甘蓝型油菜(Brassica napus L.)TT8基因家族的克隆及反义转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蓝型油菜(Brassica napus L.)是世界四大油料作物之一,也是我国重最要的油料作物之一。黄籽油菜近年颇受重视,与黑籽油菜相比,具有种皮色素少、种皮薄、纤维素含量低以及蛋白质和含油量高的优点,培育遗传稳定、农艺性状优良的黄籽甘蓝型油菜已成为油菜育种的一个重要目标之一。甘蓝型油菜黄籽性状形成的分子机理目前还不清楚,但可以借鉴拟南芥透明种皮(Transparent testa,TT)性状研究成果,开展甘蓝型油菜种皮色泽分子机制的研究。目前在拟南芥中已鉴定出21个TT基因位点和一个BAN位点,并且许多TT基因在拟南芥中已经被克隆。
     拟南芥TT8(AtTT8)是类黄酮合成途径中的一个调控因子,它属于碱性螺旋-环-螺旋(basic-Helix-loop-helix domain,bHLH)转录因子,此类转录因子在生物的发育过程中具有重要作用,拟南芥、玉米、矮牵牛、金鱼草等植物中该基因的突变导致种子颜色或花色改变。拟南芥中,TT8、TTG1、TT2三个蛋白都调控BAN基因和DFR基因的转录。研究油菜TT8基因有助于进一步了解甘蓝型油菜黄籽性状形成的分子机制,可以为通过基因工程创造稳定的黄籽甘蓝型油菜新材料提供基础。
     本研究克隆了甘蓝型油菜TT8基因家族的3个成员的全长cDNA和1个成员的基因组序列,并对其序列及编码蛋白进行了系统的分析;通过Sourthern杂交鉴定了TT8基因家族在甘蓝型油菜中的成员数;构建了甘蓝型油菜TT8基因家族反义植物表达载体,并转化黑籽甘蓝型油菜得到了转基因植株。主要结果如下:
     1、甘蓝型油菜BnTT8基因家族3个成员的克隆和分析
     根据AtTT8保守区设计引物,以甘蓝型油菜黑籽系5B生殖器官总RNA为材料,利用RACE(rapid amplification of cDNA ends)技术,克隆了BnTT8基因家族的3个成员的全长cDNA序列,分别命名为BnTT8-1、BnTT8-2、BnTT8-3,并克隆了BnTT8-1的基因组序列。
     BnTT8-1基因组序列长2949bp,含6个内含子,mRNA(不包括polyA,下同)为1771bp,开放阅读框(ORF,包括终止密码子,下同)为1566bp,5’UTR为147bp,3’UTR为58bp。BnTT8-2mRNA为1783bp,ORF为1566bp,5’UTR为137bp,3’UTR为80bp。BnTT8-3 mRNA为1676bp,的ORF为1308bp,5’UTR为134bp,3’UTR为231bp。在BnTT8-1、BnTT8-2和BnTT8-3在3’UTR均存在典型的AATAAA加尾信号,在5’UTR区都有富含AG重复的微卫星序列。核苷酸组成在不同区段变化较大,非编码区G+C含量明显低于编码区。BnTT8-1的内含子的总长度比拟南芥大大缩短。
     推导的BnTT8-1蛋白为521个氨基酸,Mw=59.669kDa,pI=5.61;BnTT8-2为1个521个氨基酸,Mw=59.955kDa,pI=5.65;BnTT8-3为435个氨基酸,Mw=50.071kDa,pI=5.47。3个蛋白中均以谷氨酸的含量为最高,且酸性氨基酸数目多于碱性的氨基酸。BnTT8-3 mRNA对应于其它TT8基因的终止密码子发生突变,且与其它TT8 mRNA相比在该位置上游发生了一段107bp的序列缺失,导致编码的蛋白比其它TT8蛋白在C-末端缺少86个氨基酸。
     BnTT8-1、BnTT8-2和BnTT8-3之间在氨基酸水平上有很高的同源性,BnTT8-1和BnTT8-2的一致性和相似性分别为96.7%和98.1%,BnTT8-1和BnTT8-3的一致性和相似性分别为97%和98.6%,BnTT8-2和BnTT8-3的一致性和相似性分别为98.4%和99.3%。BnTT8基因的核酸及蛋白序列与已知植物的TT8基因和bHLH基因的核酸及蛋白序列有高度的同源性,尤与AtTT8最相似。BnTT8-1与AtTT8的相似性为83.4%,一致性为76.5%;BnTT8-2与AtTT8的相似性为83.9%,一致性为76.9%;BnTT8-3与AtTT8的相似性为83.9%,一致性为77.5%。BnTT8-1、BnTT8-2和BnTT8-3蛋白都在L_(366)到H_(417)区域分别对应存在HLH保守性结构域,在该结构域及保守性氨基酸位置,它们与AtTT8高度相似。它们分别有33个、33个和32个潜在的磷酸化位点,说明磷酸化作用可能与它们的活性有关。它们的二级结构主要由a螺旋和随机卷曲组成,延伸链和β转角也占一定比例。
     BnTT8家族3个成员可能和AtTT8一样,调控类黄酮途径的结构基因表达。由于BnTT8-3蛋白的C-末端缺失了86个氨基酸,所以该成员蛋白是否具有活性,活性强弱如何,值得进一步研究。
     2、甘蓝型油菜BnTT8基因家族的成员数
     Southern blot杂交结果中,每种限制酶均获得3条或3条以下的杂交条带。而本研究采用竭尽式RACE克隆方式,也只获得了3个成员的全长cDNA。因此推测,甘蓝型油菜中BnTT8基因家族可能只存在3个成员。
     3、BnTT8反义表达载体的构建
     将BnTT8基因家族共保守的817bp的片段反接到中间表达载体pCambia2301G中,替换其上的GUS基因,形成CaMV 35S启动子驱动、反义共抑制所有BnTT8成员的植物表达载体,命名为pFBnTT8A。
     4、甘蓝型油菜TT8反义转化植株的获得
     采用农杆菌介导法转化甘蓝型油菜“湘油15”,获得了24株抗卡那霉素的再生苗,通过检测GUS基因在抗性植株中的稳定表达情况,发现其中13株为稳定表达的转基因植株,转化频率达到2.23%。
Oilseed rape (Brassica napus L.) is one of the four major oil crops in the world and is one of the most important oil plants in China too. In recent year the yellow-seeded B. napus has attracted researchers' interest in that it has many good properties compared to black seeds, such as thinner seed coat, fewer seed coat pigment, lower meal fiber content, higher seed oil content and meal protein content, etc. It is one of the most important objectives to breed yellow-seeded rapeseed cultivars with stably inherited yellow seed trait and good agronomic traits. The molecular mechanism of the yellow seed trait is still unclear in B. napus. However, the achievements on the Transparent Testa (TT) trait in Arabidopsis thaliana are available for an insight into the formation of the yellow seed color in B. napus. Up to now, 21 TT loci and a BAN locus have been identified, and many of the TT genes have been cloned in A thaliana.
