银杏叶聚戊烯醇的精制及合成S-多萜醇的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
银杏叶聚戊烯醇是由15~21个异戊烯基单元及终端异戊烯伯醇组成的线性长链化合物,聚戊烯醇为天然产物,对人体无毒、无致突变、无致畸和无致癌作用,具有明显的生理和药理作用。银杏叶聚戊烯醇大部分以乙酸酯的形式存在,少量为游离醇形式,其含量约占银杏叶干重的0.5 %~2 %。S-多萜醇是一类存在于动植物组织中具有光学活性的线状异戊烯基长链化合物,但末端单元为饱和的异戊伯醇。S-多萜醇是糖蛋白生物合成的关键载体,具有清除自由基、抗氧化和造血功能。银杏叶聚戊烯醇是半合成S-多萜醇的理想原料。
     聚戊烯醇的纯度通过高效液相色谱(HPLC)外标法确定。通过标准曲线得到的回归方程为y=1.5751x+1.1546(R~2=0.9991),y代表聚戊烯醇5个主要峰的峰面积,x代表样品中聚戊烯醇的质量,以此计算聚戊烯醇的纯度。进样量为4.6~23.3μg时,线性关系较好。
     本文将脱色应用于聚戊烯醇的纯化中,并对传统的聚戊烯醇纯化工艺进行了优化。通过L_9(3~4)正交试验,确定了最佳脱色条件:聚戊烯醇粗品与石油醚固液比1:10(g/mL),采用活性炭与凹凸棒土作为混合脱色剂,活性炭与凹凸棒土比例为1:5(g/g),聚戊烯醇粗品与脱色剂比例1:1.2(g/g),脱色温度70℃,搅拌脱色时间20 min。经过脱色,聚戊烯醇纯度由38.5 %提高到49.6 %,脱色过程中聚戊烯醇基本无损失。脱色后的聚戊烯醇再经过一步柱层析即可将纯度提高到90 %以上。优化的纯化方法具有方便、快捷、经济、收率高和适合工业化生产等特点。
     由于没有与C5合成子((R)-4-苄氧基-1-溴-2-甲基丁烷)结构相近且带有旋光性的化合物,手性C5合成子是通过以3-甲基-3-丁烯-1-醇为原料经过酶催化的立体选择性乙酰化等几步反应来合成的。首先在相转移催化剂条件下对羟基进行苄基保护,再依次经过硼氢化反应、荧光假单胞菌脂肪酶催化下的立体选择性乙酰化反应和溴代反应合成C5合成子。
     在吡啶和醋酸酐作用下,高纯度的聚戊烯醇经过传统的乙酰化反应生成聚戊烯基乙酸酯。聚戊烯基乙酸酯再与C5合成子的格氏试剂在Li_2CuCl_4催化下,在无水THF中进行碳碳偶合,合成S-多萜醇苄醚。S-多萜醇苄醚在碱金属的氨溶液作用、-78℃下,脱苄基保护,可以合成S-多萜醇。
Polyprenols from Ginkgo biloba L. leaves generally compose of 15 to 21 unsaturated isoprene units and are terminated by an unsaturated isoprene unit bearing a primary hydroxyl group. Polyprenols are natural products. They are not only non-toxic, non-mutagenic, non-teratogenic, and non-carcinogenic in humans but also have distinct physiological and pharmacological functions. Polyprenols mainly exist in the form of acetates and a few are in the form of free alcohols. These account for 0.5 %~2 % according to the dry G. biloba L. leaves. S-dolichol is a linear polyisoprene compound with a terminal unit of saturated isopropane bearing a primary hydroxyl group, which is found in the lipid fraction of animal and plant tissues. S-dolichol is the key carrier in the biosynthesis of glycoprotein, with biological functions such as free radical scavenging, antioxidation, hematopoiesis etc. Polyprenols are ideal as initial building blocks for the semisynthesis of S-dolichol.
     The purity of polyprenols was determined by High Performance Liquid Chromatography (HPLC) using external standard method. The regression equation obtained from the standard curve was y=1.5751x+1.1546 (R~2=0.9991), and y is the peak area of the 5 main peaks, x is the amount of polyprenols. The purity of polyprenols was calculated according to the standard curve. The linear relation between the amount of polyprenols (4.6~23.3μg) and peak area was good.
