磁场对趋磁螺菌AMB-1磁小体形成及其相关基因表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
趋磁细菌(Magnetotactic bacteria)细胞内含有磁小体,磁颗粒为单磁畴的铁氧/硫化物(Fe3O4或Fe3S4)晶体,每个磁颗粒由生物膜包裹,沿细胞的长轴排列形成磁小体链。在自然环境中,地磁场作用于磁小体链产生磁力矩,使趋磁细菌沿磁力线游动,表现出趋磁特性。磁颗粒大小均匀,50~100nm,是极好的纳米永磁材料,在材料、生物医学、电子、光学、磁学、能量存贮和电化学领域具有巨大的潜在应用。磁小体膜由细胞内膜凹陷形成,磁小体膜上至少含有48种特有蛋白,其中至少13种与磁小体形成密切相关。magA、mms6、mamA和mms13基因在磁小体形成过程中Fe3+摄取、磁晶体形成、磁小体囊泡活化和磁小体形成等重要环节起不可缺少的作用。因此,这四个基因是具代表性的磁小体形成相关基因。磁小体具有感应地磁场定向趋磁运动的功能,外部磁场变化对其形成应存在影响。为研究磁场对磁小体形成的影响,从细胞和分子水平探讨外部磁场影响磁小体形成的机制,以趋磁螺菌AMB-1为对象,研究了磁场对磁小体形成及其相关基因表达的影响。
     为研究地磁场、外部磁场强度、频率、方向变化和AMB-1菌体内部磁小体磁场与磁小体形成的关系,选择了补偿式零磁空间(<500nT)、强恒磁场(0.2T)、低频脉冲磁场(50Hz 1mT)和低频正弦磁场(50Hz 1mT)分别处理不同初始状态的趋磁螺菌AMB-1,应用OD600和Cmag测量、透射电镜观察和qRT-PCR技术,研究磁场对磁小体形成及相关基因mamA、mms13、mms6和magA表达的影响。结果表明:补偿式零磁空间(<500nT)能延迟指数期AMB-1磁小体的形成,当初始菌种为含有磁小体的AMB-1时,零磁空间对指数期AMB-1菌体的mms13基因有上调表达作用,同时下调mms6基因表达,而当初始菌种为不含磁小体的AMB-1时,则只上调指数期菌体的mms13基因表达。零磁空间下,菌体内磁小体链单元数较地磁对照少,只含有1~2个链单元。含磁小体菌体的平均磁颗粒数也低于地磁场10%;接种含磁小体种子时,菌体内磁小体链单元中部磁小体颗粒大而链两端逐渐减小,接种不含磁小体的种子,磁小体链单元磁颗粒均匀,表明菌体内原有的单磁畴晶体对邻近磁晶体的形成有诱导作用。强恒磁场(0.2T)可抑制趋磁螺菌AMB-1菌体生长,但促进其磁小体形成,上调指数期菌体的mms13基因的表达;而对mamA、mms6和magA基因表达无影响。强恒磁场虽然能使磁小体颗粒增大,含磁小体菌的平均磁颗粒数较地磁场增加29%,但导致磁小体排列不整齐,可能是内部磁小体与外部强磁场相互作用影响了相邻磁小体的形成和排列;脉冲磁场(50Hz 1mT)可促进趋磁螺细菌AMB-1磁小体形成。当初始菌种含有磁小体时,脉冲磁场促进指数期菌体magA基因的表达,而当初始菌种不含磁小体时,则促进指数期菌体magA和mamA基因的表达。脉冲磁场虽然导致指数期含磁小体菌体的平均磁颗粒数较地磁场增加25%,但使磁颗粒大小不均匀,磁小体链增长,可能是邻近磁小体的相互诱导聚集作用受到了脉冲磁场干扰。正弦磁场( 50Hz 1mT)抑制趋磁螺细菌AMB-1菌体增殖,促进其磁小体形成。当初始菌种含有磁小体时,正弦磁场促进指数期菌体mms6基因的表达,而当初始菌种不含磁小体时,则促进指数期菌体magA、mms6和mamA基因的表达。正弦磁场虽然导致指数期含磁小体菌体的平均磁颗粒数高于地磁场11%;磁小体颗粒总体上仍沿细胞长轴线性排列。但相邻磁颗粒排列不整齐,形成的短链走向不一致。可能是正弦磁场不断变化的磁场强度和磁场方向导致新生磁小体磁极转换,影响磁小体链的排列。
     实验结果为从细胞和分子水平研究外部磁场影响磁小体形成的机制,应用磁场干预磁小体形成,提高磁小体产率的研究提供了实验依据,也有助于进一步了解磁场的生物学效应。
Magnetic bacteria synthesize intracellular magnetosomes, which of nano-sized crystals of magnetic iron minerals inside membrane vesicles. Magnetosomes aligned in chains are postulated to function as biological compass needles allowing the bacterium to migrate along redox gradients, along the Earth’s magnetic field lines, a behavior referred to as magnetotaxis. The superior crystalline and magnetic properties of magnetosomes have drawn attention for their potential use in bioscience, medicine and related disciplines and geobiology. Magnetosomes membrane is derived from the cytoplasmic membrane. Forty-eight proteins are identified as magnetosome specific proteins in Magnetospirillum magneticum AMB-1, and at least 13 proteins are potentially involved in formation of magnetosome. MagA,mms6,mamA and mms13 are the genes involved in iron uptake, priming and trafficking of budding vesicles,magnetite biomineralization and formation of magnetosome.