     The A. thaliana TT8 (AtTT8) gene encodes a regulative factor in the flavanone synthesis way. The AtTT8 belongs to the basic helix-loop-helix domain (bHLH) transcription factors which play an important role in the biologic development. In A thaliana, Zea mays, Petunia hybrida, Antirrhinum majus and so on, the TT8 (or analogue) gene mutation alters seed color or flower color. In A. thaliana, the TT8, TTG1 and TT2 proteins all regulate the BAN and DFR genes' transcription. Study on B. napus TT8 gene is helpful to understand the molecular mechanism of the yellow seed color formation and may lay a foundation for creating stable yellow-seeded lines by genetic engineering.
     In this research, full-length cDNAs of 3 members of B. napus TT8 gene family (BnTT8) were isolated, together with genomic sequence of one member. The nucleotide sequences and the corresponding polypeptides of the BnTT8 gene family were systematically analyzed. The mumber of the BnTT8 gene family members was identified through Sourthern-blot. A BnTT8 gene family antisense plant expression vector was constructed and some regenerated plantlets were obtained from black-seeded B. napus explant cultivar transformed with this vector.
     1. Cloning and analysis of the 3 members of BnTT8 gene family in B. napus
     Based on the conserved regions of the A. thaliana TT8 gene, the PCR pimers were designed. 3 full-length of cDNA sequences of the B. napus TT8 gene famliy were cloned using total RNA from reproductive organs of black-seeded B.napus line 5B by RACE (rapid amplification of cDNA ends) technique. They were named as BnTT8-1, BnTT8-2 and BnTT8-3, respectively. Furthermore, the genomic sequence of BnTT8-1 was also cloned.
     BnTT8-1 has a genomic sequence of 2 949bp with 6 introns. Its mRNA (excluding the polyA tail) is 1 771 bp, with an open reading frame (ORF, including the stop codon) of 1 566bp. Its 5' UTR and 3' UTR are 147bp and 58bp respectively. BnTT8-2 mRNA is 1 783bp, with an ORF of 1 566bp, a 5' UTR of 137bp, and a 3' UTR of 80bp. BnTT8-3 mRNA is 1 676bp, with an ORF of 1 308bp, a 5' UTR of 137bp and a 3' UTR of 231bp. There is a typical polyadenylation signal AATTAAA in 3' UTR of them, and there are microsattilites rich in AG-repeats in their 5' UTRs. The nucleotide composition is varied in different regions of them. The G+C content of the non-coding region is obviously lower than that of the coding region. In BnTT8-1, the total intron length is much shorter than A. thaliana.
     The deduced BnTT8-l protien is 521 aa, Mw=59.669 kDa, pI=5.61; BnTT8-2 is also 521 aa, Mw=59.955 kDa, pI=5.65; and BnTT8-3 is 435 aa, Mw=50.071 kDa, pI=5.47. Glutamic acid is the most abundant residue in them, and acidic residues are more than basic ones. BnTT8-3 mRNA shows mutation at position corresponding stop codon of typical TT8 genes, and a 107-bp deletion exists just upstream this site, causing the loss a 86-aa C-terminal region in its deduced protein.
