Pr_(1-x)Sr_xMnO_3外延膜中的各向异性应力、畴结构及电荷有序
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从在钙钛矿结构锰氧化物中发现巨磁电阻(CMR)以来它引起人们的兴趣,不仅因为它具有潜在的应用前景,此外,因为这类氧化物材料是自旋、电荷、轨道和晶格自由度相互作用是一种强关联体系,各种相互作用以及他们之间的相互竞争导致了复杂的电磁和结构相图,以及丰富的物理现象如电荷轨道有序、相分离等,使其成为当今凝聚态物理和材料科学研究中最活跃的领域之一。对巨磁阻薄膜的研究对于实现相关电子原型器件,特别是全氧化物器件的研制具有重要意义。本论文通过对锰氧化物体系的研究,系统的研究了调控La_(0.7)Ca_(0.3)MnO_(3-δ)薄膜中氧含量的方法和在室温空气中薄膜内存在的氧原子扩散问题。各向异性应力是导致薄膜中出现反铁磁有序态的决定性因素,探索了反铁磁有序薄膜中存在的厚度效应以及薄膜的畴结构随着膜厚的演化过程,同时也分析和讨论了改变掺杂浓度对反铁磁有序薄膜体系物理性能的影响。本论文的主要内容安排如下:
     第一章,介绍了钙钛矿巨磁阻锰氧化物的物理性质和外延薄膜的研究进展。首先回顾锰氧化物的研究历史:晶体结构以及晶格畸变,基本物理机制(如双交换相互作用、Jahn-Teller效应等),有序相,相分离,电荷有序相变时的一些物理性质的异常,影响电荷有序态稳定性的因素。然后介绍了薄膜的应力厚度效应,包括晶格失配导致的晶格应变对晶体结构、输运行为、磁性能等的影响,厚度效应对晶胞参数、物理性质的影响。
     第二章,主要介绍了本文实验中所用到的单晶薄膜的制备方法和样品的测试方法。主要介绍了脉冲激光沉积制备薄膜的原理及该技术的优点。同时,介绍了X射线衍射技术以及磁性和输运性能测量仪器。
     第三章,系统的研究了La_(0.7)Ca_(0.3)MnO_(3-δ)/LSAT(001)薄膜中的氧含量的调控以及在室温空气中氧原子扩散和氧含量的稳定性问题。实验证明,在室温空气中,经过高温真空退火样品的氧含量非常不稳定,氧原子可以扩散到薄膜中补偿氧空位导致Mn~(4+)/Mn~(3+)增加。随样品放置在空气中时间周期的延长,居里温度升高,薄膜的面外晶格常数减小,然而面内晶格常数保持不变。但是在低氧压下制备的LCMO原位薄膜中的氧含量在空气中却非常稳定。因此,通过调节沉积氧压来控制锰氧化物薄膜中的氧含量是一种稳定有效的方法。
     第四章,系统的研究了在LSAT(110)单晶衬底上外延生长的Pr_(0.5)Sr_(0.5)MnO_3薄膜的厚度效应以及畴结构随厚度的演化过程。随温度降低,PSMO/LSAT(110)薄膜出现顺磁-铁磁相变和铁磁-反铁磁一级相变并伴随有显著的热滞现象。当膜厚增加时,薄膜的居里温度升高,而反铁磁相交温度降低;同时反铁磁有序态的稳定性降低,熔化场减小。对薄膜的晶体结构进行分析时发现,各向异性应力导致薄膜结构由四方晶系畸变为菱面体晶系。当膜厚小于12nm时,室温下薄膜单胞是单畴单斜结构。随着厚度增加,PSMO薄膜中出现了周期性畴结构,并且逐渐向多畴演化,导致薄膜结构无序度增加。薄膜的磁电输运性能和晶体结构有着密切联系,正是由于薄膜畴结构的变化导致厚度效应的存在,结构无序度的增加促使样品的反铁磁态减弱,熔化场减小。
     第五章,系统的研究了在不同取向的LSAT衬底上外延生长的Pr_(1-x)Sr_xMnO_3(0.47≤x≤0.60)薄膜体系的电磁输运行为,比较掺杂浓度和各向异性应力对整个体系输运性能的影响。由于衬底对薄膜的钳制作用,随着温度从室温降低,PSMO/LSAT(001)薄膜仅在T_C处出现了顺磁绝缘态-铁磁金属态的相变,然而PSMO/LSAT(110)薄膜样品在降温过程中则先后出现了顺磁绝缘态-铁磁金属态和显著的铁磁金属态-反铁磁绝缘态一级相变。随着Sr~(2+)掺杂浓度的增加,薄膜的反铁磁绝缘态越来越稳定,相变温度升高,熔化场增加。造成上述结果的原因可能是高掺杂样品的铁磁性关联减弱,而Jahn-Teller晶格扭曲引起的电-声子相互作用增强,使电子的局域化倾向更为明显。
Since the discovery of colossal magnetroesistance(CMR) in perovskite manganites films,these materials have recently attracted much attentions for their potential application,furthermore,these materials are spin,charge,orbit and lattice degree of freedom strongly correlated systems,all kinds of interactions and the competition between them lead to very complex electronic,magnetic and structural phase diagrams,and abundant of physics phenomena such as the charge orbital orderings,phase separation,etc.,and it has become one of the most active research fields in condensed matter physics and material physics.The investigation in CMR films has great significance for fabrication of related prototype devices,especially for all oxides devices.In this thesis,through the study of manganites,the regulation and control the oxygen content of La_(0.7)Ca_(0.3)MnO_(3-δ) thin films and the diffusion of oxygen in atmosphere were systematic researched.The anti-ferromagnetic state in the films was induced by anisotropic strain.The thickness evolution of domain structures in films and the doping concentration of antiferromagnetic films on both magnetic and transport properties were carefully investigated.The main contents in the dissertation are presented as follows:
     Chapter 1:The general introduction of physical properties and research progress on perovskite manganites films are given.First,we make a brief introduction to the research history,the crystal structure and lattice distortion,the essential physical mechanism(such as double exchange interaction,the Jahn-Teller effect),the charge orbital order,phase separation,the anomalous physical properties associated with the charge orbital order transition,the facts that influence the stability of the charge orbital order state.Then discuss thickness effect induced by strain in manganites films, containing the influences of in plane lattice distortion induced by mismatch on crystal structure,transport and magnetic properties,and thickness effect on crystal parameters and physical properties.
