通过改变Smad4的表达研究BMP7-Smad4-Id2信号通路在大肠癌发生发展中的作用及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分Smad4蛋白在大肠癌组织中的表达及临床意义
     目的:探讨Smad4蛋白在大肠癌组织中的表达及其与患者临床、病理之间的关系。方法:利用免疫组化S-P法检测60例大肠癌组织、27例癌旁正常组织中Smad4的表达;回顾性收集相应患者的临床病理资料。结果:Smad4在大肠癌原发灶中的免疫组化切片评分,与癌旁正常组织相比,采用Mann-Whitney检验,U=294.50,有显著性差异(P<0.001);Smad4的表达情况与肿瘤的浸润层次,淋巴结转移,Dukes分期有关(P<0.05)。结论:Smad4的低表达可能与大肠癌发生发展有关,Smad4可以作为大肠癌的预后指标和基因靶向治疗的有效靶点。
     第二部分Smad4表达下降对大肠癌细胞HCT116增殖性、迁移性、侵袭性以及BMP7-Smad4-Id2通路的影响(体外实验)
     目的:本部分实验研究HCT116细胞中的Smad4被小干扰RNA沉默后,是否影响了该细胞的增殖性、迁移性、侵袭性及细胞周期,是否影响了BMP7-Smad4-Id2信号通路的作用。方法:构建Smad4-shRNA质粒,并通过转染和筛选形成该质粒稳定转染的HCT116细胞。通过PCR, Western实验来验证Smad4-shRNA质粒的作用,并测量Id2的表达情况。通过MTT来评价细胞的增殖性的改变,通过Transwell实验来评价细胞迁移性和侵袭性的改变,通过流式细胞技术来评价细胞周期的改变。结果:成功构建Smad4-shRNA质粒,并形成该质粒稳定转染的HCT116细胞株。通过PCR和Western实验分别验证了Smad4在基因和蛋白水平的降低。同时,通过Western实验,得到干扰质粒对Smad4蛋白的抑制率为47.17%。干扰后的HCT116细胞,增殖性、迁移性和侵袭性均增强(P<0.05),细胞周期发生改变。干扰后的HCT116细胞中Id2的表达增加,但在该类细胞中BMP7增多不能引起Id2的改变。结论:在HCT116细胞中,Smad4的降低可以使细胞的增殖性、迁移性、侵袭性增加,Smad4是一种抑癌基因。BMP7通过Smad4改变Id2的表达来影响细胞的活性。BMP7-Smad4-Id2在大肠癌的发生发展中发挥作用。
     第三部分Smad4表达下降对大肠癌细胞HCT116裸鼠植瘤生长以及BMP7-Smad4-Id2通路的影响(体内实验)
     目的:研究Smad4表达降低的HCT116细胞在裸鼠皮下植瘤后肿瘤的生长情况以及BMP7细胞因子对各种细胞所植肿瘤的影响。方法:用HCT116细胞,HCT116-HK细胞,HCT116-Smad4-shRNA细胞构建裸鼠皮下成瘤模型,5天后肿瘤形成,将裸鼠分为(1)HCT116组:(2)HCT116-HK组:(3)HCT116+BMP7组:(4)HCT116-Smad4-shRNA组:和(5)HCT116-Smad4-shRNA+BMP7组。五个实验组,每个实验组每隔2天瘤周注射0.2ml100ng/ml的BMP7或生理盐水,重复4次。观察肿瘤的大小和重量。通过PCR和免疫组化,测量每组肿瘤中Smad4、Id2在基因和蛋白水平上的表达量。通过TUNEL实验,评估每组肿瘤细胞凋亡的情况。结果:5天后,裸鼠植瘤均成功,肿瘤5-7mm大小,HCT116-Smad4-shRNA组肿瘤生长明显快于HCT116组和HK组。PCR提示HCT116-Smad4-shRNA组肿瘤中Smad4mRNA表达降低,Id2mRNA表达增加。对于OT116-Smad4-shRNA组细胞所成肿瘤,有无BMP7作用,不影响Id2的表达和肿瘤的生长。TUNEL实验提示HCT116-Smad4-shRNA组肿瘤中细胞凋亡降低。结论:Smad4-shRNA可以在体内实验中抑制大肠肿瘤的生长。BMP7-Smad4-Id2细胞信号通路在大肠癌的发生发展中起作用。
     第四部分Smad4再表达对大肠癌细胞SW480增殖性、迁移性、侵袭性以及BMP7-Smad4-Id2通路的影响(体外实验)
     目的:研究Smad4再表达对大肠癌细胞SW480增殖性和侵袭性的影响;探索BMP7是通过BMP7-Smad4通路,还是直接对Id2起调节作用,从而使Id2发生改变而影响细胞的活性。方法:成功构建Smad4-cDNA质粒并形成该质粒稳定转染的SW480细胞。通过Western实验来验证Smad4的再表达,并测量Id2的蛋白表达情况。通过MTT来评价细胞的增殖性的改变,通过Transwell实验来评价细胞迁移性和侵袭性的改变,通过流式细胞技术来评价细胞周期的改变。结果:成功构建Smad4-cDNA质粒,并形成该质粒稳定转染的SW480细胞株。通过Western实验验证了Smad4在蛋白水平的再表达。再表达后的SW480细胞,增殖性、迁移性和侵袭性均减弱(P<0.05),细胞周期发生改变,静止期细胞增多。再表达后的SW480细胞中Id2的表达降低,而且在该类细胞中BMP7增多可以使该类细胞的活性增强且引起Id2的增加。结论:在SW480细胞中,Smad4的再表达可以使细胞的增殖性、迁移性、侵袭性降低,进一步证实Smad4是一种抑癌基因。BMP7通过Smad4改变Id2的表达来影响细胞的活性。BMP7-Smad4-Id2在大肠癌的发生发展中发挥作用。
PART1. Smad4protein expression in colorectal cancer and its clinical significance