     BnTT8-1, BnTT8-2 and BnTT8-3 have very high homology at amino acid level, BnTT8-1 and BnTT8-2 share 96.7% identities and 98.1% positives, BnTT8-1 and BnTT8-3 share 97% identities and 98.6% positives, while BnTT8-2 and BnTT8-3 share 98.4% identities and 99.3% positives. The nucleotide sequence and the protein sequence of BnTT8 genes shared high homologies with those of the known plant's TT8 genes and the bHLH genes, especially with the highest homologies to those of the AtTT8 gene. The BnTT8-1, BnTT8-2 and BnTT8-3 share 83.4%, 83.9% and 83.9% of similaritis and 76.5%, 76.9% and 77.5% identities with AtTT8, respectively.
     BnTT8-1, BnTT8-2 and BnTT8-3 all have a bHLH conserved domain from L_(366) to H_(417). At this region and other conserved residues, they are extremely similar to AtTT8. BnTT8-1, BnTT8-2 and BnTT8-3 had 33, 33 and 32 potential phosphorylation sites respectively, suggesting that phosphorylation might be related to the activity of the BnTT8 proteins. The secondary structures of the BnTT8 proteins are primarily composed of alpha helix and random coil, except for certain proportions of extended strand and beta turn.
     Like AtTT8, the 3 BnTT8 members is probably involved in regulation of flavonoid structural genes. But since BnTT8-3 lacks the 86-bp C-terminal region, whether it is bioactive and how active it is deserve further study.
     2. Number of the members of BnTT8 gene family
     In Southern blot results, each restriction enzyme yielded 3 or less hybridization bands. In this study, only 3 members were cloned. Thus it is postulated that there are only 3 members of BnTT8 gene famliy in B. napus.
     3. Construction of a BnTT8 antisense plant expression vector
     A 817-bp fragment conserved in BnTT8 gene family was integrated into the intemdiate expression vector pCambia2301G in the anti orientation to replace the GUS gene driven by the CaMV 35S promoter. Thus a BnTT8 antisense plant expression vector was constructed. The vector was named as pFBnTT8A..
     4. Obtaining of the antisense-BnTT8 transgenic pantlets
     The transformation of a B. napus cultivar Xiangyou 15 mediated by Agrobacterium tumefaciens carrying the BnTT8 antisense expression vector pFBnTT8A was made. 24 plantlets with kanamycin resistance were obtained, among which 13 plantlets were identified as transgenic plants by detecting the expression of the GUS reporter gene. The transformation effciency was 2.23%.
引文
[1] Abraham V, Bhatia C R. Development of strains with yellow-seed coat in Indian mustard (Brassica juncea Czern & Coss) [J]. Plant Breed, 1986, 97: 86-88.
    [2] 刘后利.油菜遗传育种研究的新进展和新成就[M].刘后利科学论文集.北京:北京农业大学出版社,1994,126-130.
    [3] 刘后利,韩继祥.黄籽油菜种质资源的现状及其研究和利用前景[M].刘后利科学论文集.北京:北京农业大学出版社,1994.
    [4] 肖达人,刘后利.甘蓝型油菜种皮颜色与种子含油量的相关分析[J].作物学报,1982,8(4):24-27
    [5] Liu H-L, Zhou Y-M et al. Studies on the breeding for quality in Brassica napus. Proc Symp China Intern Rapeseed Sci, Abstacts, 1990, Shanghai: 1-2.
    [6] 刘后利.甘蓝型黄籽油菜的遗传育种研究[M].作物育种研究与进展(第一集),北京:农业出版社,1993,216.
    [7] Ruecker-B. On the inheritance of seed coat colour in winter oilseed rape (Brassica napus L.) [J]. Cruciferae-Newsletter, 1991, 14-15.
    [8] 李加纳,张学昆,谌利,等.不同遗传背景的甘蓝型黄籽油菜粒色遗传初步研究[J].中国油料作物学报,1998,20(4):16-19.
    [9] Rahman M H, Joersbo M, Poulsen M H. Development of yellow-seeded Brassica napus of double low quality [J]. Plant Breeding, 2001, 120: 473-478.
    [10] Somers D J, Rakow G, Prabhu V K, Friesen K R D. Identification of a major gene and RAPD markers for yellow seed coat color in Brassica napus [J]. Genome, 2001, 44: 1077-1082.
    [11] 李敏,张瑞茂.甘蓝型黄籽油菜果位分布和农艺措施与粒色相关性的研究[J].耕作与栽培,1999(5):26-29.
    [12] Van Deynze A E, Beversdorf W D, Pauls K P. Temperature effect on seed color in black- and yellow-seeded rapeseed [J]. Can J Plant Sci, 1993, 73: 383-387.
    [13] Van Deynze A E, Landry B S, Pauls K P. The identification of restriction fragment length polymorphisms linked to seed colour genes in Brassica napus [J]. Genome, 1995, 38: 534-542.