     Magnetosomes contain single domain magnetite crystals. Magnetic field may affect the formation of magnetosome. To investigate effects of magnetic field on magnetosome formation in Magnetospirillum magneticum AMB-1 <500nT magnetic free field space, 0.2 T constant-strength magnetic field, 50Hz-1mT pulse magnetic field and 50Hz-1mT sinusoidal magnetic field were applied to cellular cultures. Magnetic and non-magnetic pre-cultures were prepared by controlling growth conditions. They were inoculated into various growth media and incubated under different magnetic fields or geomagnetic field. Magnetism of cells was measured by using spectrophotometer coupled with applied magnetic fields and the values were described as Cmag. Magnetosome in cells were inspected and counted by transmission electron microscopy (TEM) observation. The expression of mamA, mms13, mms6 and magA was analyzed by qRT-PCR.
     The results showed that the magnetic free field space up-regulated the mms13 expression and down-regulated the mms6 in the cultures inoculated with magnetic cells. Only mms13 expression was up-regulated in the cultures inoculated with non-magnetic cells. Magnetic free field space seemed to postpone magnetosome formation, compared to geomagnetic field. In addition, the amount of the magnetosome chain and the average amount of magnetosome in M. magneticum AMB-1 contained magnetosome appeared decreased when magnetic free field space was applied to the cultures. The size of magnetic crystals at the middle of the magnetosome chain was big, and it was smaller gradually at the two ends of the magnetosome chain. It was likely that the existed magnetic crystals in AMB-1 could induce the formation of the new neighboring magnetosme under this condition. The magnetic crystals were homogeneous in the cultures inoculated with non-magnetic cells, suggesting that magnetite precipitation begins simultaneously from the same location within magnetosome vesicles. It also supports the hypothesis that existing magnetic crystal may influence formation of neighboring crystals.
     Comparing to geomagnetic field, constant-strength magnetic field impair cellular growth, but seemed to enhance magnetosome formation and up-regulated mms13 expression. The homogeneity of the magnetosome morphology was decreased but the size of the magnetosome and the average amount of magnetosome in M. magneticum AMB-1 contained magnetosome were increased. It is likely that the interaction of the magnetic field created by magnetosome in AMB-1 and the imposed magnetic field could affect the size and arrangement of the neighboring magnetosome.
     The pulse magnetic field up-regulated magA expression in the cultures inoculated with magnetic cells, and magA, mamA expression in the cultures inoculated with non-magnetic cells. Comparison with geomagnetic field, pulse magnetic field did not affect cellular growth, but seemed to enhance magnetosome formation. The length of the magnetosome chain appeared increased and homogeneity of the magnetosome morphology was decreased when pulse magnetic field was applied to the cultures. It is likely that magnetite precipitation induced by the neighboring magnetosome was affected by pulse magnetic field.
     Sinusoidal magnetic field up-regulated mms6 expression in the cultures inoculated with magnetic cells, and magA, mms6 and mamA expression in the cultures inoculated with non-magnetic cells. Sinusoidal magnetic field impaired cellular growth, but seemed to enhance magnetosome formation, compared to geomagnetic field. In addition, the homogeneity of the magnetosome morphology and linearity of magnetosome chains were impaired, but the average amount of magnetosome in M. magneticum AMB-1 contained magnetosome appeared increased when sinusoidal magnetic field applied to the cultures. It is likely that variable intensity and alternating orientation of sinusoidal magnetic field result in magnetic pole conversion in the new forming magnetosome, which affect the arrangement of the magnetosome.
     These results would contribute to further studies on the molecular mechanism of the effects of magnetic fields on formation of magnetosome, biotechnological application studies in magnetotactic bacteria, and the further understandings of the biological effects of magnetic fields.
引文
Afonina V M , Chernyshev V B , Yarovenko S A. Effect of shielding from electromagnetic field on life span of drosophila. In : Afonina V M ed. Effect of Natural and Weak Artificial Magnetic Fields on Biological Objects. Belgorad : Belgorad Press , 1973. 83-84
    Arakaki A, Webb J, Matsunaga T. A Novel Protein Tightly Bound to Bacterial Magnetic Particles in Magnetospirillum magneticum Strain AMB-1. Journal Biological Chemistry, 2003, 278: 8745-8750
    Balkwill D L, Maratea D & Blakemore R P. Ultrastructure f a magnetic spirillum. J. Bacteriol. 1980, 141: 1399-1408.
    Bazylinski D A Structure and function of the bacterial magnetosome. ASM News. 1995, 61: 337-343.
    Bazylinski D A, Frankel R B. Magnetosome formation in prokaryotes. Nature Reviews Microbiology, 2004, 2: 217-230.
    Bazylinski D A, Heywood B R, Mann S, Frankel R B. Fe3O4 and Fe3S4in a bacterium. Nature. 1993,366: 218-225.
    Bazylinski D A. Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3O4) in a magnetotactic bacterium. Appl. Environ. Microbiol. 1995,61: 3232-3239.