     Objective To investigate the expression of the Smad4protein in colorectal cancer tissues and the relationship between the expression of Smad4and the clinical pathological data of the patient. Methods Detected60cases of colorectal carcinoma tissue and27cases of the corresponding adjacent normal tissue expression of Smad4by the Immunohistochemistry S-P method, collected the corresponding clinicopathological data of patients. Results Compared with normal tissues, the immunohistochemical biopsy score of Smad4in colorectal cancer primary tumors, was a significant difference (Mann-Whitney test, u=294.50, P<0.001). Smad4expression was relationship with the tumor invasion, lymph node metastasis, and Dukes staging (P <0.05). Conclusion Low expression of Smad4may be related to the progression of the colorectal cancer. The Smad4can be used as predictors of the prognosis of colorectal cancer, and the gene can be an effective target in gene therapy.
     PART2. Down-regulation of Smad4affected proliferation and invasion of colorectal carcinoma HCT116cells and BMP7-Smad4-Id2pathway
     Objective The aim of this study was to determine whether the suppression of Smad4by short hairpin RNA (shRNA) regulates the proliferation and invasion of colorectal carcinoma HCT116cells and BMP7-Smad4-Id2pathway. Methods The Smad4-shRNA expression vectors were constructed and stably transfected to HCT116cells. The expression of mRNA and protein of Smad4and Id2was detected using reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. Cellular proliferation inhibitory activity was determined by methyl thiazolyl tetrazolium (MTT) assay. Transwell assay was used to detect the effect of the inhibition of Smad4-shRNA on migration and invasion.Tht flow cytometry was used to assess the change of the cell cycle. Results The Smad4-shRNA vector, which inhibited Smad4expression, was constructed and successfully transfected to HCT116cells. The levels of mRNA and protein expression of Smad4were markedly decreased following transfection of shRNA compared with the control groups (P<0.05). The abilities of proliferation, migration and invasion were increased following transfection of shRNA (P<0.05). The expression of Id2was increased following transfection of shRNA (P<0.05). For the Smad4-down-regulated HCT116cells, treated with or without BMP7(25ng/ml), no difference was found. Conclusion shRNA-mediated silencing of Smad4was able to enhance the abilities of proliferation, migration and invasion in the HCT116cell line. Therefore, Smad4may act as a tumor-suppressor gene in colorectal carcinoma. BMP7affects Id2by Smad4to change the activity of the HCT116cell.