    [14] Fu T-D, Wang H-Z, Liu H-L. Genetic analysis of seed color stability in yellow-seeded Brassicanapus[M].刘后利科学论文集.北京:北京农业大学出版社.1994,229-234.
    [15] Bartel B, Matsuda S P T. Seeing red [J]. Science, 2003, 299: 352-353.
    [16] Shirley B, Hanley S, Goodman H M. Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations [J]. Plant Cell, 1992, 4: 333-347.
    [17] Hrazdina G, Jensen R A. Spatial organization of enzymes in plant metabolic pathways [J]. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43: 241-267.
    [18] Shirzadegan M. Inheritance of seed color in Brassica napus L. [J]. ZPflanzenzudtt, 1986, 96: 140-146.
    [19] Deynze A V, Pauls K. The inheritance of seed colour and vernalization requirement in Brassica napus L. using doubled haploid populations [J]. Euphytica, 1994, 4: 77-83.
    [20] 钟黔湘,影响甘监型黄籽频率的若干因素.中国油料,1991,13(2):85-86.
    [21] 黄继英,徐爱遄,胡胜武等,甘蓝型黄籽油菜粒色变因分析[J].西北农业大学学报,1996,24(3):33-36.
    [22] 李崇辉,陈文艺.甘蓝犁油菜黄籽分布与种皮颜色变化研究[J].西南农业大学学报,1998,20(3):256-259.
    [23] 李加纳.甘蓝型黄籽油菜研究进展[J].油菜研究年报,2000:12-14.
    [24] 戚存扣,浦惠明,傅寿种.甘蓝型油菜种皮色的遗传特性研究[J].江苏农业科学,1991(5):28-32
    [25] Wang H Z, Liu H L. Genetic analysis of seed color stability in yellow-seeded Brassica napus L. [C]. In Proceedings of the 8th International Rapeseed Congress.1991, 211-218.
    [26] Shirzadegan M. Inheritance of seed color in Brassica napus L. [J] ZPflanzenzudtt, 1986, 96: 140-146.
    [27] Chen B.Y, Heneen W K. Inheritance of seed colour in Brassica campestris L. and breeding for yellow-seeded B. napus L. [J]. Euphytica,1992, 59: 157-163.
    [28] Deynze A V, Pauls K. The inheritance of seed colour and vernalization requirement in Brassica napus L. using doubled haploid populations [J]. Euphytica, 1994, 4: 77-83.
    [29] Van Caeseele L, Mills J T, Sumner M, et al. Cytological study of the palisade development in the seed coat of Candle canola [J]. Can J Bot, 1982, 60: 2469-2475.
    [30] Leung J, Fenton T W, Mueller M M, et al. Condensed tannins of rapeseed meal [J]. J Food Sci, 1979, 44: 1313-1316.
    [31] Theander O, Aman P, Miksche J P. Carbohydrate,polyphenols and lignin in seed hulls of different colours from turnip rapeseed [J]. J Agric Food Chem, 1977, 25: 270-273.
    [32] Vaughah J G. The seed coat structure of Brassica integrifolia (West) O.E. Schutz vae 'carinata' (A.Br.) [J]. Phytomorphology, 1956, 6: 363-367.
    [33] 陈玉萍,刘后利.甘蓝型油菜种籽发育进程中种皮颜色变化[J].中国油料,1995,17(2):1-3.
    [34] 王汉中,刘后利.油菜皮壳中多酚氧化酶活性的组织化学鉴定及其与粒色的关系[J].中国油料,1991,1:30-32.
    [35] Heander O. Carbohydrates, polyphenols and lignin in seed hulls of different colors from turnip rapeseed [J]. Agri Food Chem, 1977, 25(2): 270-273.
    [36] 陈玉萍,刘后利.甘监型油菜种籽发育进程中种皮色素含量动态[J].中国油料,1994,16(4):13-16.
    [37] 安彩泰,马静芳.油菜生物化学[M].甘肃民族出版社,1993,214-217.
    [38] 王汉中,刘后利.甘蓝型油菜粒色与种子有关性状间的关系研究[J].中国油料.1989,(2):32-36.
    [39] 叶小利,李加纳,唐章林等.甘蓝型油菜种皮色泽及相关性状的研究[J].作物学报,2001,27(5):550-556.
    [40] 安田齐.花色的生理生化[M].傅玉兰译.北京:中国林业出版社,1989,70-76.
    [41] Harborne J B, Williams C A. Advances in flavonoid research since [J]. Phytochemistry, 2000, 55: 481-504.
    [42] Tanaka Y., Tsuda S, Kusumi T. Metabolic engineering to modify flower color [J]. Plant Cell Physiol, 1998, 39: 1119-1126.
    [43] Forkmann G, Martens S. Metabolic engineering and application of flavonoids [J]. Curr Opin Biotech, 2001, 12: 155-160.
    [44] Martin C. Gerats T. The control of pigment biosynthesis during petal development [J]. Plant Cell, 1993, 5: 1253-1264.
    [45] Schmelzer E, Jahnen W, Hahlbrock K In situ localization of lightinduced chalcone synthase mRNA, chalcone synthase and flavonoid endproducts in epidermal cells of parsley leaves [J]. Proc Nut Acad Sci. USA, 1998, 85: 2989-2993.