     Decoloration technology was applied to the purification of polyprenols, and the traditional purification process for polyprenols was optimized. L_9(3~4) orthogonal experiment design was employed to optimize the conditions for decoloration. Decoloration of polyprenols could be achieved effectively by stirring crude polyprenols in petroleum ether (1:10, w/v) and adding mixed decolorant (activated carbon/attapulgite ratio of 1:5, w/w) with a polyprenols/decolorant ratio of 1:1.2 (w/w) for 20 min at 70℃. Decoloration applied under the optimal condition could improve the purity of polyprenols from 38.5 % to 49.6 % without loss of polyprenols. The purity could be further improved to over 90 % through only one cycle of silica gel column chromatography. This developed purification method is convenient, rapid, economical, high-yield, and suitable for industrial production, among others.
     Due to the lack of commercially available optically pure compounds with a similar structure, C5 synthon ((R)-4-benzyloxy-1-bromo-2-methylbutane) was synthesized from the readily available 3-methyl-3-buten-1-ol using a slightly more complex procedure involving an enzymatic enantio-resolution step. At first, the hydroxyl function of 3-methyl-3-buten-1-ol was protected with a benzyl group carried out under phase-transfer conditions. The unsaturated benzyl ether was converted to the racemic primary alcohol by a hydroboration–oxidation reaction, followed by the stereoselective acetylation and bromination.
     Polyprenols with high purity were conventionally acetylated with acetic anhydride and pyridine. S-dolichyl benzyl ether was synthesized using Grignard coupling reaction between polyprenyl acetates and the Grignard reagent of C5, which was carried out in THF catalyzed by Li_2CuCl_4. The S-dolichyl benzyl ether could be deprotected by reduction with alkali metal in ammonia solution at -78℃and S-dolichol can be obtained.
引文
[1]李春斌,孙磊,李黎,等.银杏叶聚戊烯醇分离分析方法的研究进展[J].大连民族学院学报,2007,(1):41-43
    [2]孙磊,李春斌,范圣第.银杏叶聚戊烯醇类化合物的制备与分析[J].时珍国医国药,2006,l7(12):2528-2529
    [3] T. Takigawa,K. Ibata,M. Mizuno. Synthesis of mammalian dolichol from plant polyprenols[J]. Chem Phys Lipids,1989,(51):171-182
    [4] H.A. Van Houte,R.H. Busson,G.G. Parmentier,et al. Synthesis of [1-14C] dolichol acid[J]. Chem Phys Lipids,1994,(72):103-107
    [5]王成章,沈兆邦,谭卫红,等.银杏叶聚戊烯醇含量分析研究[J].林产化工通讯,2001,35(5):12-15
    [6]王成章,沈兆邦,谭卫红,等.银杏叶聚戊烯醇的化学、纯化和药效研究[J].天然产物研究与开发,2001,13(2):43-45
    [7]王成章,沈兆邦.多萜醇的化学合成和药物开发[J].国外医药:合成药.生化药.制剂分册,2001,22(6):350-352
    [8] T. Chojnacki,Swiezewska Ewa,T. Vogtman. Polyprenols from plants-structural analogues of mammalian dolichols[J]. Chemica Scripta,1987,(27):209-214
    [9] X.H. Wu , J.S. Rush , D. Karaoglu , et al. Deficiency of UDP-GlcNAc: Dolichol Phosphate N-Acetylglucosamine-1 Phosphate Transferase (DPAGT1) Causes a Novel Congenital Disorder of Glycosylation Type Ij[J]. Human Mutation,2003,(22):144-150
    [10] C.B. Guerra,R. Busch,R.C. Doebele,et al. Novel glycosylation of HLA-DR alpha disrupts antigen presentation without altering endosomal localization[J]. Immunol,1998,160:4289-4297
    [11] I. Krajewska-Rychlik. Metabolism of exogenous polyisoprenoids by animal cells cultured in vitro[J]. Acta Biochim Pol,1985,32(3),211-223