     PART3. Down-regulation of Smad4affected human colorectal carcinoma HCT116growth and BMP7-Smad4-Id2pathway in vivo
     Objective The reduction of Smad4by short hairpin RNA (shRNA) resulted growth Promotation of cancer cells. The present study was to evaluate the effect of reduction of Smad4expression by shRNA on growth of human colorectal carcinoma (CRC) in tumor-bearing nude mice in vivo. Methods To establish HCT116cell, HCT116-HK cell,HCT116-Smad4-shRNA cell transplantable model, the nude mice were subcutaneously inoculated with1.0×10(7) cells and kept growing till the tumor xenografts reached5-7mm in diameter. Then the mice were randomly assigned to five groups(three mice in each group:(1) HCT116cell group;(2) HCT116-HK group;(3) HCT116+BMP7group;(4) HCT116-Smad4-shRNA group; and (5) HCT116-Smad4-shRNA+BMP7group.0.2ml/mouse BMP7(100ng/ml) or Saline was injected intratumorally four times once every two day. The weight and volumes of tumor xenografts were recorded. The levels of Smad4and Id2mRNA transcripts and proteins in tumor xenografts were detected by reverse quantitative transcription polymerase chain reaction (QRT-PCR) and immunohistochemical staining respectively. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay was used to detect the death of cells. Results The xenografts in mice could be seen at5th day from the implantation of HCT116cells and all had reached5-7mm in size. After injection intratumorally, the growth speed of tumor xenografts in HCT116-Smad4-shRNA group was significantly fast compared with those in HCT116and HK group(P<0.05). The results of QRT-PCR showed that mRNA levels of Smad4reduced more in HCT116-Smad4-shRNA group than those in HCT116and HK group. The mRNA levels of Id2increased more in HCT116-Smad4-shRNA group than those in HCT116and HK group. For the tumor which was growing from the Smad4-down-regulated HCT116cells, treated with or without BMP7, no difference was found. Immunohistochemical analyses of tumor xenograft sections also revealed the decreased Smad4expression in HCT116-Smad4-shRNA group and the change of Id2. TUNEL assay also showed lower death of tumor xenograft tissue cells in HCT116-Smad4-shRNA group. Conclusion Smad4-shRNA may inhibit the growth of human colorectal tumor xenografts in vivo. BMP7-Smad4-Id2pathway was working on the colorectal tumor.
     PART4. Re-expression of Smad4affected proliferation and invasion of colorectal carcinoma sw480cells and BMP7-Smad4-Id2pathway
     :Objective The bone morphogenetic proteins (BMPs) Smad4and Id2exert their effect on colorectal carcinoma via several uncharacterized mechanisms. In this study, we determine whether the re-expression of Smad4by cDNA regulates the proliferation and invasion of colorectal carcinoma SW480cells, and investigated whether the transcription factor Id2, which has been implicated in colorectal carcinoma proliferation and metastasis, is involved in BMP7-Smad4signaling, or whether it is regulated by BMP7via another mechanism in this cell type. Methods A Smad4-cDNA vector was constructed and stably transfected into SW480cells. Protein levels of Smad4and Id2were examined by Western blotting. Inhibitory effects on cellular proliferation activity were determined by the methyl thiazolyl tetrazolium (MTT) assay, and invasion and migration potential was detected using the in vitro Matrigel-coated invasion and migration assay. Results Levels of Smad4protein were significantly increased in SW480cells transfected with Smad4-cDNA, compared to those transfected with empty vector. Growth curve analysis revealed that live cell numbers were lower in the Smad4-expressing group than in the control group after36h, and that BMP7treatment caused an increase in live cell numbers in Smad4-expressing cells. Transwell chamber analysis revealed that migration/invasion activity was significantly suppressed when Smad4was expressed. Finally, Smad4-expressing cells treated with BMP7expressed a higher level of Id2protein than the controls. Conclusion The results indicate that Smad4expression may inhibit the growth and invasion of SW480cells, and that BMP7affects Id2levels through Smad4. Therefore, BMP7-Smad4-Id2signaling may play a significant role in the development of colorectal carcinoma.
引文
[1]Kemeny N, Fata F. Arterial portal, or systemic chemotherapy for patients with hepatic metastasis of colorectal carcinoma[J]. J Hepato biliary Dancreat Surg;1999,6(1):39-49.
    [2]Borner MM. Neoadjuvant chemotherapy for unresectable livermetastases of colorectal cuncer too good to be true[J].Ann Oncal;1999,10(6):623-626.
    [3]Stangl R, AltendorfHofmann A, Charnley RM, et al. Factors influencing the natural history of colorectal liver metastases[J].Lancet; 1994,343 (8910):1405-1410.
    [4]Hahn SA, Schute M, Hoque AT, et al. Dpc4 a candidate tumor supppressor gene at human chromosome 18q21.1[J]. Science;1996,271:350-353.