    [46] Hu C Q, Chen K, Shi Q, et al. Acacetin-7-O-beta-D-galactopyranoside, an anti-HIV principle from Chrysanthemum tnorifolium and a structure-activity correlation with some related flavonoids [J]. J Nat Prod, 1994, 57: 42-51.
    [47] Markham K R. Techniques of flavonoid identification [M]. Academic Press. 1982, 13.
    [48] Hrazdina G. Compartmentation in aromatic metabolism. In: Phenolic Metabolism in Plants [M], H A Stafford and RK lbrahim, eds (New York: Plenum Press), 1992: 1-23.
    [49] Mazza G, Miniati E. Anthocyanis in fruits, vegetables and grain [M]s. USA, CRC press, 1993, 1821-1829.
    [50] Nesi N, Jond C, Debeaujon I, et al. The Arabidopsis TT2 gene encodes an R2R3-MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed [J]. Plant Cell, 2001, 13: 2099-2114.
    [51] Devic M, Guilleminot J, Debeaujon I, et al. The BANYULS gene encodes a DFR-like protein and is a marker of early seed coat development [J]. Plant J, 1999, 19: 387-398.
    [52] Akashi T, Aoki T, Ayabe S. Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase involved in biosynthesis of the isoflavonoid skeleton in licorice [J]. Plant Physiol, 1999, 121: 821-828.
    [53] Winkel-Shirley B. Flavonoid biosynthesis: A colorful model for genetics, biochemistry, cell biology and biotechnology [J]. Plant Physiol, 2001, 126: 485-493.
    [54] Burbulis I E, Winkel-Shirley B. Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway [J]. Proc Natl Acad Sci USA, 1999, 96: 12929-12934.
    [55] Neish A C. Biosynthesis pathway of aromatic compounds [J]. Annu Rev Plant Physiol, 1960, 11: 15-30.
    [56] 应初衍,薛应龙.植物苯丙氨酸解氨酶的研究.V:PAL活性与尾穗黄化苗中苋红素积累的相关性[J].植物生理学报,1984,10(3):241-246.
    [57] 鞠志国,刘成连.苹果果皮中酚类物质合成规律的研究[J].莱阳农学院学报,1992,9(3):222-225.
    [58] Ju Z, Yuan Y, Liu C, et al. Relationships among phenylalanine ammonia-lyase activity, simple phenol concentration and anthocyanin accumulation in apple [J]. Scientia Horticul turae, 1995, 61: 215-226.
    [59] Mol JNM, Van der Krol AR, Stuitje AR. Manipulation of floral pigmentation genes in petunia "sense and atisense make sense" [J]. Horticultural Biotechnology, 1990, 11: 191-202.
    [60] Shirley B W, Kubasek W L, Storz G, et al. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis [J]. Plant J., 1995, 8: 659-671.
    [61] 王金玲,顾红雅.CHS基因的分子进化研究现状.李承森主编.植物科学进展[M].第三卷.北京:高等教育出版社.施普林格出版社,2000,17-24.
    [62] Batschauer A, Ehmann B. Schafer E. Cloning and characterization of a chalcone synthase gene from mustard and its light-dependent expression [J]. Plant Mol Biol, 1991, 16(2): 175-185.
    [63] Kunkel T, Neuhaus G, Batschauer A, et al. Functional analysis yeast-derived phytochrome A and B phycocyanobilin adducts [J]. Plant J, 1996, 10(4): 625-636.
    [64] Feinbaum R L, Ausubel F M. Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene [J]. Mol Cell Biol, 1998, 8: 1985-1992.
    [65] Thain S C, Murtas G, Lynn J R, et al. The circadian clock that controls gene expression in Arabidopsis is tissue specific [J]. Plant Physiol, 2002, 130(1): 102-110.
    [66] van Tunen A J, Mur L A, Recourt K, et al. Regulation and manipulation of flavonoid gene expression in anthers of petunia: the molecular basis of the Po mutation [J]. Plant Cell, 1991, 3: 39-48.
    [67] Mehdy M C, Lamb C J. Chalcone isomerase cDNA cloning and mRNA induction by elicitor, wounding and infection [J]. EMBO J, 1987, 6: 1527-1533.
    [68] Bednar R A, Fried W B, Lock Y W, et al. Chemical modification of chalcone isomerase by mercurials and tetrathionate [J]. J Biol Chem, 1989, 64: 14272-14276.
    [69] Bednar R A., Adeniran A. Chemical modification of chalcone isomerase by diethyl pyrocarbonate: Histidine residues are not essential for catalysis [J]. Arch Biochem Biophys, 1990, 282: 393-398.
    [70] Bednar R A, McCaffrey C, Shan K. Introduction of unnatural amino acids into chalcone isomerase [J]. Bioconjugate Chem, 1991, 2: 211-216.
    [71] Toda K, Yang D, Yamanaka N, et al. A single-base deletion in soybean flavonoid 3′-hydroxylase gene is associated with gray pubescence color [J]. Plant Mol Biol, 2002, 50: 187-196.