     Chapter 2:The film preparation method and measurement were introduced. Especially,the pulsed laser deposition(PLD) method and the merit of this method were described in details.Also,the X-ray diffraction and the transport properties measurement were also introduced.
     Chapter 3:The control,diffusion,and stability of oxygen in the Single-crystalline La_(0.7)Ca_(0.3)MnO_(3-δ) films were carefully investigated.Excluding the relaxation of strain,the ex-situ vacuum-annealed films suffer from fast oxygen in-diffusion even at room temperature in ambient atmosphere,and the increased Mn~(4+)/Mn~(3+) ratio in the films.With the time escaping,the out-of-plane lattice parameter was decreased,and the Curie temperature of the film was increased successively,however the in-plane lattice coherency maintains consistently at the same time.While,the oxygen deficiencies controlled in-situ by deposition at lower oxygen pressures were stable.The results indicate that the control of oxygen content via the in-situ deposition process is more favorable for manganite films.
     Chapter 4:In this chapter,the relationship between the thickness and crystal structure and electro-magnetic properties in Pr_(0.5)Sr_(0.5)MnO_3(PSMO) epitaxial films grown on(LaAlO_3)_(0.3)(Sr_2AlTaO_6)_(0.7)(110) substrates were systematically investigated. During cooling temperature,the PSMO/LSAT(110) films show the ferromagnetic state to the antiferromagnetic ones transition with a huge thermal hysteresis.With increasing film thickness,the paramagnetic-ferromagnetic transition temperature (Curie temperature) increases,the antiferromagnetic charge-orbital ordering temperature decreases,the stability of the antiferromagnetic state and the melting field decrease.We clearly show that these films have a monoclinic distortion due to the in-plane anisotropic strain.Ultrathin films(t<12 nm) have a single-crystalline and a single-domain-like structure,with the unique axis b_m along[-110].Thickness larger than 12nm,the main spots in the vicinity of PSMO the diffraction spots,indicating the emergence of the periodic domain structure.The films increase disorder with another periodic domain structure.Transport properties of thin films and the crystal structure are closely related and the change in structure lead to appears thickness effect.The increase in degree of structural disorder in the sample reduced the antiferromagnetic state and the melting field.
     Chapter 5:The electronic and magnetic properties of Pr_(1-x)Sr_xMnO_3(0.47≤x≤0.60) were investigated,and the influence of doping concentration and structure distortion on PSMO films properties was studied.During cooling from room temperature,the PSMO/LSAT(001) thin films exhibit only one transition from paramagnetic insulator to ferromagnetic metal state at Curie temperature,while the PSMO/LSAT(110) thin films show the coexistence of two magnetic transitions,from the paramagnetic state to the ferromagnetic state transition,and then from the ferromagnetic state to the antiferromagnetic ones transition with a huge thermal hysteresis.With the doping concentration increases,the antiferromagnetic states become more stabile.The origin for above results may be the attenuation of ferromagnetism correlation in high-doped samples,while the electron-phonon interaction enhanced by Jahn-Teller distortion,which prefers the localization of electrons.
引文
1.M.N.Baibich,J.M.Broto,A.Fert,F.Nguyeu Van Dau and F.Petroff,Phys.Rev.Lett.61,2472(1988).
    2.A.E.Berkowitz,J.R.Mitchell,M.J.Carey,A.P.Young,S.Zhang,F.E.Spada,F.T.Parkar,A.Hutten and G.Thomas,Phys.Rev.Lett.68,3745 (1992).
    3.G.Xiao,J.S.Jiang and C.C.Chien,Phys.Rev.Lett.68,3749 (1992).
    4.R.Von Helmolt,J.Wecker,B.Holzapfel,L.Schultz and K.Samwer,Phys.Rev.Lett.71,2331 (1993).
    5.S.Jin,T.H.Tiefel,M.McCormack,R.A.Fastnacht,R.Ramesh and L.H.Chen,Science 264,413(1994).
    6.G.H.Jonker and J.H.van Santen Physica 16 337 (1950).
    7.J.H.van Santen and G.H.Jonker Physica 16 559 (1950).
    8.G.H.Jonker and J.H.van Santen Physica 19 120 (1953).
    9.C.Zener.Phys.Rev.82,403 (1951).
    10.J.Volger,Physica 20,49 (1954).
    11.G.H.Jonker Physica 20 1118 (1954)
    12.E.O.Wollan and W.C.Koehler,Phys.Rev.100,545 (1955).
    13.J.B.Goodenough,Phys.Rev.100,564 (1955).
    14.P.Anderson and H.Hasegawa,Phys.Rev.100,675 (1955).
    15.T.Kasuya,Prog.Theor.Phys.22,227 (1959).
    16.T.Kasuya and A.Yanase,Rev.Mod.Phys.40,684 (1968).
    17.N.Mott and E.Davis,Electronic Processes in Non-Crystalline Materials (Clarendon Press,Oxford),1971.
    18.T.Holstein,Ann.Phys.(N.Y.)8,343 (1959).
    19.J.Kanamori,Suppl.J.Appl.Phys.31,14S (1960).
    20.P.de Gennes,Phys.Rev.118,141 (1960).
    21.C.Searle and S.Wang,Can.J.Phys.47,2703 (1969).
    22.D.Reinen,J.Solid State Chem.27,71 (1979).
    23.J.Tanaka,M.Umehara,S.Tamura,M.Tsukioka and S.Ehara,J.Phys.Soc.Jpn.51,1236 (1982).
    24.S.Jin,M.McCormack,T.H.Tiefel and R.Ramesh,J.Appl.Phys.76,6929 (1994).
    25.G.C.Xiong,Q.Li.H.L.Ju,S.N.Mao,L.Senapati,X.X.Xi,R.L.Greene and T.Venkatesan,Appl.Phys.Lett.66,1427 (1995).
    26.V.Caignaert,A.Maignan and B.Raveau,Sol.St.Comm.95,357 (1995).
    27.J.Barratt,M.R.Lees,G.Balakrishnan and D.Mck Paul,Appl.Phys.Lett.68,424 (1995).
    28.P.Schiffer,A.P.Ramirez,W.Bao and S.-W.Cheong,Phys.Rev.Lett.75,3336 (1995).