    [5]Millet C, Zhang YE. Roles of Smad3 in TGF-beta signaling during carcinogenesis[J]. Crit Rev Eukaryot Gene Expr.2007;17(4):281-93.
    [6]Yue J, Mulder KM.Transforming growth factor-beta signal transduction in epithelial cells[J]. Pharmacol Ther.2001;91(1):1-34.
    [7]Nishanian TG, Kim JS, Foxworth A, et al. Suppression of tumorigenesis and activation of wnt signaling by bone morphogenetic protein 4 in human cancer cells[J]. Cancer Biolo Ther.2004,3(7):667-75
    [8]顾成磊,孟元光,赵亚力,等.分化抑制因子2在肿瘤中的研究进展[J].现代肿瘤医学.2008,16(9):1623-1625.
    [9]Pagliuca A, Gallo P, De Luca P, et al. Class A helix-loophelix proteins are positive regulators of several cyclin-dependent kinase inhibitors'promoter activity and negatively affect cell growth[J]. Cancer Res.2000;60(5):1376-82.
    [10]Rothschild G, Zhao X, Iavarone A, et, al. Eproteins and Id2 converge on p57Kip2 to regulate cell cycle in neural cells[J]. Mol Cell Biol. 2006;26(11):4351-61.
    [11]任重.BMP7-Ids信号通路对大肠癌侵袭性和增殖性变化的实验研究.[博士论文].上海.复旦大学.2009
    [12]Bertholon J, Wang Q, Galmarini CM, et al. Mutational targets in eolorectal CanCer eellswith microsatellite instability[J]. Fam Cancer,2006,5(1):29-34.
    [13]Guleng G, Lovig T, Meling GI, et al. Mitochondrial mierosatellite instabifity in eolorectal carcinomas-frequency and association with nuclear mierosatellite instability[J]. Cancer Lett,2005,219(1):97-103.
    [14]刘超,刘宝善,燕锦,等.影响大肠癌术后复发因素的探讨[J].大肠肛门病外科杂志.2002,8(1):728.
    [15]Fearon ER, Vogelstein B.A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759-67.
    [16]Duff EK.Clarke AR. Smad4(DPC4)-a potent tumour suppressor? [J]. Br J Cancer.1998;78(12):1615-9.
    [17]李保森,游绍莉,赵志海,等.实验性肝纤维化形成过程中几种基质金属蛋白酶表达的研究[J].世界华人消化杂志.2003;11(4):483-485
    [18]金中元,程瑞雪,郑长黎,等.原发性肝细胞癌中PTTG和cmyc基因表达的研究[J].世界华人消化杂志.2003:11(11):1677-1681
    [19]Maitra A, Molberg K, Albores-Saavedra J, et al. Loss of Dpc4 expression in colonic adenocarcinomas correlates with the presence of metastatic disease [J].Am J Pathol.2000; 157(4):1105-11.
    [20]Salovaara R, Roth S, Loukola A, et al. Frequent loss of SMAD4/DPC4 protein in colorectal cancers[J].Gut.2002;51(1):56-9.
    [21]肖德胜,李景和,傅春燕,等.结肠癌组织Smad4蛋白表达的意义[J].世界华人消化杂志2004:12(5):1065-1068
    [22]郑林,许伟青,姜叙诚,等.结肠癌组织中TGFβ1及其Ⅱ型受体和Smad4蛋白的表达.上海交通大学学报(医学版),2006;26(2):146-150.
    [23]谢忠士,宋燕,刘志毅等.抑癌基因DPC4在结肠癌蛋白的表达及临床意义[J].中国实验诊断学,2008;12(2):245-246.
    [24]李乐平,石强,靖昌庆等.TGF-β及其伙伴分子Smad4在大肠癌组织中的表达[J].山东医药,2007;47(6):1-3.
    [25]Alazzouzi H, Alhopuro P, Salovaara R, et al.SMAD4 as a prognostic marker in colorectal cancer[J].Clin Cancer Res.2005;11(7):2606-11.
    [26]Norton JD, Deed RW, Craggs G, et al. Id helix-loop-helix proteins in cell growth and differentiation[J]. Trends Cell Biol.1998;8(2):58-65.