    Bazylinski D A, Moskowitz B M. Microbial biomineralization of magnetic iron minerals: microbiology,magnetism and environmental significance. Rev. Mineral. 1997, 35: 181-223.
    Bazylinsk D A, Garratt–Reed A J, Abedi A, Frankel R B. Copper association with iron sulfide magnetosomes in a magnetotactic bacterium. Arch. Microbiol. 1993, 160:35- 42.
    Belyaev I Y, Alipov Y D, Ringdahl H M. Effects of zero magnetic field on the conformaition of choromatin in human cells. Biochimica et Biophysica Acta, 1997, 1336:465-475.
    Bertani L E, Weko J, Phillips K V, Gray R F, Kirschvink J L. Physical and genetic characterization of the genome of Magnetospirillum magnetotacticum strain MS-1.Gene, 2001, 264: 257-263.
    Blackman C F, Beanane S G. Effects of ELF fields on calciumion efflux from brain tissue, in vitro. Radiat Res, 1988, 95:510-520.
    Blackman C F. The influnce of temperature during electric and magnetic field induced alteration of calcium ion release from in vitro brain tissue. Bioelectromagnetics, 1991, 12: 173- 182.
    Blakemore R P. Magnetotactic bacteria. Annu. Rev. Microbiol. 1982, 36: 217-238.
    Blakemore R P. Magnetotactic bacteria. Science, 1975, 190: 377-379.
    Blakemore R, Maratea D, Wolfe R S. Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium [J]. Journal of Bacteriology, 1979,140:720-729.
    Blakemore R P, Frankel R B, Kalmijn A J. Southseeking magnetotactic bacteria in the southern hemisphere. Nature, 1980, 236: 384-385.
    Blakemore R P, Short K A, Bazylinski D A, Rosenblatt C, Frankel R B. Microaerobic conditions are required for magnetite formation within Aquaspirillum magnetotacticum. Geomicrobiol. J. 1985, 4:53-71.
    Calugay R J, Miyashita H, Okamura Y, Matsunaga T. Siderophore production by the magnetic bacterium Magnetospirillum magneticum AMB-1. FEMS Microbiol.Lett. ,2003, 218: 371–375
    Das A K, Cohen P T W, Barford D. The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein–protein interactions. EMBO J. 1998, 17: 1192-1199.
    Dean A J, Bazylinski D A. Genome analysis of several magnetotactic bacterial strains using pulsed-field gel electrophoresis. Curr. Microbiol. 1999, 39:219-225.
    Dees C, Garrett S, HenleyD, T ravis C. Effects of 602Hz fields,estradio l and xenoestrogens on human breast cancer cells.Radiat Res, 1996; 146 (4) : 444- 452.
    DeLong E F, Frankel R B, Bazylinski D A. Multiple evolutionary origins of magnetotaxis in bacteria. Science. 1993, 259: 803-806
    Diebel C E, Proksch R, Green C R, et al. Magnetite defines a vertebrate magnetreceptor, Nature, 2000, 406:299-302.
    Dobrindt U, Hochhut B, Hentschel U, et al. Genomic islands in pathogenic and environmental microorganisms. Nature Reviews Microbiology, 2004, 2: 414-424.
    Dubbels B L, DiSpirito A A, Morton J D, et al. Evidence for a copper-dependent iron transport system in the marine, magnetotactic bacterium strain MV-1. Microbiology, 2004, 150:2931- 2945.
    Dunin-Borkowski R E. Magnetic microstructure of magnetotactic bacteria by electron holography.Science, 1998, 282:1868–1870.
    Evans J S.‘Apples’and‘oranges’: comparing the structural aspects of biomineral- and ice-interaction proteins. Current Opinion in Colloid and Interface Science, 2003, 8: 48-54.
    Franchini M, Gandini G, Aprili G. Advances in iron chelating therapy. Haematologica, 2000, 85: 1122-1125.
    Frankel R B, Blakemore R P, Wolfe R S. Magnetite in freshwater magnetotactic bacteria. Science. 1979,203:1355-1356
    Frankel R B. Magnetic guidance of organisms. Annu. Rev. Biophys. Bioeng. 1984, 13: 85-103.
    Frankel R B, Bazylinski D A, Johnson M, Taylor B. L. Magneto-aerotaxis in marine, coccoid bacteria. Biophys. J., 1997, 73: 994-1000.
    Frankel, R. B., Papaefthymiou, G. C., Blakemore, R. P. &O’Brien, W. Fe3O4 precipitation in magnetotactic bacteria.Biochim. Biophys. Acta, 1983, 763: 147-159.
    Galperin M Y, Nikolskaya A N, Koonin E V. Novel domains of the prokaryotic two-component signal transduction systems . FEMS Microbiology Letters, 2001, 203: 11-21.
    Ghazala A A, Xchoenbach K H. Biofouling Prevention with Pulsed Electric Fields, IEEE Tran. On Plasma Science, 2000, 28(1), 115-121
    Gitai Z, Dye N A, Reisenauer A. MreB. actin-mediated segregation of a specific. region of a bacterial chromosome. Cell, 2005, 120: 329-341.
