对TRIP钢及双相钢微观力学行为的研究—原位衍射实验与自洽模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文基于同步辐射源大型科学装置的原位高能X射线衍射技术,研究了形变诱发塑性钢(TRIP钢)及双相钢(DP钢)的微观力学行为。TRIP钢由铁素体、贝氏体和少量残余奥氏体相组成,DP钢由铁素体和马氏体相两相组成。对于TRIP钢来说,由于其体心立方相(铁素体+贝氏体)与面心立方结构相(奥氏体)晶体结构差异明显,两种不同相具有完全不同的hkl衍射峰,故易根据不同相衍射峰对应的晶格常数变化提供的定量信息,从而获得不同应力状态下奥氏体相的hkl点阵应变分布。然而对于TRIP钢中的铁素体和贝氏体相以及DP钢中的铁素体和马氏体相而言,由于其具有相同的晶体结构,故衍射峰相互交叠,很难利用单峰拟合技术获得各相的点阵应变。本论文通过选取两个具有不同峰宽和峰位的Gaussian函数对各相的衍射强度与20关系曲线进行拟合,能够很好区分TRIP钢中铁素体相和贝氏体相以及DP钢中铁素体相和马氏体相(200)晶面的衍射峰峰位,从而确定不同载荷下两种材料各相的点阵应变及平均相应力。通过使用双相弹塑性自洽模型(EPSC)对材料微观力学行为进行了模拟。模拟与实验结果符合良好,从而证明该模型能够较好模拟多相材料的微观力学行为。基于以上工作,我们得到如下结论:
     1、外加载荷较小时,TRIP800及DP980钢内部微观应力主要为各相平均应力,随外加载荷不断增加,与晶粒取向相关应力(晶间应力)取代相应力,成为微观应力的主要来源。
     2、奥氏体含量14%的TRIP800钢中γ相(奥氏体相)所承受的平均应力和晶粒取向相关应力大于α相的对应应力;奥氏体含量4%的TRIP800和DP980钢中,贝氏体和马氏体相所承载的平均应力和晶粒取向相关应力均大于铁素体相的相对应应力。
     3、奥氏体含量14%的TRIP800钢中α相与γ相弹塑性转变点分别为300MPa和600MPa;奥氏体含量为4%的钢中α相与γ相弹塑性转变点分别为300MPa和750MPa。DP980钢中铁素体和马氏体的弹塑性转变点分别为830和900MPa。
     4、弹塑性自洽模型能够很好模拟双相材料中的微观力学行为,可以提供无法通过实验手段直接获得的微观力学信息,为材料性能预测提供有力工具。
The micromechanical behavior of transformation induced plastic (TRIP) steel and dual phase (DP) steel was studied by the in-situ high-energy X-ray diffraction technique based on the synchrotron source. The microstructure of the studied TRIP steel consists of the ferrite, bainite and the residual austenite; while the DP steel is composed of ferrite and martensite. For TRIP steels, due to the obvious difference of the positions of diffraction peaks of the face-centred cubic phases (ferrite and bainite) and the body-centred cubic phase (austenite), it is easy to separate them from each other by the different positions of the respective diffraction peaks. Then, the lattice strains of the austenitic phase as a function of applied stress can be obtained.
     However, as for ferrite and bainite in the TRIP steel as well as the ferrite and martensite in the DP steel, it is difficult to separate them from each other by the single peak fitting. Although the ferrite/bainite and ferrite/martensite exhibit the same crystal structure, the (200) lattice strains of each phase can be determined by separating their overlapping diffraction peaks. This is achieved through fitting the lattice strain vs.20 curve by adopting two Gaussian functions with the different peak widths and positions. In this way, specific lattice strains of respective phases are determined for all the phases in both TRIP steel and DP steel.
     We also used an Elastic-Plastic Self-Consistent (EPSC) model to construct the respective constitutive laws for both phases from the experimental lattice strains and macrostress-strain curve. It is confirmed that the EPSC model can capture well the micromechanical behaviour of two-phase materials.
     Based on the work mentioned above, the following conclusions could be drawn:
     1. The microstresses in the materials mainly come from the phase stress caused by the phase-to-phaseinteraction when the macro-stress is low. With increasing the applied stress, grain-orientation-dependent stress is developed and dominate the microstresses in the
     2. In the two-phase materials, such as TRIP800 and DP980 steels, the average stress in each phase and grain-orientation-dependent stress subjected by austenite, bainite and martensite are larger than the corresponding stresses by ferrite under the applied loading.