    [27]Kowanetz M, Valcourt U, Bergstrom R, et al. Id2 and Id3 define the potency of Cell Proliferation and Differentiation Responses to Transforming Growth Factor (3 and Bone Morphogenetic Protein[J]. Mol Cell Biol.2004;24(10):4241-54.
    [28]Cannarile MA, Lind NA, Rivera R, et al. Transcriptional regulator id2 mediates CD8+ T cell immunity[J]. Nat Immunol.2006;7(12):1317-25.
    [29]Asirvatham AJ, Carey JP, Chaudhary J. Idl-, Id2-, and Id3-regulated gene expression in E2A positive or negative prostate cancer cells[J]. Prostate.2007; 67(13):1411-20.
    [30]Hsu SY, LinBH3. Domain-containing proapoptotic Bcl-2 protein capable of dimerization with diverse antiapoptotic Bcl-2 members[J]. Mol Endocrinol. 1998;12(9):1432-40.
    [31]Zamore PD. Ancient pathways programmed by small RNAs [J]. Science.2002; 296(17):1265-1269.
    [32]ElbashirSM, Harborth J, Lendeckel W, et al. Duplexesof 21-nucleotide RNA smediate RNA interference in cultured mammalian cells [J]. Nature.2001;411: 494-498.
    [33]Agami R. RNAi and related mechanisms and their potential use for therapy [J]. Curr Opin Chem Biol,.2002; 6(6):829-834.
    [34]Bertrand JR, Pottier M, Vekris A, et al. Comparison of antisense oligonucleotidesand siRNAs in cell culture andin vivo[J]. Biochem Biophys Res Commun.2002;296(4):1000-1004.151
    [35]Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics,2002[J]. CA Cancer J Clin.2005;55(2):74-108.
    [36]Beck SE, Jung BH, Del Rosario E, et al. BMP-induced growth suppression in colon cancer cells is mediated by p21 WAF1 stabilization and modulated by RAS/ERK[J]. Cell Signal.2007; 19(7):1465-72.
    [37]Katsuno Y, Hanyu A, Kanda H, et al. Bone morphogenetic protein signaling enhances invasion and bone metastasis of breast cancer cells through Smad pathway[J]. Oncogene.2008;27(49):6322-33.
    [38]Montgomery E, Goggins M, Zhou S, et al.Nuclear localization of Dpc4 (Madh4, Smad4) in colorectal carcinomas and relation to mismatch repair/transforming growth factor-beta receptor defects[J]. Am J Pathol.2001; 158(2):537-42.
    [39]Maegdefrau U, Bosserhoff AK. BMP activated Smad signaling strongly promotes migration and invasion of hepatocellular carcinoma cells[J]. Exp Mol Pathol.2012;92(1):74-81.
    [40]Kowanetz M, Valcourt U, Bergstrom R, et al. Id2 and Id3 define the potency of cell proliferation and differentiation responses to transforming growth factor beta and bone morphogenetic protein[J]. Mol Cell Biol,2004,24(10):4241-54.
    [41]Zhang B, Halder SK, Kashikar ND, et al. Antimetastatic role of Smad4 signaling in colorectal cancer[J]. Gastroenterology.2010; 138(3):969-80.el-3.
    [42]Lasorella A, Noseda M, Beyna M. et al. Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins[J]. Nature.2000;407(6804):592-8.
    [43]Lasorella A, Iavarone A, Israel MA. Id2 specifically alters regulation of the cell cycle by tumor suppressor proteins[J]. Mol Cell Biol.1996;16(6):2570-8.
    [44]Meng Y, Gu C, Wu Z, et al. Id2 promotes the invasive growth of MCF-7 and SKOV-3 cells by a novel mechanism independent of dimerization to basic helix-loop-helix factors[J]. BMC Cancer.2009;9:75.
    [45]Gray MJ, Dallas NA, Van Buren G, et al. Therapeutic targeting of Id2 reduces growth of human colorectal carcinoma in the murine liver[J]. Oncogene.2008;27(57):7192-200.
    [46]Padua D, Zhang XH, Wang Q, et al.TGF beta primes breast tumors for lung metastasis seeding through angiopoietin-like 4[J]. Cell.2008; 133(1):66-77.
    [47]Akhurst RJ, Derynck R.TGF-beta signaling in cancer-a double-edged sword[J]. Trends Cell Biol.2001;11(11):S44-51.
    [48]Schroy P, Rifkin J, Coffey RJ, et al.Role of transforming growth factor beta 1 in induction of colon carcinoma differentiation by hexamethylene bisacetamide[J]. Cancer Res.1990;50(2):261-5.