    Gitai Z, Dye N, Shapiro L. An actin-like gene can determine cell polarity in bacteria. Proceedings of the National Academy of Sciences USA, 2004,101: 8643-8648.
    Golden D C, Ming D W, Schwandt C S, Lauer H V, Socki R A. A simple inorganic process for formation of carbonates, magnetite, and sulfides in Martian meteorite ALH84001. Amer. Mineral. 2001, 8:370-375.
    Goodman R, Bumann J. Exposure of human cells to electromagnetic fields: Effect of time and field strength on transcript levels. Electro-and-Magnetobiology. 1992, 11(1):19-28.
    Goodman R, Wei L X, Xu J C . Exposure of human cells to low-frequency electromagentic fields results in quantitative changes in transcripts. Biochim Biophys Acta. 1989, 1009:216-220.
    Goodman R, Bassett C A L, Henderson A S. Pulsing electromagentic fields induce cellular transcription. Science. 1983, 220:1283-1285
    Gorby Y A, Beveridge T J, Blakemore R P. Characterization of the bacterial magnetosomemembrane. J. Bacteriol. 1988, 170:834-841.
    Greene J J, Skowronski W J, Mullins J M, Nardone, R M. Delineation of electricand magnetic field effects of extremely low frequency electromagnetic radiationon transcription. Biochem Biophys Res Commun, 1991,174(2): 742-749
    Groseclose, Pilla. Effects of permanent magnes on resting skin blood perfusion in healthy persons assessed by layer doppler flowmetry and imaging. Bioeletromagnetics, 2001, 22:494-502.
    Grunberg K, Mulle, E C, Otto A. Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldens. Applied Environment Microbiology, 2004,70: 1040-1050.
    Grunberg K, Wawer C, Tebo B M. A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria . Applied Environment Microbiology, 2001, 67: 4573-4582.
    Guerin W F, Blakemore R P. Redox cycling of iron supports growth and magnetite synthesis by Aquaspirillum magnetotacticum. Appl. Environ. Microbiol. 1992, 58( 1): 102-1109.
    Guerinot M L. Microbial iron transport. Annu. Rev.Microbiol. 1994. 48: 743-772.
    Harvey N, Mayrovitz Edye E. Feychting M ,Ahibom A. Magnetic fields ,leukemia and central-nervous-system tumors in Swedish adults residing near high-voltage power-lines. Epidemiology , 1994 , 5 :501-509.
    Hattan S J, Laue T M, Chasteen N D. Purification and Characterization of a Novel Calcium-binding Protein from the Extrapallial Fluid of the Mollusc, Mytilus edulis. Journal Biological Chemistry, 2001, 276: 4461-4468.
    Heyen U, Schuler D. Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Applied Microbiology and Biotechnology, 2003,61:536-544.
    Heywood B R, Bazylinski D A, Garratt-Reed A J, Mann S, Frankel R B. Controlled biosynthesis of greigite (Fe3O4) in magnetotactic bacteria. Naturwiss. 1990, 77: 536-538
    Ivancsits S, Diem E, Jahn O. Intermittent extremely low frequency electromagnetic fields cause damage in a dosedependent way. Int Arch Occup Environ Health, 2003, 76(6):431-436.
    Jones L J, Carballido-Lopez R, Errington J. Control of cell shape in bacteria: helical, actin-likefilaments in Bacillus subtilis. Cell, 2001, 104: 913-922.
    Kawaguchi R. Phylogenetic analysis of a novel sulfatereducing magnetic bacterium, RS-1, demonstrates its membership of theδ-Proteobacteria. FEMS Microbiol. Lett. 1995,126: 277-282.
    Kirchhausen T. Three ways to make a vesicle. Nature Rev. Mol. Cell Biol. 2000, 1: 187-198.
    Komeili A, Li Z, Newman D K. Magnetosomes Are Cell Membrane Invaginations Organized by the Actin-Like Protein MamK. Science, 2006, 311: 242-245.
    Komeili A, Vali H, Beveridge T J. Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. Proceedings of the National Academy of Sciences USA, 2004, 101: 3839-3844.
    Koyama S, Nakahara T, Wake K. Effects of high frequency electromagnetic fields on micronucleus formation in CHO-KI cells. Mutat Res, 2003,541(2):80-89.
    Lacy-Hulbert A, Metcalfe J C, Hesketh R. Biological responses to electromagnetic fields. FASEB J, 1998, 12: 395-420.
    Lamb J R., Tugendreich S. & Hieter, P. Tetratricopeptide repeat interactions: to TPR or not to TPR? Trends Biochem. Sci. 1995, 20: 257-259.
    Li L, Kaplan J. Characterization of two homologous yeast genes that encode mitochondrial iron transporters. J. Biol.Chem. 1997, 272: 28485–28493.
    Li, L, Kaplan, J. The yeast gene MSC2, a member of the cation diffusion facilitator family, affects the cellular distribution of zinc. J. Biol. Chem., 2001,276: 5036–5043.
    Liboff A, Willianms T. Time-varing magnetic field: Effect on DNA synthsis. Science,1984, 223:818-820.