     3. The critical shear stress of TRIP800 composed by 14% austenite is approximately 300MPa in a phase and the corresponding stress of y phase is 600MPa. The critical shear stress of TRIP800 composed by 5% austenite is 300MPa in a phase and the corresponding stress of y phase is 750MPa. Similarly, the shear stress of ferrite and martensite in DP980 is 830 and 900MPa, respectively.
     4. The EPSC model can capture well the micromechanical behaviour in the two-phase materials. The EPSC model provides useful information on the phase-to-phase and grain-to-grain interations in the materials, which could not be obtained by simply performing experiments. It is proved to be a powerful tool in predicting the mechanical properties of the materials.
引文
1.康永林.现代汽车板的质量控制与成型性[M],北京:冶金工业出版社,1999,2-3.
    2. Arif Basuki', Influence of rolling of TRIP steel in the intercritical region on the stability of retained austenite [J], Joumal of Material Technology,1999,89:37-43.
    3. M. De Meyer, J. Mahieu, B. C. De Cooman. Empirical Microstructure prediction method for combined intercritical annealing and bainitic transformation of TRIP steel [J], Material Science and Technology 2002,18:1121-1132.
    4.吴军,叶卫平.双相钢的研究现状及应用展望[J],钢铁研究,1994,(2):51.
    5.关小军,周家娟,王作成.一种新型汽车用钢一相变诱发塑性钢[J],特殊钢,2000,21(2):27-30.
    6.许路萍,邵光杰,李麟等.汽车轻量化用金属材料及其发展动态[J],上海金属,2002,24(3):1-7.
    7.王四根,花礼先,王绪.硅锰系相变诱发塑性钢的热处理工艺研究[J],金属热处理,1995,(6):14-17.
    8.康永林,王波.TRTP钢板的组织、性能与工艺控制[J],钢铁研究学报,1999,11(3):62-66.
    9.刘东升,王国栋,刘相华.汽车用热轧高强度钢板的发展[J],汽车工艺与材料,1999,(2):23-26.
    10.李玉龙,刘景科.汽车工业用低碳双相钢的显微组织与拉伸性能[J],吉林工业大学学报,1990,(4):106-112.
    11.何泽福,夏进,钱小容.硅锰双相钢的组织形貌观察[J],重庆大学学报,1985,(1):83-88.
    12.王利等.汽车轻量化与先进的高强度钢板[J],宝钢技术,2003,(5):53-59.
    13.王瑞珍,罗海文,策瀚.汽车用高强度钢板的最新研究进展[J],中国冶金,2006,16(9):1-9.
    14. Johansson J, Oden M, Zeng X H. Evolution of the residual stress state in a duplex stainless steel during loading [J], Acta Mater,1999,47(9):2669-2684.
    15. Harjo S, Tomota Y, Luka P, Neov D, Vrana M, Mikula P, Ono M. In situ neutron diffraction study of a-y Fe-Cr-Ni alloys under tensile deformation [J], Acta Mater 1999, 49(13):2471-2479.
    16. Baczmanski A, Braham C. Elastoplastic properties of duplex steel determined using neutron diffraction and self-consistent model [J], Acta Mater,2004,52(5):1133-1142.
    17. Tomota Y, Tokuda H, Adachi Y, Wakita M, Minakawa N, Moriai A, Morii Y Tensile behavior of TRIP-aided multi-phase steels studied by in situ neutron diffraction [J], Acta Mater 2004,52(20):5737-5745.
    18.陈玉安,周上棋.残余应力X射线测定方法的研究现状[J],无损检测,2001,23(1):19-22.
    19. Prevey. P. S. Current applications of X-ray diffraction residual stress measurement [J], Developments in Materials Characterization Technologies,1996:103-110.
    20.朱宏喜,毛卫民.金刚石薄膜残余应力的X射线透射测量法[J],物理测试,2005,23(6):21-24.
    21.刘毓舒.薄膜X射线应力分析的实验方法[J],理化检验—物理分册,2005,41(9):447-450.
    22. Martinez. S.A.Residual stress distribution on surface-treated Ti-6Al-4Vby X-ray diffraction [J], Proceedings of the Society for Experimental Mechanics,2003,50: 141-147.
    23. Sprauel.J. M., Michaud, H. Adaptation of the X-ray diffraction technique to the analysis of residual stress in carbo-nitrided steel layers [J], Materials Science Forum,2005,490: 125-130.
    24. Sujanto Widjaja. Determination of creep-induced residual stress in fiber-reinforced glass-ceramic matrix composites by X-ray diffraction [J], Materials Characterization, 2001,47(1):47-54.