    [49]Friedman E, Gold LI, Klimstra D, et al.High levels of transforming growth factor beta 1 correlate with disease progression in human colon cancer[J]. Cancer Epidemiol Biomarkers Prev.1995;4(5):549-54.
    [50]Buijs JT, Henriquez NV, van Overveld PG, et al.Bone morphogenetic protein 7 in the development and treatment of bone metastases from breast cancer [J]. Cancer Res.2007;67(18):8742-51.
    [51]Wang H, Zhao G, Liu X, et al.Silencing of RhoA and RhoC expression by RNA interference suppresses human colorectal carcinoma growth in vivo[J]. J Exp Clin Cancer Res.2010;29:123.
    [52]Lampropoulos P, Zizi-Sermpetzoglou A, Rizos S, et al.TGF-beta signalling in colon carcinogenesis[J]. Cancer Lett.2012;314(1):1-7.
    [53]Kloosterman WP, Hoogstraat M, Paling O, et al. Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer[J]. Genome Biol.2011;12(10):R103.
    [54]Wakefield LM, Roberts AB.TGF-beta signaling:positive and negative effects on tumorigenesis[J]. Curr Opin Genet Dev.2002;12(1):22-9.
    [55]Seoane J, Le HV, Shen L, et al. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation[J]. Cell.2004;117(2):211-23.
    [56]Wozney JM, Rosen V, Celeste AJ, et al. Novel regulators of bone formation: molecular clones and activities[J]. Science.1988;242(4885):1528-34.
    [57]Hogan BL.Bone morphogenetic proteins:multifunctional regulators of vertebrate development[J]. Genes Dev.1996;10(13):1580-94.
    [58]Thompson DL, Gerlach-Bank LM, Barald KF, et al.Retinoic acid repression of bone morphogenetic protein 4 in inner ear development[J]. Mol Cell Biol. 2003;23(7):2277-86.
    [1]Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000[J]. Int J Cancer.2001;94(2):153-6.
    [2]张胜年.上海市慢性非传染性疾病流行特征预防对策[J].卫生研 究,2001,31(suppl):1-3.
    [3]Borner MM. Neoadjuvant chemotherapy for unresectable liver metastases of colorectal cancer--too good to be true? [J] Ann Oncol.1999;10(6):623-6.
    [4]Ruers T, Bleichrodt RP.Treatment of liver metastases, an update on the possibilities and results[J]. Eur J Cancer.2002;38(7):1023-33.
    [5]Hahn SA, Schute M, Hoque AT, et al. Dpc4 a candidate tumor supppressor gene at human chromosome 18q21.1[J]. Science,1996,271(5247):350-353.
    [6]Millet C, Zhang YE. Roles of Smad3 in TGF-beta signaling during carcinogenesis[J]. Crit Rev Eukaryot Gene Expr.2007; 17(4):281-93.
    [7]Sugai T, Habano W, Nakamura S, et al. Allelic losses of 17p,5q and 18q loci in diploid and aneuploid populations of multiploid colorectal carcinomas [J]. Hum Pathol, 2000,31(8):925-930.
    [8]Moskaluk CA, Hruban RH, Schutte M., et al. Genomic sequencing of Dpc4 in the analysis of fancilial pancreatic carcinoma[J]. Diagost Mol Pathol,1997,6(2):85-90.
    [9]Duff EK, Clarke AR.Smad4 (DPC4)--a potent tumour suppressor? [J] Br J Cancer. 1998;78(12):1615-9.
    [10]李鹏程,张虹,丁正平,等.TGF-βR Ⅱ和Smad4蛋白在葡萄膜黑色素瘤中的表达[J].肿瘤防治研究,2005,32(1):35-36.
    [11]伍石华,彭雅玲,王化修,等.甲状腺癌组织中Smad4蛋白表达变化及意义[J].山东医药,2008,48(24):15-16.
    [12]Attisano L, Wrana JL. Smads as transcriptional co-modulators[J]. Curr Opin Cell Biol.2000;12(2):235-43.
    [13]Sekelsky JJ, Newfeld SJ, Raftery LA, et al.Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster[J]. Genetics.1995; 139(3):1347-58.
    [14]Massague J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system[J]. EMBO J.2000;19(8):1745-54.