    29.A.Urushibara,Y.Moritomo,T.Arima,A.Asamitsu,G.Kido and Y.Tokura,Phys.Rev.B 51,14103(1995).
    30.H.Y.Hwang,S.-W.Cheong,P.G.Radaelli,M.Marezio and B.Batlogg,Phys.Rev.Lett.75,914(1995).
    31.M.R.Lees,O.A.Petrenko,G Balakrishnan and D.Mck.Paul,Phys.Rev.B 59,1298(1999).
    32.J.Fontcuberta,A.Seffar,X.Granados,J.L.Garcia-Munoz,X.Obradors and S.Pinol,Appl.Phys.Lett.68,2288 (1996).
    33.Y.Tomioka,A.Asamitsu,H.Kuwahara,Y.Moritomo and Y.Tokura,Phys.Rev.B 53,R1689(1996).
    34.W.Zhong,W.P.Ding,Y.M.Zhou,W.Chen,Z,B.Guo,Y.W.Du and Q.J.Yan,Sol.St.Comm.107,55(1998).
    35.I.O.Troyanchuk,D.D.Khalyavin,E.F.Shapovalova,N.V.Kasper and S.A.Guretskii,Phys.Rev.B 58,2422 (1998).
    36.V.Laukhin,J.Fontcuberta,J.L.Garc(?)a-Mu(?)oz and X.Obradors,Phys.Rev.B 56,R10009(1996).
    37.A.Asamitsu,Y Moritomo,Y.Tomioka,T.Arima and Y Tokura,Nature,373,407 (1995).
    38.J.Barratt,M.R.Lees,G.Balakrishnan and D.Mck Paul,Appl.Phys.Lett.68,424(1995).
    39.G.C.Xiong,Q.Li,H.L.Ju,S.M.Bhagat,S.E.Lofland,R.L.Greene and T.Venkatesan,Appl.Phys.Lett.67,3031 (1995).
    40.R.Von Helmolt,J.Wecker,T.Lorenz and K.Samwer,Appl.Phys.Lett.67,2093 (1995).
    41.J.B.Goodenough and J.M.Lango,Landolt-Boornstein,New series,Vol Ⅲ/4a Springer,Berlin (1970).
    42.H.A.Jahn,and E.Teller,Proc.Roy.Soc.A 161,220 (1937).
    43.P.A.Cox,Transition Metal Oxides:An Introduction to Their Electronic Structure and Properties (Oxford:Clarendon)1995.
    44.Y.Tokura and N.Nagaosa,Science 288,462 (2000).
    45.R.L.Melcher,in Physical Acoustics,Vol.12,Edited by W.P.Mason and R.N.Thurston,(Academic Press,New York)1976,P.7.
    46.V.Goldschmidt,Geochemistry,Oxford University Press,(1958).
    47.J.P.Zhou,J.T.McDevitt,J.S.Zhou,H.Q.Yin,J.B.Goodenough,Y.Gim and Q.X.Jia,Appl.Phys.Lett.75,1146 (1999).
    48.Y.Moritomo,A.Asamitsu and Y.Tokura,Phys.Rev.B 51,16491 (1995).
    49.J.S.Zhou,W.Archibald and J.B.Goodenough,Nature,381,770 (1996).
    50.V.Kiryukhin,Y.J.Wang,F.C.Chou,M.A.Kastner and R.J.Birgeneau,Phys.Rev.B 59,R6581 (1999).
    51.W.E.Pickett and D.J.Singh,Phys.Rev.B 53,1146 (1996).
    52.S.Satpathy,Z.S.Popovic and F.R.Vukajlovic,Phys.Rev.Lett.76,960 (1996).
    53.J.-H.Park,E.Vescovo,H-J.Kim,C.Kwon,R.Ramesh,T.Venkatesan,Nature,392,794(1998).
    54.A.J.Millis,P.B.Littlewood and B.I.Shraiman,Phys.Rev.Lett.74,5144 (1995).
    55.A.J.Millis,B.I.Shraiman and R.Mueller,Phys.Rev.Lett.77,175 (1996).
    56.N.A.Babushkina,L.M.Belova,O.Yu.Gorbenko,A.R.Kaul,A.A.Bosak,V.I.Ozhogin and K.I.Kugel,Nature,391,159 (1998).
    57.Q.Huang,A.Santoro,J.W.Lynn,R.W.Erwin,J.A.Borchers,J.L.Peng,K.Ghosh and R.L.Greene,Phys.Rev.B 58,2684 (1998)
    58.S.W.Cheong and H.Y.Hwang,Ferromagnetism versus charge/orbital ordering in mixed-valent manganites Colossal Magnetoresitance Oxides (London:Gordon and Breach,2000).
    59.R.Kajimoto,H.Yoshizawa,H.Kawano,H.Kuwahara,Y.Tokura,K.Ohoyama and M.Ohashi,Phys.Rev.B 60,9506 (1999)
    60.C.Martin,A.Maignan,M.Hervieu and B.Raveau,Phys.Rev.B 60,12191 (1999).
    61.E.J.Verwey,Nature 144 327 (1939).
    62.C.H.Chen and S.-W.Cheong,Phys.Rev.Lett.76,4042 (1996).
    63.P.G.Radaelli,D.E.Cox,M.Marezio and S.W.Cheong Phys.Rev.B 55,3015 (1997).
    64.A.P.Ramirez,P.Schiffer,S-W.Cheong,C.H.Chen,W.Bao,T.T.M.Palstra,P.L.Gammel,D.J.Bishop and B.Zegarski,Phys.Rev.Lett.76,3188 (1996).
    65.S.Mori,C.H.Chen and S.-W.Cheong,Nature 392,473 (1998).
    66.P.G Radaelli,D.E.Cox,L.Capogna,S.-W.Cheong and M.Marezio,Phys.Rev.B 59,14440(1999).
    67.H.Kuwahara,Y.Tomioka,A.Asamitsu,Y Moritomo and Y.Tokura,Science,270,961 (1995)
    68.Y Tomioka,A.Asamitsu,Y Moritomo,H.Kuwahara and Y Tokura,Phys.Rev.Lett.74,5108(1995).
    69.M.R.Ibarra,J.M.De Teresa,J.Blasco,P.A.Algarabel,C.Marquina,J.Garcia and J.Stankiewicz,Phys.Rev.B 56,8252 (1997).