    25. Fischer.K., Oettel. H. Analysis of residual stress gradients in thin films using SEEMANN-BOHLIN-X-ray diffraction [J], Materials Science Forum,1996,228: 301-306.
    26. Zeng, D., Jie. W. Residual stress and strain in CdZnTe wafer examined by X-ray diffraction methods [J], Applied Physics A(Materials Science Processing),2007,86(2): 257-260.
    27. Alfonso. J. A., Greaves, E. D. Control of geometrical sources of error in residual stress analysis by energy-dispersive X-ray diffraction [J], Journal of Strain Analysis for Engineering Design.2003,38(4):283-288.
    28. Schuster.T., Ploger.J. Depth-resolved residual stress evaluation from X-ray diffractionmeasurement data using the approximate inverse method [J], Zeitschrift fur Metallkunde,2003,94(8):934-937.
    29. Belassel.M., Pineault.J. Review of residual stress determination and exploitation techniques using X-ray diffraction method [J], Materials Science Forum,2006,524: 229-234.
    30. Martins.C.O.D., Strohaecker.T.R. Application of X-ray diffraction, micromagnetic and hole drilling methods for residual stress determination in a ball bearing steel ring [J], Proceedings of the Society for Experimental Mechanics,2005,52:344-350.
    31. Constable, C.P., Lewis, D.B. Raman microscopic studies of residual and applied stress in PVD hard ceramic coatings and correlation with X-ray diffraction(XRD) measurements [J], Surface&Coatings Technology,2004,184(2):291-297.
    32. Steuwer. A, Peel. M and Buslaps. T. Aspects of residual stress determination using energy-dispersive synchrotron X-ray diffraction [J], Materials Science Forum,2006, (524):267-272.
    33. Cheong. W. C. D., Zhuang.W.Z., Zhang.L.C. Study of residual stress relaxation using X-ray diffraction [J], Key Engineering Materials,2004,274:871-876.
    34. Gergaud.P., Goudeau.P., Sicardy.O.Residual stress analysis in micro-and nano-structured materials by X-ray diffraction [J], International Journal of Materials&Product Technology 2006,26:354-371.
    35. Pina.J.C.P., Dias.A.M. Residual stress analysis near a cold expanded hole in a textured alclad sheet using X-ray diffraction [J], Experimental Mechanics,2005,45(1):83-88.
    36.王仁智.X射线回摆法测定应力的计算方法[J],金属学报,1982,18(4):493-500.
    37.张铭,何家文.丝织构对薄膜X射线残余应力分析的影响[J],机械工程材料,2001,25(5):21-31.
    38.孔德军,张永康.基于XRD的A1203纳米薄膜残余应力测试[J],仪器仪表学报,2006(12):1619-1622.
    39.刘毓舒.织构材料X射线应力分析的线性方程组[J],上海交通大学学报,1999,33(2):135-138.
    40.陈会丽,钟毅.残余应力测试方法的研究进展[J],云南冶金,2005,34(3):52-54.
    41.陈勇,高德平.钛合金平板电子束焊接残余应力的小孔法测量[J],理化检验—物理分 册,2001,37(10):427-428.
    42.孙兰英,翟封祥.焊接板材毛坯冲压成形中残余应力的测试与分析[J],河北科技大学学报2000,21(1):69-72.
    43.亚敏.云纹干涉钻孔法测量残余应力的实验研究与应用[D],北京:清华大学,2003.
    44.王自明.无损检测综合知识[M],北京:机械工业出版社,2005:33-45.
    45.李生田.焊接结构现代无损检测技术[M],北京:机械工业出版社.2000:45-51.
    46.兰州石油机械研究所.压力容器检验及无损检测[M],北京:化学工业出版社,2006:34-42.
    47.刘致远.磁致伸缩振动时效在消除金属构件内应力上的应用[J],中国铸造装备与技术,2003,(1):52-54。
    48.杨建风.4Cr13量具钢残余应力测定分析[J],工具技术,2006,40(12):58-60.
    49. Harjo S, Tomota Y, Ono M. Measurements of thermal residual elastic strains in ferrite-austenite Fe-Cr-Ni alloys by neutron and X-ray diffractions [J], Acta Mater,1998, 47(1):353-362.
    50. Leffler B. Stainless steels and their properties [M], Stockholm:Avesta Sheffield AB Research Foundation,1996,30.
    51. Tomota Y, Lukas P, Harjo S, Park J H, Tsuchida N, Neov D. In situ neutron diffraction study of IF and ultra low carbon steels upon tensile deformation [J], Acta Mater,2003,51: 819-830.