    Liburdy RP. Calcium signaling in lymphocytes and ELF fields: evidence for anelectric field metric and a site of interaction involving the calcium ion channel.FEBS Lett,2000, 478(3): 304
    Lin H, Head M, Blank M, Han L, Jin M, Goodman R. Myc-mediatedtransactivation of HSP70
    expression following exposure to magnetic fields. J Cell Biochem,1998, 69(2): 181~188
    Lindstrom E . Intracellular calcum oscillations induced in a T cell line by a weak 50 Hz magnetic field. Journal of cellular physiology, 1993,156:395-398.
    Lindstrom E, Still M, Mattsson M O. ELF magnetic initiate protein tyrosine phosphorylation of the T cell receptor complex. Bioelectrochemistry, 2000, 53:73-78.
    Liu C, Wang B, Zhang H. Cell deformation and increase of cytotoxicity of anticancer drugs due to low-intensity transient electromagnetic pulses, IEEE Tran. On Plasma Science, 2000, 28(1): 150-154.
    Lowenstam H A. Minerals formed by organisms. Science, 1981,211:126-1131.
    Mandernack K W, Bazylinski D A, Shanks W C, Bullen T D. Oxygen and iron isotope studies of magnetite produced by magnetotactic bacteria. Science, 1999, 285:1892-1896 .
    Mann S, Sparks N H C, Frankel R B, Bazylinski D A, Jannasch H W. Biomineralization of ferrimagnetic greigite (Fe3O4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature.1990, 343: 258–260.
    Mann S, Frankel R B, Blakemore R P. Structure, morphology and crystal growth of bacterial magnetite. Nature, 1984, 310: 405-407.
    Matsunaga T, Okamura Y. Genes and proteins involved in bacterial magnetic particle formation Trends in Microbiology, 2003, 11(11): 536-541
    Matsunaga T, Okamura Y, Yorikane Fukuda. Complete Genome Sequence of the Facultative Anaerobic Magnetotactic Bacterium Magnetospirillum sp. strain AMB-1. DNA Research, 2005,12:157-166.
    Matsunaga T, Sakaguchi T, Tadokoro F. Magnetite formation by a magnetic bacterium capable of growing aerobically. Applied Microbiology and Biotechnology, 1991, 35: 651-655.
    Matsunaga T, Tsujimura N. Respiratory inhibitors of a magnetic bacterium Magnetospirillum sp. AMB-1 capable of growing aerobically. Applied Microbiology and Biotechnology, 1993, 39: 368-371.
    Matsunaga T, Ueki F, Obata K. Fully automated immunoassay system of endocrine disrupting chemicals using monoclonal antibodies chemically conjugated to bacterial magnetic particles . Analytica Chimica Acta, 2003, 475: 75-83.
    Matsunaga T. Cloning and characterization of a gene,mpsA, encoding a protein associated with intracellular magnetic particles from Magnetospirillum sp. strain AMB-1. Biochem. Biophys.Res. Commun. 2000, 268: 932-937
    Matsunaga T, Nakamura C, Burgess J G, Sode K. Gene transfer in magnetic bacteria: transposonmutagenesis and cloning of genomic DNA fragmentsrequired for magnetite synthesis. J. Bacteriol. 1992,174:2748-2753.
    McKay D S. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science, 1996, 273: 924-930 .
    Meldrum F C, Mann S, Heywood B R, Frankel R B, Bazylinski D A. 1993. Electron microscopy study of magnetosomes in two cultured vibroid magnetotacic bacteria. Proc. R. Soc. Lond. B 251: 237-242.
    Mora C V, Davidson M, Wild J M. Magnetoreception and its trigeminal mediation in the homing pigeon, Nature, 2004,432:508-511.
    Moskowitz B M. Biomineralization of magnetic minerals. Rev. of Geophysics. 1995. 33: 123-128.
    Nakamura C. An iron-regulated gene: magA, encoding an iron transport protein of Magnetospirillum sp. strain AMB-1. J. Biol. Chem. 1995, 270:28392-28396.
    Nakamura C. Characterization of iron uptake in the magnetic bacterium Aquaspirillum sp. AMB-1. Appl.Biochem. Biotechnol. 1993, 39-40: 169-176.
    Nakamura C, Kikuchi T, Burgess J G, Matsunaga T. Iron-regulated expression and membrane localization of the MagA protein in Magnetospirillum sp. strain AMB-1.J. Biochem. 1995, 118: 23-27 .
    Neilands J B. Siderophores: structure and function of microbial iron transport compounds. J. Biol. Chem. 1995, 270: 26723-26726.
    Nies D H, Silver S. Ion efflux systems involved in bacterial metal resistances. J. Ind. Microbiol. 1995, 14:186-199.
    Noguchi Y, Fujiwara T, Yoshimatsu K, Fukumori Y. Ironreductase for magnetite synthesis in the magnetotacticbacterium Magnetospirillum magnetotacticum. J. Bacteriol. 1999, 181:2142- 2147.
    Novikov V V , Shvetsov Yu P, Fesenko E E. Molecular mechanisms of biological action of weak magnetic fields I Stability of chromat in from Ehrlich ascites carcinoma and mouse brain cells towards DNase1 under combined action of weak constant and alternating low-frequency magnetic fields adjusted to the cyclotronic resonance of ions of polar amino acids.Biofizika, 1997, 42 (3) :733- 737.