    70.Y Tomioka,A.Asamitsu,Y Moritomo and Y Tokura,J.Phys.Soc.Jpn.64,3626 (1995).
    71.A.Asamitsu,Y.Tomioka,H.Kuwahara and Y Tokura,Nature,388,50 (1997).
    72.V.Kiryukhin,D.Casa,J.P.Hill,B.Keimer,A.Vigliante,Y Tomioka and Y Tokura,Nature,386,813(1997).
    73.Y.Moritomo,H.Kuwahara,Y Tomioka and Y Tokura,Phys.Rev.B 55,7549 (1997).
    74.H.Y.Hwang,S-W.Cheong,P.G.Radaelli,M.Marezio and Batlogg,Phys.Rev.Lett.75,914(1995).
    75.A.Sundaresan,P.L.Paulose,R.Mallik and E.V.Sampathkumaran,Phys.Rev.B 57,2690(1998).
    76.J.Takeuchi,S.Hirahara,T.P.Dhakal,K.Miyoshi,and K.Hujiwara,Physica B 312,754(2002).
    77.M.G Zhao,K.Conder,H.Keller and K.A.Muller,Nature,381,676 (1996),
    78.N.A.Babushkina,L.M.Belova,O.Y Gorbenko,A.R.Kaul,A.A.Bosak,V.I.Ozhogin and K.I.Kugel,Nature,391,159 (1998)
    79.E.L.Nagaev,JETP Lett.6,18 (1967).
    80.J.Witins,P.Wachter,Phys.Rev.B 12,3829 (1975).
    81.C.N.R.Rao,A.Arulraj,A.K.Cheetham and B.Raveau J.Phys.:Condens.Matter 12,R83 (2000).
    82.R.H.Kim,M.Uehara,C.Hess,P.A.Sharma and S.W.Cheong,Phys.Rev.Lett.84,2961 (2000).
    83.A.Guha,N.Khare,A.K.Raychaudhuri and C.N.R.Rao,Phys.Rev.B 62,R11941(2000).
    84.V.Hardy,A.Wahl and C.Martin,Phys.Rev.B,64,064402 (2001).
    85.P.de Gennes Phys.Rev.118,141 (1960).
    86.M.Uehara,S.Mori,C.H.Chen and S.-W.Cheong,Nature,399,560 (1999).
    87.M.Fath,S.Freisem,A.A.Menovsky,Y.Tomioka,J.Aarts and J.A.Mydosh,Science285,1540(1999).
    88.L.W.Zhang,C.Israel,A.Biswas,R.L.Greene and A.D.Lozanne,Science 298,805(2002).
    89.S.Mori,C.H.Chen and S-W.Cheong,Phys.Rev.Lett.81,3972 (1998).
    90.C.H.Booth,F.Bridges,G.H.Kwei,J.M.Lawrence,A.L.Connelius and J.J.Neumeier,Phys.Rev.Lett.80,853 (1998).
    91.P.Dai,J.A.Fernandez-Baca,N.Wakabayashi,E.W.Plummer,Y.Tomioka and Y.Tokura,Phys.Rev.Lett.85,2553 (2000).
    92.S.Yoon,H.Liu,G.Schollerer,S.Cooper,P.D.Han,D.A.Payne,S.-W.Cheong and Z.Fisk,Phys.Rev.B 58,2795 (1998).
    93.V.Chechersky,A.Nath,C.Michel,M.Hervieu,K.Gosh and R.L.Green,Phys.Rev.B 62,5316(2000).
    94.N.A.Babushkina,L.M.Belova,O.Yu Gorbenko,A.R.Kaul,A.A.Bosak,V.I.Ozhogin and K.I.Kugel,Nature 391,159 (1998).
    95.B.Raquet,A.Anane,S.Wirth,P.Xiong and S.Von Molnar,Phys.Rev.Lett.84,4485 (2000).
    96.P.J.M.Bastiannsen and H.J.F.Knops,J.Phys.Chem.Solids 59,297 (1998).
    97.M.Mayr,A.Moreo,J.A.Verges,J.Arispe,A.Feiguin and E.Dagotto,Phys.Rev.Lett.86,135 (2001).
    98.I.F.Lyuksyutov and V.L.Pokrovsky,Mod.Phys.Lett.B 13,379 (1999)
    99.A.J.Millis,T.Darling,A.Migliori,J.Appl.Phys.83,1588 (1998).
    100.E.S.Vlakhov,R.A.Chakalov and R.I.Chakalova,K.A.Nenkov,K.Dorr,A.Handstein,and K.-H.Müller,J.Appl.Phys.83,2152 (1998).
    101.Yan Wu and Y.Suzuki,U.Rüdiger,J.Yu,and A.D.Kent,T.K.Nath and C.B.Eom,Appl.Phys.Lett.75,2295 (1999).
    102.F.Tsui,M.C.Smoak,T.K.Nath and C.B.Eom,Appl.Phys.Lett.76,2421 (2000).
    103.H.S.Wang,E.Wertz,Y.F.Hu,Q.Li,and D.G.Schlom,J.Appl.Phys.87,7409 (2000).
    104.W.Prellier,A.M.Haghiri-Gosnet,B.Mercey,Ph.Lecoeur,M.Hervieu,Ch Simon,and B.Raveau,Appl.Phys.Lett.77,1023 (2000).
    105.A.M.Haghiri-Gosnet,M.Hervieu,Ch.Simon,B.Mercey,and B.Raveau,J.Appl.Phys.88,3545 (2000).
    106.B.Mercey,J.Wolfman,and W.Prellier et al? Chem.Mater.12,2858 (2000).
    107.K.M.Krishnan,A.R.Modak,C.A.Lucas,R.Michel,and H.B.Cherry,J.Appl.Phys.79,5169(1996).
    108.Y.Y.Koo,S.H.Park,K.-B.Lee,and Y.H.Jeong,Appl.Phys.Lett.71,977 (1997).
    109.C.Kwon,M.C.Robson,K.-C.Kim,J.Y Gu,S.E.Lofland,S.M.Bhagat,Z.Trajanovic,M.Rajeswari,T.Venkatesan,A.R.Kratz,R.D.Gomez,and R.Ramesh,J.Man.Magn.Mater.172,229(1997).