    [12] P.M. Rudd,T. Elliott,P. Cresswell,et al. Glycosylation and the immune system[J]. Science,2001,291(5512):2370-2376
    [13]谢建翔,何玲.多萜醇体内代谢及其生物活性研究进展[J].中国新药杂志,2008,17(4):283-288
    [14] J.W. Rip,C.A. Rupst,K. Ravi,et al. Distribution, metabolism and function of dolichol andpolyprenols[J]. Prog Lipid Res,1985,24(4):269-309
    [15] S. Kuznecovs. Short Guide to“ROPREN”[J]. Riga: Funs Ltd.,1991
    [16] T. Fumimaro,U. Akio,S. Michiya,et al. Use of dolichol or its ester in medicines. EP,0166436A,1986-01-02
    [17]冈本保.多萜醇制癌剂.JP,01/211513.1989-08-24
    [18] Kuznetsovs S.. Urinary dolichol in breast cancer control[J]. The European Journal of Cancer, 1994,Vol.30A. Suppl.2, S20-49
    [19] S. Kuznetsovs,M. Daugavietis. Effects of polyprenols on P-388 leukemia cell sensitivity and chemotherapy resistance in vitro[J]. 18th International Congress of Chemotherapy,Stockholm: [s. n.],1994:170
    [20] S. Kuznetsovs. Dolichol tumour marker in ovarian cancer control[J]. The European Journal of Cancer,1994,30(1):S42-53
    [21] I. Yamatsu,T. Suzuki,S. Abe,et al. Remedy and prevention for hepatic disease. JP,60136510,1985-07-20
    [22] I. Yamatsu,T. Suzuki,S. Abe,et al. Therapeutic and preventive agent containing dolichol[J]. US,4791105,1988-12-13
    [23] E. Yasugi,Y. Yokoyama,Y. Seyama,et al. Dolichyl phosphate, a potent inducer of apoptosis in rat glioma C6 cells[J]. Biochem Biophys Res Commun,1995,216(3):848-853
    [24]李永辉,欧阳臻,杨克迪,等.聚戊烯醇类化合物的研究进展[J].时珍国医国药,2005,16(4):304-306
    [25]杨克迪,陈钧,童张法.反相高效液相色谱法制备银杏叶中聚戊烯醇同系物单体[J].色谱,2003,21(1):49-51
    [26]杨克迪,陈钧,欧阳臻,等.高效液相色谱/大气压化学电离质谱分析银杏叶中聚戊烯醇化合物[J].分析化学研究简报,2003,31(8):937-940
    [27]王成章,沈兆邦,陈祥.落叶松和水杉针叶的聚戊烯醇[J].植物资源与环境,1996,5(4):21-25
    [28]王成章,沈兆邦,陈祥.五种针叶中聚戊烯醇的化学结构[J].林产化学与工业,1994,14(3):1-8
    [29]杨小明,陈钧.银杏聚戊烯醇提取技术研究[J].基层中药杂志,2001,15(5):3-5
    [30]杨小明,谢吉民,陈钧.银杏聚戊烯醇同系物的提取及其HPTLC法的初步分析[J].镇江医学院学报,2000,10(4):617-618
    [31]王成章,沈兆邦,郁青.植物聚戊烯醇的研究进展[J].中国医药工业杂志,2003,34(2):102-104
    [32] R. Bizzarri,B. Cerbai,R. Solaro,et al. A convenient method for the synthesis of (S)-dolichol and (S)-nordolichol[J]. J Bioact Compat Polym,2003,18:433-451
    [33] S. Suzuki,F. Mori,T. Takigawa,et al. Synthesis of mammalian dolichols from plant polyprenols[J]. Tetrahedron Lett,1983a,24(46):5103-5106
    [34] B. Imperiali,J.W. Zimmerman. Synthesis of dolichols via asymmetric hydrogenation of plant polyprenols[J]. Tetrahedron Lett,1988,29(42):5343-5344
    [35]王成章,沈兆邦,谭卫红,等.银杏叶聚戊烯醇的化学、纯化和药效研究[J].天然产物研究与开发,2001,13(2):43-45
    [36]杨克迪,刘自力,童张法,等.银杏叶聚戊烯醇类化合物分离工艺研究[J].广西大学学报(自然科学版),2002,27(2):136-139
    [37]李永辉,宿树兰,欧阳臻,等.银杏叶中聚戊烯醇类化合物的分离纯化研究[J].中药材,2004,27(5):337-339
    [38]唐于平,楼凤昌,徐笑萍.银杏叶中聚戊烯醇类化合物的研究进展[J].天然产物研究与开发,1998,11(6):101-108
    [39] R. Bizzarri,B. Cerbai,F. Signori,et al. New perspectives for (S)-dolichol and (S)-nordolichol synthesis and biological functions[J]. Biogerontology,2003,4:353-363
    [40]文辉忠,赵临远.活性白土研究进展[J].化工纵横,2001,(10):5-8
    [41]陈丽特,沈钟,宋金富,等.凹凸棒土对植物油脱色的研究[J].化学工程师,1993,(6):8-11
    [42]陈丽特,肖宝钧,沈钟.凹凸棒土的油品脱色研究[J].化学世界,1989,(8):337-339
    [43]谷克仁.活性炭脱色对大豆磷脂质量的影响[J].郑州工程学院学报,2001,22(1):l6-l8
    [44]立本英机,安部郁夫.活性炭的应用技术—其维持管理及存在的问题[M],南京:东南大学出版社,2002:19-23
    [45]何照范,张迪清.保健食品化学及其检测技术[M],北京:中国轻工业出版社,1998:91.