    Novilcov V V , Shvetsov Yu P , Fesenko E E. Molecular mechanism of biological action of weak magnetic fields. IV. Bioinfornation , 1997 ;(3) :746 - 750
    Okamura Y. Two-dimensional analysis of proteins specific to the bacterial magnetic particlemembrane from Magnetospirillum sp. AMB-1. Appl. Biochem. Biotechnol. 2000, 84-86: 441- 446.
    Okamura Y. A magnetosome specific GTPase from the magnetic bacterium Magnetospirillum magneticum AMB-1. Journal of Biological Chemistry , 2001, 276: 48183- 48188.
    Okuda Y. Cloning and sequencing of a gene encoding a new member of the tetratricopeptide protein family from magnetosomes of Magnetospirillum magnetotacticum. Gene , 1996, 171: 99-102.
    Onodera H, Jin Z, Chida S. Effects of 10-T static magnetic field on human peripheral blood immune cells. Radiat Res, 2003,159(6):775-779.
    Pallen M J, Wren B W. The HtrA family of serine proteases. Mol. Microbiol. 1997, 26: 209-221.
    Paoletti L C, Blakemore R P. Iron reduction by Aquaspirillum magnetotacticum. Curr. Microbiol. 1988,7:339-342.
    Paulsen I T, Saier M H. A novel family of ubiquitousheavy metal ion transport proteins. J. Membr. Biol. 1997, 156: 99-103.
    Penninga I, Waard H, Moskowitz B M, Bazylinski D A, Frankel R B. Remanence curves for individualmagnetotactic bacteria using a pulsed magnetic field.J. Magn. Magn. Mater. 1995, 149: 279-286.
    Petermann H, Bleil U. Detection of live magnetotactic bacteria in south-atlantic deep-sea sediments. Earth Plan. Sci. Lett. 1993,117: 223-228.
    Phillips J R, MeChesney L. Effect of 72 Hz pulsed magnetic field exposure on macromolecular synthesis In CCRF-CEM cells. Cencer Biochem Biophys. 1991;12:1-7
    Phillips J L, Haggren W, Thomas W J. Magnetic field-induced changes in specific gene transcription. Biochzmica et Biophysics Acts. 1992; I 132:140-144.
    Ponting C P, Phillips C. Rapsyn’s knobs and holes: eight tetratricopeptide repeats. Biochem. J. 1996, 314: 1053-1056.
    Pósfai M, Buseck P R, Bazylinski D A, Frankel R B. Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers. Science. 1998,280: 880-883
    Pradel N, Santini C L, Bernadac A, Fukumori Y, Long-Fei Wu.Biogenesis of actin-like bacterial ytoskeletal filaments destined for positioning prokaryotic. PNAS, 2006,103:17485-17489.
    Proksch R B. Magnetic force microscopy of thesubmicron magnetic assembly in a magnetotacticbacterium. Appl. Phys. Lett. 1995, 66:2582-2584 .
    Pruyne D, Legesse-Miller A, Gao L. Mechanisms of polarized growth. and organelle segregation in yeast. Annual Review of Cell and Developmental Biology, 2004, 20: 559-591.
    Rannug A, Ekstrom T, Mild KH. A study on skin tumor formation in mice with 50 Hz magnetic field exposure. Carcinogenesis, 1993, 14:573-578.
    Raylman R R, Clavo A C, Wahl R L. Exposure to strong static magnetic field slows the growth of human cancer cells in vitro.Bioelectromagnetics, 1996,17:358-363.
    Rogers F G. Intercellular structure in a many-celled magnetotactic procaryote. Arch. Microbiol. 1990, 154:18-22.
    Sakaguchi T, Burgess J G, Matsunaga T. Magnetite formation by a sulphate-reducing bacterium. Nature. 1993,365:47-49.
    Scheffel A, Gruska M, Faivre D. An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature, 2006,440:110-114.
    Schubbe S, Kube M, Scheffel A. Characterization of a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative magnetosome island. Journal of Bacteriology, 2003, 185: 5779-5790.
    Schüler D, Uhl R, Bauerlein E. A simple light scattering method to assay magnetism in Magnetospirillum gryghiswaldense. FEMS Micriobiology Letters, 1995, 132: 139-145
    Schüler D, Baeuerlein E. Dynamics of iron uptake and Fe3O4 biomineralization during aerobic and microaerobic growth of Magnetospirillum gryphiswaldense. Journal of Bacteriology 1998, 180:159-162.
    Schüler D. Formation of Magnetosomes in Magnetotactic Bacteria J. Molec. Microbiol. Biotechnol. 1999, 1(1): 79-86.
    Schüler D. Molecular analysis of a subcellular compartment: the magnetosome membrane in Magnetospirillum gryphiswaldense. Arch. Microbiology, 2004, 181:1-7.
    Schüler D, Baeuerlein E. Iron-limited growth and kinetics of iron uptake in Magnetospirillum gryphiswaldense. Arch. Microbiol. 1996, 166: 301-307 .
    Schultheiss D, Schüler D. Development of a geneticsystem for Magnetospirillum gryphiswaldense. Arch. Microbiol. 2003, 179: 89-94 .
    Short K A, Blakemore R P. Iron respiration-driven proton translocation in aerobic bacteria. J. Bacteriol. 1986, 167:729-731.