    110.Y.Takamura,R.V.Chopdekar,E.Arenholz,and Y.Suzuki,Appl.Phys.Lett.92,162504(2008).
    111.Y.Konishi,Z.Fang,M.Izumi,T.Manako,M.Kasai,H.Kuwahara,M.Kawasaki,K.Terakura,and Y.Tokura,J.Phys.Soc.Japan 68,3790 (1999).
    112.W.A.Harrison,Electronic Structure and the Properties of Solids (Dover,New York,1989),Chap.19.
    113.X.Obradors,L.Paulins,M.B.Maple,J.Torrance,A.Nazzal,J.Fontcuberta,and X.Granados,Phys.Rev.B 47,12353 (1993).
    114.J.Zhang,H.Tanaka,T.Kanki,J.-H.Choi,and T.Kawai,Phys.Rev.B 64,184404(2001).
    115.T.Kanki,H.Tanaka,and T.Kawai,Phys.Rev.B 64,224418 (2001).
    116.A.M.Haghiri-Gosnet,J.Wolfman,B.Mercey,Ch.Simon,P.Lecoeur,M.Korzenski,M.Hervieu,R.Desfeux,and G.Baldinozzi,J.Appl.Phys.88,4257 (2000).
    117.N.D.Mathur.M.-H.Jo,J.E.Evetts,and M.G.Blamire,J.Appl.Phys.89,3388 (2001).
    118.X.W.Li,A.Gupta,G.Xiao,and G.Q.Gong,Appl.Phys.Lett.71,1124 (1997).
    119.H.S.Wang,and Qi Li,Appl.Phys.Lett.73,2360 (1998).
    120.H.S.Wang,Qi Li,Kai Liu,and C.L.Chien,Appl.Phys.Lett.74,2212 (1999).
    121.P.K.Siwach,H.K.Singh,and O.N.Srivastava,J.Phys.:Condens.Matter 18,9783 (2006).
    122.Z.Fang,I.V.Solovyev,and K.Terakura,Phys.Rev.Lett.82,3169 (2000).
    123.Y.Wakabayashi,D.Bizen,H.Nakao,Y.Murakami,M.Nakamura,Y.Ogimoto,K.Miyano,and H.Sawa,Phys.Rev.Lett.96,017202 (2006).
    124.M.Tokunaga,N.Miura,Y.Tomioka,and Y.Tokura,Phys.Rev.B 57,5259 (1998).
    125.A.Biswas,M.Rajeswari,R.C.Srivastava,T.Venkatesan,R.L.Greene,Q.Lu,A.L.de Lozanne,and A.J.Millis,Phys.Rev.B 63,184424 (2001).
    126.K.Knizek,Z.Jirak,E.Pollert,F.Zounova,and S.Vratislav,J.Solid State Chem.100,292(1992).
    127.Y.Tomioka,A.Asamitsu,Y Moritumo,H.Kuwahara,and Y.Tokura,Phys.Rev.Lett.74,5108(1995).
    128.H.Kawano,R.Kajimoto,H.Yoshizawa,Y.Tomioka,H.Kuwahara,and Y Tokura,Phys.Rev.Lett.78,4253(1997).
    129.T.Mizokawa,and A.Fujimori,Phys.Rev.B 56,R493 (1997).
    130.A.Llobet,J.L.Garcia-Munoz,and C.Frontera,Phys.Rev.B 60,R9889 (1999).
    131.B.Raveau,M.Hervieu,and A.Maignan,Phys.Rev.B 62,8620 (2000).
    132.R.Kajimoto,H.Yoshizawa,Y Tomioka,and Y.Tokura,Phys.Rev.B 66,180402(R)(2002).
    133.B.Mercey,M.Hervieu,W.Prellier,J.Wolfman,C.Simon,and B.Raveau,Appl.Phys.Lett.78,3857 (2001).
    134.Y.Ogimoto,N.Takubo,M.Nakamura,H.Tamaru,M.Izumi,and K.Miyano,Appl.Phys.Lett.86,112513(2005).
    135.R.A.Rao,D.Lavric,T.K.Nath,C.B.Eom,L.Wu,and F.Tsui,Appl.Phys.Lett.73,3294(1998).
    136.T.K.Nath,R.A.Rao,D.Lavric,C.B.Eom,L.Wu,and F.Tsui,Appl.Phys.Lett.74,1615(1999).
    137.Y.Suzuki,Y Wu,J.Yu,U.Ruediger,A.D.Kent,T.K.Nath,and C.B.Eom,J.Appl.Phys.87,6746 (2000).
    138.A.Barman,and G.Koren,Appl.Phys.Lett.77,1674 (2000).
    139.0.Yu.Grobenko,I.E.Graboy,A.R.Kaul,and H.W.Zandbergen,J.Mang.Magn.Mater,211,97 (2000).
    140.M.Bibes,S.Valencia,L1.Balcells,B.Martinez,J.Fontcuberta,M.Wojcik,S.Nadolski,and E.Jedryka,Phys.Rev.B 66,134416 (2002).
    141.I.C.Infante,F.Aanchez,J.Fontcuberta,M.Wojcik,E.Jedryka,S.Estrade,F.Peiro,J.Arbiol,V.Laukhin,and J.P.Espinos,Phys.Rev.B 76,224415 (2007).
    142.G Y Gao,S.W.Jin,W.B.Wu,Appl.Phys.Lett.90,012509 (2007).
    143.S.W.Jin,G.Y Gao,Z.Z.Yin,Z.Huang,X.Y Zhou,and W.B.Wu,Phys.Rev.B 75,212401 (2007).
    144.S.Jin,Appl.Phys.Lett.67,557 (1995).
    145.L.B.Steren,M.Sirena,and J.Guimpel,J.Appl.Phys.87,6755 (2000).
    146.J.Z.Sun,D.W.Abraham,R.A.Rao,and C.B.Eom,Appl.Phys.Lett.74,3017 (1999).
    147.R.P.Borges,W Guichard,J.G.Lunney,J.M.D.Coey,and,F.Ott,J.Appl.Phys.89,3868(2001).
    148.R.Zhang,and R.F.Willis,Phys.Rev.Lett.86,2665 (2001).
    149.M.Ziese,H.C.Semmelhack,K.H.Han,S.P.Sena,and H.J.Blythe,J.Appl.Phys.91,9930 (2002).