    [46]马云霄.浅谈油脂脱色吸附剂[J].四川粮油科技,2003,(4):11-12
    [47]韩丽.实用中药制剂新技术[M].北京:化学工业出版社,2002:217
    [48]申福光.北京化工大学开发出分子蒸馏技术[J].科学时报,2002-02-21(5)
    [49]王成章,沈兆邦,郁青,等.银杏叶中脂肪酸的含量及化学组成[J].林产化工通讯,2000,34(1):7-9
    [50]王成章,叶建中,郑光耀,等.分子短程蒸馏和重结晶分离银杏叶甾醇类化合物的研究[J].林产化学与工业,2008,28(2):43-47
    [51]王成章,王婉苓,叶建中,等.分子短程蒸馏分离银杏叶聚戊烯醇的研究[J].林产化学与工业,2008,28(3):23-27
    [52]王成章,沈兆邦,郁青,等.银杏叶中脂肪酸的含量及化学组成[J].林产化工通讯,2000,34(1):7-9
    [53]王成章,沈兆邦,刘妤婵.聚戊烯醇的分子蒸馏纯化方法.200410041670.4.2005-03-23
    [54] A. Teris. Chemical analysis of Ginkgo biloba leaves and extracts[J]. Journal of Chromatography A,2002,967:21-55
    [55] S. Tateyama,R. Wititsuwannakul,D. Wititsuwannakul,et al. Dolichols of rubber plant, ginkgo and pine[J]. Phytochemistry,1999,51:11-15
    [56] W. Magdalena,B.Tomasz,T. Seiji,et a1. Polyisoprenoid alcohols from the mushroom Lentinus edodes[J]. Chemistry and physics of lipids,2004,130(2):109-115
    [57] H. Sagami,A. Kurisaki,K. Ogura,et al. Separation of dolichol from dehydrodolichol by a simple two-plate thin-layer chromatography[J]. J. Lipid Res.,1992,33:1857-1861
    [58] I. Eggens,T. Chojnack,I. Kenne. Separation, quantitation and distribution of dolichols and dolichyl phosphate in rat and human tissues[J]. Biochimica et Biophysica Acta,1983,751:355-368
    [59]杨小明,谢吉民,陈钧.银杏聚戊烯醇同系物的提取及其HPTLC法的初步分析[J].镇江医学院学报,2000,10(4):617-618
    [60] K. Ibata,M. Mizuno,T. Takigawa. Long chain betulaprenol-type polyprenols from the leaves of Ginkgo biloba[J]. Biochem. J.,1983,213:305-311
    [61] C. Tomas,S. Karolina,H. Jozefina,et al. Single polyprenol and dolichol isolation by semipreparative high-performance liquid chromatography technique[J]. Journal of Lipid Research,2000,41:1177-1180
    [62] T. Bamba,E. Fukusaki,Y. Nakazawa,et al. Analysis of long-chain ployprenols using supercritical fluid chromatography and matrix-assisted laser desorption ionization time-of-flight mass spectrometry[J]. Journal of Chromagraphy A,2003,995:203-207
    [63] T. Bamba,E. Fukusaki,S. Kajiyama,et al. High-resolution analysis of polyprenols by supercritical fluid chromatography[J]. Journal of Chromagraphy A,2001,911:113-117
    [64]孙磊,李春斌,范圣第.HPLC测定银杏叶中聚戊烯醇的含量[J].华西药学杂志,2006,21(3):297-299
    [65]尤启冬,林国强.手性药物—研究与应用[M].北京:化学工业出版社,200l:3-4
    [66]陆国元.有机反应与有机合成[M].北京:科学出版社,2009:322-335
    [67] G. Paride,F. Patrizia,C. Silvana,et al. Studies on the enantioselectivity of the transesterification of 2-methyl-1,4-butanediol and its derivatives catalyzed by Pseudomonas fluorescens Lipase in organic solvents[J]. Tetrohedron: Asymmetry,1993,4(5):997-1006
    [68]张汉承,郭奇珍.中国化学会第四届金属元素有机化学讨论会论文集[J],1986

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700