    Short K A, Blakemore R P. Periplasmic superoxide dismutases in Aquaspirillum magnetotacticum. Arch. Microbiol. 1989, 152: 342-346 .
    Smith S, Mcleod B. Calcium cycoltron resonance and diatom mobility. Bioelectromagnetics. 1987, 8:215-227.
    Sosunov A V, Golubchak B A, Semkin V Y. Observation on some biological processes in shielded spaces. Proc Symp ,Moscow , 1972 , 144~146
    Spadinger I. 3T3 cell motility and morphology before.during.and after exposure to extremely low fequency magnetic field. Bioelectromagnetics, 1995, 16:178-187.
    Spring S, Amann R, Ludwig W, Schleife, K H, Petersen N. Phylogenetic diversity and identification of nonculturable magnetotactic bacteria. System. Appl. Microbiol. 1992, 15: 116-122.
    Spring, S., and Schleifer, K.H. Diversity of magnetotactic bacteria.System. Appl. Microbiol. 1995, 18: 147-153.
    Spring S, Lins U, Amann R, Schleifer K H, Ferreira L C S, Esquivel D M S, Farina M. Phylogenetic affiliation and ultrastructure of uncultured magnetic bacteria with unusual large magnetosomes. Arch.Microbiol. 1998, 169: 136-147.
    Stephen M R. Combined DC and ELF magnetic fields can alter cell proliferation. Bioelectromagnetics,1990, 11:27.
    Stevens R G. R isk of p remenopausal breast cancer and use of electric blankets . A m J Ep id em iol, 1995; 142 (4) : 446-447.
    Stintzi A, Barnes C, Xu J, Raymond K N. Microbial iron transport via a siderophore shuttle: a membrane ion transport paradigm. Proc. Natl Acad. Sci. USA, 2000, 97: 10691-10696.
    Stolz J F, Chang S B R, Kirschvink J L. Magnetotactic bacteria and single domain magnetite in hemipelagic sediments. Nature, 1986, 321: 849-850.
    Stolz J F, Lovley D R, Haggerty S E. Biogenic magnetite and the magnetization of sediments. J. Geophys. Res. 1990, 95: 4355-4361.
    Swicord M L, Czerska E M, Casamento J. Comparison the effects on gene expression by extremely iow frequency electromagnetic fields exposure in normal andtransformed humancells. Ln BEMs Abstract book, The Hio electromagnetics society14th Annual Meeting,1992, Frederick MD, USA: The Bioelectromagnetics Society, 1992; 43
    Tamegai H, Fukumori Y. Purification and some molecular and enzymatic features of a novel ccb-type cytochrome c oxidase from a microaerobic denitrifier, Magnetospirillum magnetotacticum. FEBS Lett. 1994, 347: 22-26.
    Tamegai H, Yamanaka T, Fukumori Y. Purification and properties of a′cytochrom a1′-like hemoprotein from a magnetotactic bacterium, Aquaspirillum magnetotacticum. Biochim. Biophys. Acta 1993, 1158: 137-243.
    Taoka A, Yoshimatsu K, Kanemori M, Fukumori Y. Nitrate reductase from the magnetotactic bacterium Magnetospirillum magnetotacticum MS-1: purification and sequence analysis. Can. J. Microbiol.2003, 49: 197-206.
    Taoka A, Asada R, Sasaki H. Spatial Localizations of Mam22 and Mam12 in the Magnetosomes of Magnetospirillum magnetotacticum.J Bacteriol, 2006, 188(11):3805-3812.
    Taylor B L, Zhulin I B, Johnson M S. Aerotaxis and other energy-sensing behavior in bacteria. Annu. Rev.Microbiol.1999, 53: 103-128.
    Thomas A W, White K P, Drost J D. A comparison of brheumatioid arthritis and fibromyalgia patients and healthy controls exposed to a pulsed magnetic field: effects on normal standing balance. Neuroscience Letters, 2001, 309: 17-20.
    Thomas-Keprta K L. Elongated prismatic magnetite (Fe3O4) crystals in ALH84001 carbonate globules: potential Martian magnetofossils. Geochim. Cosmochim. 2000, Acta 64: 4049-4081.
    Thomas-Keprta K L. Magnetofossils from ancient Mars: a robust biosignature in the Martian meteorite ALH84001. Appl. Environ. Microbiol. 2002, 68: 3663-3672.
    Thomas-Keprta K L. Truncated hexa-octahedral magnetite crystals in ALH84001: presumptive biosignatures. Proc. Natl Acad. Sci. USA, 2001,98: 2164-2169.
    Travkin M P, Antipova N M. Effect of reduced magnetic field on development and fecundity of dorsophilia melanogaster. In : Afonina V M ed. Effect of Natural and Weak Artificial Magnetic Fields on Biological Objects. Belgorad : Belgorad Press , 1973. 82
    Ullrich S, Kube M, Schubbe S. A Hypervariable 130-Kilobase Genomic Region of Magnetospirillum gryphiswaldense Comprises a Magnetosome Island Which Undergoes Frequent Rearrangements during Stationary Growth. Journal of Bacteriology, 2005, 187:7176-7184.