    150.W.Prellier,Ch Simon,A.M.Haghiri-Gosnet,B.Mercey,and B.Raveau,Phys.Rev.B 62,R16337 (2000).
    151.Y Z.Chen,J.R.Sun,S.Liang,W.M.Lv,B.G.Shen,and W.B.Wu,J.Appl.Phys.103,096105(2008).
    1.R.V.Helmolt,J.Wecker,B.Holzapfel,L.Schultz,and K.Samwer,Phys.Rev.Lett.71,2331 (1993);Y.Tokura,Rep.Prog.Phys.69,797 (2006).
    2.K.Dorr,J.Phys.D:Appl.Phys.39,R125 (2006);A.M.Haghiri-Gosnet,and J.P.Renard,J.Phys.D:Appl.Phys.36 R127 (2003).
    3.S.Mathews,R.Ramesh,T.Venkatesan,and J.Benedetto,Science 276,238 (1997).
    4.N.Kida,and M.Tonouchi,Appl.Phys.Lett.78,4115 (2001).
    5.C.Zener,Phys.Rev.82,403 (1951).
    6.A.Urushibara,Y.Moritomo,T.Arima,A.Asamitsu,G.Kido,and Y.Tokura,Phys.Rev.B51,14103(1995).
    7.H.Fujishiro,M.Ikebe,and Y.Konno,J.Phys.Soc.Jpn.67,1799 (1998).
    8.T.Y.Koo,S.H.Park,K.-B.Lee,and Y.H.Jeong,Appl.Phys.Lett.71,977 (1997).
    9.Y.Konishi,J.Phys.Soc.Jpn.68,3790 (1999).
    10.H.W.Zandbergen,S.Freisem,T.Nojima,and J.Aarts,Phys.Rev.B 60,10259 (1999).
    11.S.Jacob,T.Roch,F.S.Razavi,G.M.Gross,and H.-U.Habermeier,J.Appl.Phys.91,2232 (2002).
    12.S.Jin,T.H.Tiefel,M.McCormack,H.M.O'Bryan,L.H.Chen,R.Ramesh,and D.Schuring,Appl.Phys.Lett.67,557 (1995).
    13.G.H.Jonker,and J.H.Van Santen,Physica 16,337 (1950);G.H.Jonker,and J.H.van Santen Physica 19,120 (1953).
    14.J.F.Mitchell,D.N.Argyriou,C.D.Potter,D.G.Hinks,J.D.Jorgensen,S.D.Bader,Phys.Rev.B 54,6172(1996).
    15.Q.Huang,A.Santoro,J.W.Lynn,R.W.Erwin,J.A.Borchers,J.L.Peng,K.Ghosh,R.L.Greene,Phys.Rev.B 58,2684 (1998).
    16.H.L.Ju,J.Gopalakrishnan,J.L.Peng,Q.Li,G.C.Xiong,T.Venkatesan,and R.L.Greene,Phys.Rev.B.51,6143 (1995).
    17.W.Prellier,M.Rajieswari,T.Venkatesan,and R.L.Greene,Appl.Phys.Lett.75,1446 (1999).
    18.J.Dho,N.H.Hur,I.S.Kim,and Y.K.Park,J.Appl.Phys.94,7670 (2003).
    19.J.Sakai,N.Ito,and S.Imai,J.Appl.Phys.99,08Q318 (2006).
    20.N.Abdelmoula,K.Guidara,A.Cheikh-Rouhou,E.Dhahri,and J.C.Joubert,J.Solid State Chem.151,139(2000).
    21.J.Li,C.K.Ong,J.M.Liu,Q.Huang,and S.J.Wang,Appl.Phys.Lett.76,1051 (2000).
    22.M.Egilmez,K.H.Chow,and J.Jung,Appl.Phys.Lett.89,062511 (2006).
    23.F.X.Hu,J.Gao,J.R.Sun,and B.G.Shen,Appl.Phys.Lett.83,1869 (2003).
    24.W.B.Wu,K.H.Wong,C.L.Mak,C.L.Choy,and Y.H.Zhang,J.Appl.Phys.88,2068(2000).
    25.X.D.Zhu,W.D.Si,X.X.Xi,Q.Li,Q.D.Jiang,and M.G.Medici,Appl.Phys.Lett.74,3540(1999).
    26.G.C.Xiong,Qi Li,H.L.Ju,R.L.Greene,and T.Venkatesan,Appl.Phys.Lett.66,1689(1995).
    27.Z.Wei,W.Boyd,M.Elliot,and W.Herrenden-Harkerand,Appl.Phys.Lett.69,3926(1996).
    28.J.R.Sun,C.F.Yeung,K.Zhao,L.Z.Zhou,C.H.Leung,H.K.Wong,and B.G.Shen,Appl.Phys.Lett.76,1164 (2000).
    29.M.Salvato,A.Vecchione,A.D.Santis,F.Bobba,and A.M.Cucolo,J.Appl.Phys.97,103712(2005).
    30.P.Murugavel,J.H.Lee,K.B.Lee,J.H.Park,J.S.Chung,J.G.Yoon,and T.W.Noh,J.Phys.D:Appl.Phys.35,3166 (2002).
    31.A.S.Ogale,S.R.Shinde,V.N.Kulkarni,J.Higgins,R.J.Choudhary,D.C.Kundaliya,T.Polleto,S.B.Ogale,R.L.Greene,and T.Venkatesan,Phys.Rev.B.69,235101 (2004).
    32.J.R.Sun,H.W.Yeung,H.K.Wong,T.Zhu,and B.G.Shen,Eur.Phys.J.B 35,481(2003).
    33.S.H.Seo,H.C.Kang,H.W.Jang,and D.Y.Noh,Phys.Rev.B.71,012412 (2005).
    34.G.Y.Gao,S.W.Jin,and W.B.Wu,Appl.Phys.Lett.90,012509 (2007).
    35.W.Chang,J.S.Horwitz,A.C.Carter,J.N.Pond,S.W.Kirchoefer,C.M.Gilmore,and D.B.Chrisey,Appl.Phys.Lett.74,1033 (1999).
    36.A.Plecenik,A.Gilabert,K.Frohlich,A.Halabica,M.Pripko,M.G.Medici,J.P.Espinos,and J.P.Hogado,J.Supercond.15,579 (2002).