    52. Larsson C, Clausen B, Holden T M, Bourke M A M. Measurements and predictions of strain pole figures for uniaxially compressed stainless steel [J], Scripta Mater,2004,51: 571-575.
    53.孙光爱,陈波.中子衍射残余应力分析技术及其应用[J],核技术,2007,30(40):286.
    54. Dye D, Stone H J, Reed R C. Intergranular and interphase microstresses [J], Current opinion in Solid State and Materials Science,2001,5(1):31-37.
    55. Clausen B, Lorentzen T, Leffers T. Self-consistent modeling of the plastic deformation of f.c.c. polycrystals and its implications for diffraction measurements of internal stresses [J], Acta Mater,1998,46(9):3087-3098.
    56. Daymond M R, Bourke M A M, Von Dreele R B, Clausen B, Lorentzen T. Use of Rietveld refinement for elastic macrostrain determination and for evaluation of plastic strain history from diffraction spectra [J], J Appl Phys,1997,82(4):1554-1562.
    57. Clausen B, Lorentzen T, Bourke M A M, Daymond M R. Lattice strain evolution during uniaxial tensile loading of stainless steel [J], Mater Sci Eng A,1999,259:17-24.
    58. Holden T M, Holt R A, Clarke A P. Intergranular strains on Inconel 600 and the impact on interpreting stress fields in bent steamgenerator tubing [J], Mater Sci Eng A,1998,246: 180-198.
    59. Clyne T W, Withers P J. An introduction to metal matrix composites [M], Cambridge: Cambridge University Press,1993.
    60. E.Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wrightc and S. van der Zwaag. Martensitic transformation of individual grains in low-alloyed TRIP steels [J], Scr. Mater,56(5):421.
    61. N.H. van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E.Offerman, J.P. Wright, S. van der Zwaag. Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling [J], Acta Mater,53(20):5439.
    62. M.R. Berrahmoune, S. Berveiller, K. Inal, A. Moulin, E.Patoor. Analysis of the martensitic transformation at various scales in TRIP steel [J], Mater. Sci. Eng. A,378(1): 304.
    63. Wang Y D, Peng R L, Wang X L, McGreevy R L. Grain-orientation-dependent residual stress and the effect of annealing in cold-rolled stainless steel [J], ActaMater,2002,50(7): 1717-1734.
    64. Kroner E. Berechnung der Elastischen Konstanten des Vielkristalles aus den Konstanten des Einkristalls [J], Z Phys,1958,151:504-518.
    65. Song J L, Bate P S. Plastic anisotropy in a superplastic duplex stainless steel [J], Acta Mater,1997,45(7):2747-2757.
    66. Pang J W L, Holden T M, Mason T E. In situ generation of intergranular strains in an Al7050 alloy [J], Acta Mater,1998,46(5):1503-1518.
    67. Atienza J M, Ruiz-Hervias J, Martinez-Perez M L, Mompean F J, Garcia-Hernandez M, Elices M. Residual stresses in cold drawn pearlitic rods [J], Scripta Mater,2005,52(12): 1223-1228.
    68. Daymond M R, Tome C N, Bourke M A M. Measured and predicted intergranular strains in textured austenitic steel [J], Acta Mater,2000,48(2):553-564.
    69. Kroner E. Zur plasticchen Verformung des Vielkristalls [J], Acta Metall Mater,1961,9: 155-161.
    70. Hill R. Continuum micromechanics of elasto-plastic polycrystals [J], J Mech Phys Solids, 1965;13:89-101.
    71. Hutchinson J W. Elastic-plastic behaviour of polycrystalline metals and composites [J], Proc R Soc Lond,1970,2(3):247.
    72. Kocks U F, Tome C N, Wenk H R. Texture and anisotropy [M]. Cambridge:Cambridge University Press,1998,347-352.
    73. Tome C, Canova G R, Kocks U F, Christodoulou N, Jonas J J. The relation between macroscopic and microscopic strain hardening in f.c.c. polycrystals [J], Acta Metall,1984, 32(10):1637-1653.
    74. Eshelby J. The determination of the elastic field of an ellipsoidal inclusion, and related problems [J], Proc R Soc Lond,1957, A241:376-396.
    75. Jia Nan. Deformation Behaviors of Duplex Stainless Steel Studied by In-situ Experiments and Self-Consistent Modeling [D], ShenYang:Northeastern University, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700