    [72] Zabala G, Vodkin L. Cloning of the pleiotropic T locus in soybean and two recessive alleles that differentially affect structure and expression of the encoded flavonoid 3'-hydroxylase [J]. Genetics, 2003, 163: 295-309.
    [73] Schoenbohm C, Martens S, Eder C, et al. Identification of the Arabidopsis thaliana flavonoid 3′-hydroxylase gene and functional expression of the encoded P450 enzyme [J]. Biol Chem, 2000, 381(8): 749-753.
    [74] Brugliera F, Barri-Rewell G, Holton T A, et al. Isolation and characterization of a flavonoid 3′-hydroxylase cDNA clone corresponding to the Htl locus of Petunia hybrida [J]. Plant J, 1999, 19(4): 441.
    [75] Russell D W, Corm E E. The cinnamic acid 4-hydroxylase of pea seedlings [J]. Arch. Biochem. Biophys,1967, 122: 256-258.
    [76] Potts J R, Weklych R, Corm E E, et al. The 4-hydroxylation of cinnamic acid by sorghum microsomes and the requirement for Cytochrome P-450 [J]. J Biol Chem, 1974, 249: 5019-5026.
    [77] Russell D W. The metabolism of aromatic compounds in higher plants. X. Properties of the cinnamic acid 4-hydroxylase of pea seedlings and some aspects of its metabolic and developmental control [J]. J Biol Chem, 1971, 246: 3870-3878.
    [78] 骆萍,王国栋,陈晓亚.亚洲棉C4H同源cDNA的分离和表达特征分析[J].植物学报, 2001,43(1): 77-81.
    [79] Dixon R A, Paiva N L Stress-induced phenylpropanoid metabolism [J]. Plant Cell, 1995, 7: 1085-1097.
    [80] Frank M R, Deyneka J M, Schuler M A. Cloning of wound-induced cytochrome P450 monooxygenases expressed in pea [J]. Plant Physiol, 1996, 110(3): 1035-1046.
    [81] Weisshaar B, Jenkins G I. Phenylpropanoid biosynthesis and its regulation [J]. Curr Opin Plant Biol, 1998, 1: 251-257.
    [82] Cone K C, Burr F A, Burr B. Molecular analysis of the maize anthocyanin regulatory locus Cl [J]. Proc Nail Acad Sci USA, 1986, 83: 9631-9635.
    [83] Paz-Ares J, Ghosal D, Wienand U, et al. The regulatory Cl locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators [J]. EMBO J, 1987, 6: 3553-3558.
    [84] Schwechheimer C, Bevan M. The regulation of transcription factor activity in plants [J]. Trend in Plant Science, 1998, 3(10): 278-283.
    [85] Dehesh K, Smith L G, Terpperman J M, et al. Twin autonomous bipartite nuclear localization signals direct nucleal import of GT-2 [J]. Plant J, 1995, 8: 25-36.
    [86] Varagona M J, Schmidt R J, Raikhel N V. Nuclear localization signals required for nuclear targeting of the maize regulatory protein Opaque-2 [J]. Plant Cell, 1992, 4: 1213-1227.
    [87] Riechmann J L, Heard J, Martin G, et al. Arabidopsis transcription factors: genome wide comparative analysis among eukaryotes [J]. Science, 2000, 290: 2105-2110.
    [88] Gubler F, Watts R J, Kalla R, et al. Cloning of a rice cDNA encoding a transcription factor homologous to barley GAMyb [J]. Plant Cell Physiol, 1997, 38(3): 362-365.
    [89] Xue B, Charest P J, Devantier Y, et al. Characterization of a MYB R2R3 gene from black spruce (Picea raariana) that shares functional conservation with maize Cl [J]. MotGenet Genomics, 2003, 270(1): 78-86.
    [90] Rabinowicz P D, Braun E L, Wolfe A D, et al. Maize R2R3 Myb genes: sequence analysis reveals amplification in the higher plants [J]. Genetics, 1999, 153: 427-444.
    [91] Cedroni M L, Cronn R C.,Adams K L, et al. Evolution and expression of MYB genes in diploid and polyploid cotton [J]. Plant Mol Biol, 2003, 51(3): 313-325.
    [92] Wu X M, Lim S H, Yang W C. Characterization, expression and phylogenetic study of R2R3-MYB genes in orchid [J]. Plant Mol Biol, 2003, 51(6): 959-972.
    [93] Shin B, choi G, Yi H, et al. AtMyb21, a gene encoding a flower-specific transcription factor, is regulated by COPI [J]. Plant J, 2002, 30(1): 23-32.
    [94] Kim B, Angelo D P, Paolo C, et al. The DNA binding site of the Dof protein NtBBF is essential for tissue-specific and auxin-regulated expression of the rolB oncogene in plants [J]. Ptant Cell, 1999, 11: 323-333.
    [95] Ulmasov T. Hagen G, Guilfoyle T J. AltFl, a transcription factor that binds auxin response elements [J]. Science, 1997, 276: 1865-1868.