    37.T.Horita,T.Tsunoda,K.Yamaji,N.Sakai,T.Kato,and H.Yokokawa,Solid State Ionics 152,439(2002).
    1.Y.Tokura,and N.Nagaosa,Science 288,462 (2000).
    2.N.D.Mathur,and P.B.Littlewood,Phys.Today 56,25 (2003).
    3.E.Dagotto,Science 309,257 (2005).
    4.P.G.Radaelli,D.E.Cox,M.Marezio,S.-W.Cheong,P.E.Schiffer,and A.P.Ramirez,Phys.Rev.Lett.75,4488 (1995).
    5.G.R.Blake,L.Chapon,P.G.Radaelli,D.N.Argyriou,M.J.Gutmann,and J.F.Mitchell,Phys.Rev.B 66,144412 (2002).
    6.P.Schifer,A.P.Ramirez,W.Bao,and S.W.Cheong,Phys.Rev.Lett.75,3336 (1995).
    7.Y.Tomioka,A.Asamitsu,Y.Moritomo,H.Kuwahara,and Y.Tokura,Phys.Rev.Lett.74,5108(1995).
    8.A.Asamitsu,Y.Tomioka,H.Kuwahara and Y Tokura,Nature,388,50 (1997).
    9.V.Kiryukhin,D.Casa,J.P.Hill,B.Keimer,A.Vigliante,Y Tomioka and Y Tokura,Nature,386,813(1997).
    10.M.Kasai,H.Kuwahara,Y.Moritomo,Y.Tomioka,and Y.Tokura,Jpn.J.Appl.Phys.,Part 2 35,L489(1996).
    11.P.Wagner,I.Gordon,L.Trapperiers,J.Vanacken,F.Herlach,V.V.Moshchalkov,and Y.Bruynseraede,Phys.Rev.Lett.81,3980 (1998).
    12.W.Prellier,A.Biswas,M.Rajeswari,T.Venkatesan,and R.L.Green,Appl.Phys.Lett.75,397(1999).
    13.V.Ponnambalam,S.Parashar,A.R.Faju,and C.N.R.Rao,Appl.Phys.Lett.74,206 (1999).
    14.M.Nakamura,Y.Ogimoto,H.Tamaru,M.Izumi,and K.Miyano,Appl.Phys.Lett.86,182504(2005).
    15.Y.Wakabayashi,D.Bizen,H.Nakao,Y.Murakami,M.Nakamura,Y.Ogimoto,K.Miyano,and H.Sawa,Phys.Rev.Lett.96,017202 (2006).
    16.Y.Ogimoto,N.Takubo,M.Nakamura,H.Tamaru,M.Izumi,and K.Miyano,Appl.Phys.Lett.86,112513(2005).
    17.D.H.Kim,H.M.Christen,M.Varela,H.N.Lee,and D.H.Lowndes,Appl.Phys.Lett.88,202503 (2006).
    18.Y.Uozu,Y.Mwkabayashi,Y.Ogimoto,N.Takubo,H.Tamaru,N.Nagaosa,and K.Miyano,Phys.Rev.Lett.97,037202 (2006).
    19.Y.Z.Chen,J.R.Sun,S.Liang,W.M.Lv,B.G.Shen,and W.B.Wu,J.Appl.Phys.103,096105 (2008).
    20.F.Martin,G.Jakob,and W.Westerburg,J.Magn.Magn.Mater.509,196 (1999).
    21.Z.Fang,I.V.Solovyev,and K.Terakura,Phys.Rev.Lett.84,3169 (2000).
    22.A.J.Millis,T.Darling,and A.Migliori,J.Appl.Phys.83,1588 (1998).
    23.K.D(o|¨)rr,J.Phys.D:Appl.Phys.39,R125 (2006).
    24.M.Bibes,S.Valencia,LI.Balcells,B.Martinez,J.Fontcuberta,M.Wojcik,S.Nadolski,and E.Jedryka,Phys.Rev.B 66,134416 (2002).
    25.S.W.Jin,G.Y.Gao,Z.Huang,Z.Z.Yin,X.Zheng,and W.B.Wu,Appl.Phys.Lett.92,261901 (2008).
    26.G.Herranz,M.Berkowski,E.Jedryka,M.Wojcik,F.Sanchez,M.Bibes,and J.Fontcuberta,J.Appl.Phys.93,8065 (2003).
    27.J.Matsuno,A.Sawa,M.Kawasaki,and Y.Tokura,Appl.Phys.Lett.92,122104 (2008).
    28.D.Niebieskikwiat,L.E.Hueso,J.A.Borchers,N.D.Mathur,and M.B.Salamon,Phys.Rev.Lett.99,247207 (2007).
    29.H.Kawano,R.Kajimoto,H.Yoshizawa,Y.Tomioka,H.Kuwahara,and Y.Tokura,Phys.Rev.Lett.78,4253 (1997).
    30.Y.Ogimoto,M.Nakamura,N.Takubo,H.Tamaru,M.Izumi,and K.Miyano,Phys.Rev.B 71,060403(R)(2005).
    31.A.de Andres,J.Rubio,G.Castro,S.Taboada,J.L.Martinez,and J.M.Colino,Appl.Phys.Lett.83,713(2003).
    32.P.M.Woodward,T.Vogt,D.E.Cox,A.Arulraj,C.N.R.Rao,P.Karen,and A.K.Cheeetham,Chem.Mater.10,3652 (1998).
    33.U.Gebhardt,N.V.Kasper,A.Vigliante,P.Wochner,H.Dosch,F.S.Razavi,and H.-U.Habermeier,Phys.Rev.Lett.98,096101 (2007).
    34.N.Farag,M.Bobeth,W.Pompe,A.E.Romanov,and J.S.Speck,J.Appl.Phys.97, 113516(2005).
    35.G R.Xu,H.Hiraka,G.Shirane,J.F.Li,J.L.Wang,and D.Viehland,Appl.Phys.Lett.86,182905 (2005).
    36.W.D.Wu,C.Israel,N.Hur,S.Park,S.-W.Cheong,and A.De Lozanne,Nature Mater.5,881 (2006).
    37.Z.Z.Yin,Z.Huang,G.Y.Gao.W.B.Wu,G.Y.Wang,and Y.Wang,J.Phys.D:Appl.Phys.42,062004 (2009).
