 177:176~180
    240. C.K. Xu, C. K. Xu, G. D. Liu, Y. Kai, G. H. Wang: A simple and novel route for the preparation of ZnO nanorods, Solid State Commun., 2002, 122:175~179
    241. E S. Wen, W.L Li, J.H. Moon, J. H. Kim: Hydrothermal synthesis of ZnO:Zn with green emission at low temperature with reduction process, Solid State Commun. 2005, 135:34~37
    242. T.W. Kim,T. D. S. Kawazoe, S. S. Yamazaki, J. S. Lira, T. S. Yatsui, M. Ohtsu: Room temperature ultraviolet emission from ZnO nanocrystallites fabricated by the low temperature oxidation of metallic Zn precursors, Solid State Commun., 2003, 127: 21~24
    243. R.T. Senger, K. K. Bajaj: Polaronic exciton in a parabolic quantum dot, Phys.Stat.Sol.(B), 2003, 236:82~89
    244. E Demangeot, V. paillard, E M. Chassaing, C. pages, M. L Kahn, A. Maisonnat, B.Chaudret: Experinental study of LO phonons and excitons in ZnO nanoparticles produced by room-temperature organometallic synthesis, Appl.Phys.Lett., 2006, 88:071921-1-071921-3
    245. Y.S. Diamand, N. Modya, G. Bahir: Electronic properties of metal/sol-gel SiOzlinciium-phosphode capacitor, Appl.Phys.Lett., 1991, 58:1314~1316
    246. Y.S. Park, C. W. Litton, T. C. Collins, D. C. Reynolds: Exciton spectrum of ZnO, Phys.Rev., 1966, 143:512~519
    247. P R. Emtage: The physics of zinc oxide varistors, J. Appl. Phys., 1977, 48:4372~4384
    248.汪春昌,汪国忠:锐钛矿相纳米TiO2的直流伏安特性研究,稀有金属材料与工程 1999,28:244~247
    249.孙兰侠,季振国,杜娟,周强,陈琛,赵丽娜:二氧化锡薄膜气敏传感器对常见室内污染气体的电阻.温度特性及机理分析,传感技术学报,2005,18:47~49
    250.孙兰侠:室内污染气体传感器的制备及特征,浙江大学硕士论文,2005.26~27
    251.薛天锋,胡季帆,秦宏伟,周莹,安康,张玲,韩涛,宋鹏:掺铝ZnO纳米粉的制备与气敏特性研究,金属功能材料,2003,10(4)20~23
    252. X. D, Wang, S. S. Yee, W. E Carey: Transition between neck-controlled and grain-boundary-controlled sensitivity of metal-oxide gas sensors, Sens,Actu.B, 1995,24-25:454~457

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700