    [15]de Caestecker MP, Hemmati P, Larisch-Bloch S, et al. Characterization of functional domains within Smad4/DPC4[J]. J Biol Chem.1997;272(21):13690-6.
    [16]Jones JB, Kern SE. Functional mapping of the MH1 DNA-binding domain of DPC4/SMAD4[J]. Nucleic Acids Res.2000;28(12):2363-8.
    [17]Greenwald J, Groppe J, Gray P, et al.The BMP7/ActRⅡ extracellular domain complex provides new insights into the cooperative nature of receptor assembly [J]. Mol Cell.2003;11(3):605-17.
    [18]Huse M, Muir TW, Xu L, et al.The TGF beta receptor activation process:an inhibitor- to substrate-binding switch[J]. Mol Cell.2001;8(3):671-82.
    [19]Yue J, Mulder KM.Transforming growth factor-beta signal transduction in epithelial cells[J]. Pharmacol Ther.2001;91 (1):1-34.
    [20]Kirsch T, Sebald W, Dreyer MK. Crystal structure of the BMP-2-BRIA ectodomain complex[J]. Nat Struct Biol.2000;7(6):492-6.
    [21]Derynck R, Zhang YE.Smad-dependent and Smad-independent pathways in TGF-beta family signalling[J]. Nature.2003;425(6958):577-84.
    [22]Wieser R. The transforming growth factor-[beta] signaling pathway in tumorigenesis[J]. Current Opinion in Oncology,2001,13(1):70-77
    [23]Gong J, Ammanamanchi S, Ko TC, et al.Transforming growth factor beta 1 increases the stability of p21/WAF1/CIP1 protein and inhibits CDK2 kinase activity in human colon carcinoma FET cells[J]. Cancer Res.2003;63(12):3340-6.
    [24]Maehara Y, Kakeji Y, Kabashima A, et al. Role of transforming growth factor-beta 1 in invasion and metastasis in gastric carcinoma[J]. J Clin Oncol.1999;17(2):607-14.
    [25]Robson H, Anderson E, James RD, et al..Transforming growth factor beta 1 expression in human colorectal tumours:an independent prognostic marker in a subgroup of poor prognosis patients[J]. Br J Cancer.1996;74(5):753-8.
    [26]Guzinska-Ustymowicz K, Kemona A.Transforming growth factor beta can be a parameter of aggressiveness of pTl colorectal cancer[J]. World J Gastroenterol. 2005;11(8):1193-5.
    [27]Nishanian TG, Kim JS, Foxworth A, et al. Suppression of tumorigenesis and activation of wnt signaling by bone morphogenetic protein 4 in human cancer cells[J]. Cancer Biolo Ther.2004,3(7):667-75
    [28]Schiller M, Verrecchia F, Mauviel A. Cyclic adenosine 3',5'-monophosphate-elevating agents inhibit transforming growth factor-beta-induced SMAD3/4-dependent transcription via a protein kinase A-dependent mechanism[J]. Oncogene.2003; 22(55):8881-90.
    [29]Cuschieri J.Maier RV. Mitogen-activated protein kinase(MAPK) [J]. Critical Care Medicine.2005; (12) S417-S419
    [30]Dupont J, McNeilly J, Vaiman A, et al. Activin signaling pathways in ovine pituitary and LbetaT2 gonadotrope cells[J]. Biol Reprod.2003; 68(5):1877-87.
    [31]郑林,许伟青,姜叙诚等.结肠癌组织中TGFβ1及其Ⅱ型受体和Smad4蛋白的表达[J].上海交通大学学报(医学版).2006,26(2):146-150.
    [32]Montgomery E, Goggins M, Zhou S, et al.Nuclear localization of Dpc4 (Madh4, Smad4) in colorectal carcinomas and relation to mismatch repair/transforming growth factor-beta receptor defects[J]. Am J Pathol.2001;158(2):537-42.
    [33]Wilentz RE, Su GH, Dai JL, et al.Immunohistochemical labeling for dpc4 mirrors genetic status in pancreatic adenocarcinomas:a new marker of DPC4 inactivation[J]. Am J Pathol.2000;156(1):37-43.
    [34]Schwarte-Waldhoff I, Volpert OV, Bouck NP, et al.Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis[J]. Proc Natl Acad Sci U S A. 2000;97(17):9624-9.
    [35]Schwarte-Waldhoff I, Schmiegel W.Smad4 transcriptional pathways and angiogenesis[J]. Int J Gastrointest Cancer.2002;31(1-3):47-59.