    Van H A, Ward D M, Kaplan J. Transition metal transport in yeast. Annu. Rev. Microbiol. 2002, 56:237-261.
    Waleh N S. Functional expression of Aquaspirillum magnetotacticum genes in Escherichia coli K12. Mol. Gen. Genet. 1988, 214:592-594.
    Wei L X, Goodman R, Henderson A. Changes in levels of c-myc and histone H2B following exposure of cells to low-frequency sinusoidal electromagnetic fields:Evidence for a window effect. Bioelectromagnetirs. 1990;11:269-272.
    Yamazaki T, Oyanagi H, Fujiwara T, Fukumori Y. Nitritereductase from the magnetotactic bacterium Magnetospirillum magnetotacticum; a novel cytochrome cd1 with Fe(II):nitrite oxidoreductase activity. Eur. J. Biochem. 1995, 233: 665-671 .
    Yang C, Takeyama H, Tanaka T. Effects of growth medium composition, iron sources and atmospheric oxygen concentrations on production of luciferase-bacterial magnetic particle complex by a recombinant Magnetospirillum magneticum AMB-1.Enzyme Microb Technol, 2001, 29(1):13-19
    陈树德,陈家森,王丽英.低频电磁场与细胞信号系统.基础医学与临床, 2000, 20:16-19.
    丁桂荣,郭国祯,郭鹞,宫越顺二. RT-PCR分析工频磁场暴露后MCF-7细胞p53 mRNA的表达.第四军医大学学报, 2002, 23 (11): 1016-1018.
    丁早兰,雷若,刘方平. 50Hz正弦交变磁场对K562细胞生长的影响.中国医举物理学杂志, 1996, 4: 223 -225.
    端礼荣,吴全义,刘方平.稳恒磁场对大鼠胚胎中脑神经细胞发育的影响.中华预防医学杂志, 2004, 38: 190-192.
    黄德盈,吴士筠,王宗保.磁场对质粒pBR322 DNA的影响[J].生物物理学报, 1995, 11(3): 457-462.
    黄仕龙,陈安民,郭风劲,李新志,罗正强,张衣北.正弦波电磁场对鼠骨骺干细胞分化的生物学影响.中华物理医学与康复杂志. 2006, 28(2): 76-78.
    蒋锦昌,金海强,林云芳.零磁空间对虎皮鹦鹉声行为的影响.地震学报, 1998, 20 (4): 421- 426.
    蒋锦昌,王学斌,徐慕玲,李兵,杨文晖,赵得玺,宋涛.亚磁空间生物学效应研究的实验系统.生物物理学报, 2003, 19(2): 218-221.
    李俊凤,吴奇久,王倩,蒋锦昌,海强,林云芳.零磁空间对金黄仓鼠脑中几种神经递质的影响.生物化学与生物物理进展, 2001, 28 (3): 358-361.
    李俊凤,吴奇久,王倩等.零磁空间和金黄仓鼠的白化.中国学术期刊文摘, 1999, 5(6):781- 783.
    刘晓秋,赵文正,赵阿津.脉冲磁场对高三尖杉醋碱诱导白血病细胞凋亡的影响, 2002, 4: 241 - 242.
    强永乾,郭佑民,鱼博浪,张明.恒定均匀磁场对肿瘤细胞Bcl-2及Bax蛋白表达的研究.西安医科大学学报,2000, 21(2): 100-103.
    孙文均,余应年,付一提.工频磁场对细胞蛋白质酪氨酸磷酸化影响的研究.中国病理生理杂志, 1999, 8: 237 - 239.
    田冰,贾彩丽,陈树德. 50Hz低频环境磁场对细胞增殖的影响及其机理探讨.上海环境科学, 2003, 12: 991 - 997.
    吴瑞英,姜槐,付一提,鲁德强,包家立. 50 Hz磁场增强佛波酯对细胞c2fos基因转录的诱导作用.中华劳动卫生职业病杂志, 1999, 17(6 ): 327-330.
    吴瑞英,姜槐,付一提. 50Hz磁场增强佛波酯对细胞c-fos基因转录的诱导作用.中华劳动卫生职业病杂志, 1999, 17(6): 723 - 725.
    席晓莉,范家骏,于文彬.低频脉冲磁场对带质粒大肠杆菌生化特性及质粒DNA的影响.中国医学物理学杂志,1997, 14(2): 71-72.)
    肖畅,富宁,高德奎.脉冲强磁场对白血病细胞系作用的研究.中华物理医学杂志, 1995, 2: 96 - 98.
    姚学玲,徐晓宙,陈景亮.脉冲电流磁场对鼠骨髓瘤细胞的影响.西安交通大学学报, 2002, 2: 134- 137.
    张小云,罗振国.从分子水平探索旋转恒定磁场对机体作用机理.中国科学C辑,2001,31(3):275 - 282.
    朱杰.磁场的生物学效应及其机理的研究.生物磁学, 2005, 5(1): 26- 29.
    朱绍忠,王起恩,吴建华.工频磁场对小鼠脾淋巴细胞DNA损伤及胆红素的保护作用的研究.中国公共卫生, 1998, 2:337 - 339.
    习岗一,宋清,杨初平.异常环境电磁场对生物影响的研究进展应用与环境生物学报2003,9(2):203-206

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700