    [96] 黄泽军,黄荣峰,黄大昉.植物转录因子功能分析方法[J].农业生物技术学报,2002,10(3):295-300.
    [97] Lee H, Xiong L, Gong Z, et al. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasrnic partitioning [J]. Genes Dev, 2001, 15(7): 912-924.
    [98] Meissner R C, Jin H, Cominelli E, et al. Function search in a large transcription factor gene family in Arabidopsis: Assessing the potential of reverse genetics to identify insertional utations in R2R3 MYB genes [J]. Plant Cell, 1999, 11: 1827-1840.
    [99] Fernandez D E, Heck G R, Perry S E, et al. The embryo MADS domain factor AGL15 acts postembryonically inhibition of perianth senescence and abscission via constitutive expression [J]. Plant Cell, 2000, 12(2): 183-198.
    [100] Chuang C F, Meyerowitz E M. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana [J]. PNAS, 2000, 97(9): 4985-4990.
    [101] Murray F, Kalla R, Jacobsen J, et al. A role for HvGAMYB in anther development [J]. Plant J, 2003, 33(3): 481-491.
    [102] Byme P F, McMullen M D, Snook M E, et al. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis [J]. Plant physiol, 2002, 129: 661-667.
    [103] Quattrocchio F, Wing J, Van der Woude K, et al. Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color [J]. Plant Cell, 1999, 11: 1433-1444.
    [104] de Vetten N, Quattrocchio F, Mol J, et al. The anll locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants and animals [J]: Genes Dev, 1997, 11: 1422-1434.
    [105] Feldbrugge M, Sprenger M, Hahlbrock K, et al. A novel plant protein containing a DNA-binding domain with one MYB repeat, interacts in vivo with a light-regulatory promoter unit [J]. Plant J, 1997, 11(5):1079-1093.
    [106] Lesnick M L, Chandler V L. Activation of the maize anthoeyani gene a2 is mediated by an element conserved in many anthocyanin promoters [J]. Plant Physiol, 1998, 117: 437-445.
    [107] Wink M. Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores [J]. Theor Appl Genet, 1988, 75: 225-233.
    [108] Tamagnone L, Merida A, Parr A, et al. The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco [J]. Plant Cell, 998, 10(2): 135-154.
    [109] Romero I, Fuertes A, Benito M J, et al. More than 80 R2R3-MYB regulatory genes in the genome of Arabidopsis thaliana [J]. Plan J, 1998, 14: 273-284.
    [110] Ito M. Factors controlling cyclin B expression. Plan Mol Biol, 2000, 43: 677-690.
    [111] Murre C, McCaw P S, Baltimore D. A new DNAbinding and dimerization motif in immunoglobulin enbancer bindng, daughterless, MyoD, and myc proteins [J]. Cell, 1989, 56: 777-783.
    [112] Ledent V, Vervoort M. The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis [J]. Genome Res, 2001, 11: 754-770.
    [113] Sonnenfeld M J, Delvecchio C, Sun X. Analysis of the transcription activation domain of the Drosophila tango bHLH-PAS transcription factor [J]. Dev Genes Evol, 2005, 215(5): 221-229.
    [114] Toledo-Ortiz G, Huq E, Quail P H. The Arabidopsis basic/helix-loop-helix transcription factor family [J]. Plant cell, 2003, 15: 1749-1770.
    [115] Bailey P C, Martin C, Toledo-Ortiz G, et al. Update on the basic helix-loop-helix transcription factor gene family inArabidopsis thaliana [J]. Plant Cell, 2003, 15: 2497-2502.
    [116] Heim M A, Jakoby M, Werber M, et al. The basic helix-loop-helix transcription factor family in plants: a genome wide study of protein structure and functional diversity [J]. Mol Biol Evol, 2003, 20:735-747.
    [117] 李小星,蒋海雄,黄青云等.水稻bHLH基因家族成员表达模式分析[J].厦门大学学报, 2006:45(5):73-77.
    [118] Koornneef M, Luiten W, de Vlaming P, et al. A gene controlling flavonoid 3′hydroxylation in Arabidopsis [J].Arabidopsis lnf Serv, 1982, 19: 113-115.
    [119] Léon-Kloosterziel K M, van de Bunt G A. Zeevaart J A D, et al. Arabidopsis mutants with a reduced seed dormancy [J]. Plant Physiol, 1994, 110: 233-240.
    [120] Nesi N, Debeaujon., Jond C, et al. The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat [J]. Plant Cell, 2002, 14(10): 2463—2480.
    [121] Albert S, Delseny M, Devic M. BANYULS, a novel negative regulator of flavonoid biosynthesis in the Arabidopsis seed coat [J]. Plant J, 1997, 11(2): 289-299.
    [122] Muller A J. Embryonentest zum nachweis rezessiver letalfaktoren bei Arubidopsis thaliana [J]. Biol Zentralblatt, 1963, 82: 133-163.
    [123] Vaughan J G, Whitehouse J M. Seed structure and the taxonomy of the Cruciferae [J]. Bot J Linn Soc, 1971, 64: 383-409.