    38.Y.Konishi,Z.Fang,M.Izumi,T.Manako,M.Kasai,H.Kuwahara,M.Kawasaki,K.Terakura,and Y.Tokura,J.Phys.Soc.Jpn.68,3790 (1999).
    39.V.S.Speriosu,and T.Vreeland.Jr,J.Appl.Phys.56,1591 (1984).
    40.Z.Q.Yang,Y.Q.Zhang,J.Aarts,M.-Y.Wu,and H.W.Zandbergen,Appl.Phys.Lett.88,072507 (2006).
    41.Y.Q.Zhang,Y.L.Zhu,Z.D.Zhang,and J.Aarts,J.Appl.Phys.101,063919 (2007).
    1.R.Vo Helmolt,J.Wecker,B.Holzapfel,L.Schultz,and K.Samwer,Phys.Rev.Lett.71,2331 (1993).
    2.Colossal Magnetoresistive Oxides,edited by T.Chatterji (Kluwer Academic Publishers,Dordrecht,2004).
    3.K.Dorr,J.Phys.D 39,R125 (2006).
    4.R.Maezono,S.Ishihara,and N.Nagaosa,Phys.Rev.B 58,11583 (1998).
    5.A.Moreo,S.Yunoki,and E.Dagoto,Science 283,2034 (1999).
    6.C.Martin,A.Maignan,M.Hervieu,and B.Raveau,Phys.Rev.B 60,12191 (1999).
    7.J.Hejtmanek,E.Pollert,Z.Jirak,D.Sedmidubsky,A.Strejc,A.Maignan,Ch.Martin,V.Hardy,R.Kuzel,and Y.Tomioka,Phys.Rev.B 66,014426 (2002).
    8.O.Chmaissem,B.Dabrowski,S.Kolesnik,J.Mais,J.D.Jorgensen,and S.Short,Phys.Rev.B 67,094431 (2003).
    9.R.Kajimoto,H.Yoshizawa,H.Kawano,H.Kuwahara,Y.Tokura,K.Ohoyama,and M.Ohashi,Phys.Rev.B 60,9506 (1999).
    10.C.Zener,Phys.Rev.82,403 (1951).
    11.A.Shengelaya,G.M.Zhao,H.Keller,and K.A.Muller,Phys.Rev.Lett.77,5296 (1996).
    12.G.M.Zhao,K.Conder,H.Keller,and K.A.Muller,Nature 381,676 (1996).
    13.A.J.Mills,P.B.Littlewood,and B.I.Shraiman,Phys.Rev.Lett.74,5144 (1995).
    14.A.Asamitsu,Y.Tomioka,H.Kuwahara and Y.Tokura,Nature,388,50 (1997).
    15.F.J.Rueckert,M.Steiger,B.K.Davis,T.Huynh,J.J.Neumeier,and M.S.Torikachvili,Phys.Rev.B 77,064403 (2008).
    16.M.Nakamura,Y.Ogimoto,H.Tamaru,M.Izumi,and K.Miyano,Appl.Phys.Lett 86,182504(2005).
    17.Y.Ogimoto,N.Takubo,M.Nakamura,H.Tamaru,M.Izumi,and K.Miyano,Appl.Phys.Lett 86,112513(2005).
    18.J.Matsuno,A.Sawa,M.Kawasaki,and Y.Tokura,Appl.Phys.Lett 92,122104 (2008).
    19.D.Sanchez,L.E.Hueso,L.Granja,P.Levy,N.D.Mathur,Appl.Phys.Lett 89,142509 (2006).
    20.Dane Gillaspie,J.X.Ma,Hong-Ying Zhai,T.Z.Ward,Hans M.Christen,E.W.Plummer,and J.Shen,J.Appl.Phys.99,08S901 (2006).
    21.B.Mercey,M.Hervieu,W.Prellier,J.Wolfman,C.Simon,and B.Rqveau,Appl.Phys.Lett 78,3857(2001).
    22.P.Wagner,I.Gordon,L.Trappeniers,J.Vanacken,F.Herlach,V.V.Moshchalkov,and Y.Bruynseraede,Phys.Rev.Lett.81,3980 (1998).
    23.V.Ponnambalam,S.Parashar,A.R.Faju,and C.N.R.Rao,Appl.Phys.Lett 74,206 (1999).
    24.Y.Wakabayashi,D.Bizen,Y.Kubo,H.Nakao,Y.Murakami,M.Nakamura,Y.Ogimoto,K.Miyano,and H.Sawa,J.Phys.Soc.Jpn.77,014712 (2008).
    25.Y.Wakabayashi.D.Bizen,H.Nakao,Y.Murakami,M.Nakamura,Y.Ogimoto,K.Miyano,and H.Sawa,Phys.Rev.Lett.96,017202 (2006).
    26.N.Takubo,Y.Ogimoto,M.Nakamura,H.Tamaru,M.Izumi,and K.Miyano,Phys.Rev.Lett.95,017404 (2005).
    27.Y.Lu,J.Klein,F.Herbstritt,Phys.Rev.B.73,184406 (2006).
    28.M.Angeloni,G.Balestrino,N.G.Boggio,P.G.Medaglia,P.Orgiani,and A.Tebano,J.Appl.Phys.96,6387 (2004).
    29.M.Salluzzo,G.M.de luca,D.Marre,M.Putti,M.Tropeano,U.Scotti di Uccio,and R.Vaglio,Phys.Rev.B 72,134521 (2005).
    30.M.Jaime,P.Lin,M.B.Salamon,and P.D.Han,Phys.Rev.B 58,5901 (1998).
    31.I.C.Infante,F.Sanchez,J.Fontcuberta,M.Wojcik,E.Jedryka,S.Estrade,F.Peiro,J.Arbiol,V.Laukhin,and J.P.Espinos,Phys.Rev.B 76,334415 (2007).
    32.Y.Uozu,Y.Wakabayashi,Y.Ogimoto,N.Takubo,H.Tamaru,N.Nagaosa,and K.Miyano,Phys.Rev.Lett.97,037202 (2006).
    33.Z.Z.Yin,Z.Huang,G.Y.Gao,W.B.Wu,G.Y.Wang,and Y.Wang,J.Phys.D:Appl.Phys.42,062004 (2009).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700