    [124] Debeaujon I, Léon-Kloosterziel K M, Koornneef M. Influence of the testa on seed dormancy, germination and longevity in Arabidopsis [J]. Plant Physiol, 2000, 122: 403—413.
    [125] Koornneef M. Mutations affecting the testa colour in Arabidopsis [J]. Arabidopsis Inf Serv, 1991, 27: 1-4.
    [126] Jofuku K D, den Boer B G W, Van Montagu M, et al. Control of arabidopsis flower and seed development by the homeotic gene APETALA2 [J]. Plant Cell, 1994, 6: 1211-1225.
    [127] Nesi N., Debeaujon I., Jond C. et al., The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques [J]. Plant Cell, 2000, 12:1863-1878.
    [128] Ove D, Lars H J, Ole S R. Agrobactertum tumefaciens-mediated transformation of Brassica napus winter cultivars [J]. Transgenic Research, 1997, 6: 279-288.
    [129] Moloney M M, Walker J M, Sharma K K. High efficiency transformation of Brassica napus using Agrobacterium vectors [J]. Plant Cell Reports, 1989, 8(4): 238-242.
    [130] 程振东,卫志明,许智宏.农杆菌介导的甘蓝型油菜的遗传转化及其再生研究[J].植物学报,1994,36(9):657-663.
    [131] Dehesh K, Edwards P, Fillatti J, et al. KAS Ⅳ: a 3-ketoacyl-ACP synthase from Cuphea sp. is a medium chain specific condensing enzyme [J]. Plant J,1998,15(3):383-390.
    [132] Verwoert I I G S, Linder K H, Walsh M C, et al.Modification ofBrassica napus seed oil by expression of the Escherichia coli lab H gene, encoding 3-ketoacyl-acyl carrier protein synthase Ⅲ [J]. Plant Mol Bio, 1995, 27: 875-886.
    [133] Lassner M W, Levering C K, Davies H M, et al. Lysophosphatidic acid aeylteransferase from meadowfoam mediates insertion of erucic acid at the sn-2 position of rriacylglycerol in transgenic rapeseed oil [J]. Plant Physiol, 1995, 109: 1389-1394.
    [134] Grison R, Grezes B B, Schneider M, et al. Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene [J]. Nature Biotechnology, 1996, 14: 643-646.
    [135] Thomas P. Weeds, Erickson L R. Haploid transformation in Brassica napus using an octopinc-producing strain of Agrobacterium tumefaciens [J]. Thero Appl Genet, 1989, 78: 831-835.
    [136] Joel D M, Kleifeld Y, Losner-Gosher D, et al. Transgenic crops against parasites [J]. Nature, 1995, 374: 220.
    [137] De Block M, De Brouwer D, Terming P. Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants [J]. Plant Physiol, 1989, 91: 694-701.
    [138] 钟蓉,刘余乐,朱峰,等.转TA29-barnase基因的甘蓝型油菜的雄性不育的研究[J].植物学报,1996,38(7):582-585.
    [139] Kumar A, Rakow G, Downey R K. Isogenic analysis of glufosinate-ammonium tolerant and susceptible summer rape lines [J]. Ca J of Plant Sci, 1996, 78(3): 401-408.
    [140] Miki B L, Labbé H, Hattori J, et al. Transformation of Brassisa napus canola cultivars with Arabidopsis thaliana acetohydroxyacid synthase genes and analysis of herbicide resistance [J]. Theor Appl Genet, 1990, 80: 449-458.
    [141] Abraham V, Bhatia C R. Development of strains with yellow-seed coat in Indian mustard (Brassica juncea Czern & Coss) [J]. Plant Breed, 1986, 97: 86-88.
    [142] Altschul S F, Madden T L, Schaffer A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J]. Nucleic Acids Res, 1997, 25: 3389-3402.
    [143] 王宁,陈润生.基于内含子和外显子的系统发育分析的比较[J].科学通报,1999,44(19):2095-2102.
    [144] Marchler-Bauer A, Bryant S H. CD-Search: protein domain annotations on the fly [J]. Nucleic Acids Res, 2004, 32: 327-331.
    [145] Blom N, Gammeltoft S, Brunak S. Sequence- and structure-based prediction of eukaryotic protein phosphorylation sites [J]. J Mol Biol, 1999, 254: 1351-1362.
    [146] Bendtsen J D, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP3.0 [J]. J Mol Biol, 2004, 340: 783-795.
    [147] 王关林,方宏筠.植物基因工程原理与技术[M].北京:科学出版社,2003.
    [148] Koomneef M. The complex syndrome of ttg mutants [J]. Aratidopsis inf Serv, 1990, 27: 1-4.
    [149] Olsson G. Some relations between number of seeds per pod, seed size and oil content and the effects of selection for these characters in Brassica and Sinapis [J]. Hereditas, 1960, 46(1): 29-70.
    [150] Theobald D, Roebbelen G. Flower biology and fruit formation of Calendula officinalis as a basis for further breeding progress [J]. Angewandte Botanik, 1989, 63(3-4): 313-322.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700