    [36]Peng B, Fleming JB, Breslin T, et al.Suppression of tumorigenesis and induction of p15(ink4b) by Smad4/DPC4 in human pancreatic cancer cells[J]. Clin Cancer Res. 2002;8(11):3628-38.
    [37]Chen WB, Lenschow W, Tiede K,, et al.Smad4/DPC4-dependent regulation of biglycan gene expression by transforming growth factor-beta in pancreatic tumor cells[J]. J Biol Chem.2002;277(39):36118-28
    [38]Jang CW, Chen CH, Chen CC, et al.TGF-beta induces apoptosis through Smad-mediated expression of DAP-kinase[J]. Nat Cell Biol.2002; 4(1):51-8.
    [39]Hunt KK, FlemingJB, Abramian A, et al. Overexpression of the tumor suppressor gene Smad4/DPC4 induces p21wafl expression and growth inhibition in human carcinoma cells[J]. Cancer Res,1998,58(24):5656-5661.
    [40]柳洋,文继舫,李景和等.DPC4基因转染对结肠癌细胞生长的抑制作用及其作用机制[J].中华病理学杂志,2004,33(3):247-250.
    [41]Grau AM, Zhang L, Wang W, et al. Induction of p21wafl expression and growth inhibition by transforming growth factor beta involve the tumor suppressor gene DPC4 in human pancreatic adenocarcinoma cells[J]. Cancer Res.1997; 57(18): 3929-34.
    [42]Kroll J, Waltenberger J. [Regulation of the endothelial function and angiogenesis by vascular endothelial growth factor-A (VEGF-A)] [J]. Z Kardiol.2000; 89(3): 206-18.
    [43]罗庚求,李景和,文继舫,等.DPC4基因转染结肠癌细胞对VEGF表达的影响[J].临床与实验病理学杂志,2003,19(6):626-629.
    [44]Im SA, Kim JS, Gomez-Manzano C, et al. Inhibition of breast cancer growth in vivo by antiangiogenesis gene therapy with adenovirus-mediated antisense-VEGF[J]. Br J Cancer.2001;84(9):1252-7.
    [45]Zawel L, Dai JL, Buckhaults P, et al.Human Smad3 and Smad4 are sequence-specific transcription activators[J]. Mol Cell.1998;1(4):611-7.
    [46]Dennler S, Itoh S, Vivien D, et al.Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene[J]. EMBO J.1998;17(11):3091-100.
    [47]Labbe E, Silvestri C, Hoodless PA, et al.Smad2 and Smad3 positively and negatively regulate TGF beta-dependent transcription through the forkhead DNA-binding protein FAST2[J]. Mol Cell.1998;2(1):109-20.
    [48]Nicole Muller, Anke Reinacher-Schick, Stephan Baldus, et al. Smad4 induces the tumor suppressor E-cadherin and P-cadherin in colon carcinoma cells[J]. Oncogene, 2002,21:6049-6058.
    [49]Rangan G, Wang Y, Harris D. NF-kappaB signalling in chronic kidney disease[J]. Front Biosci.2009;14:3496-522.
    [50]Baud V, Jacque E.[The alternative NF-kB activation pathway and cancer:friend or foe?][Article in French] [J]. Med Sci (Paris).2008;24(12):1083-8.
    [51]Royuela M, Rodriguez-Berriguete G, Fraile B, et al.TNF-alpha/IL-1/NF-kappaB transduction pathway in human cancer prostate[J].Histol Histopathol.2008; 23(10): 1279-90.
    [52]刘国红,王波.NF-KB抑制剂二硫代氨基甲酸吡咯烷提高卵巢癌细胞顺铂化疗的敏感性[J].中国肿瘤生物治疗杂志.2008;15(4):356-360
    [53]冷爱民Smad4与Smad7在胃癌组织中的表达及作用机制研究,[博士论文]湖南,中南大学,2008
    [54]刘变英,孙安乐,潘胜武,等.大肠癌的相关基因表达和早期诊断意义[J].世界华人消化杂志.2000;8(特刊8):43c
    [55]李小安,房殿春,杨柳芹,等.TRAIL对结肠癌细胞株SW480的细胞毒作用[J].世界华人消化杂志2003;11(3):298-301
    [56]刘占奎,张超.TK基因治疗胃肠道肿瘤的研究进展[J].世界华人消化杂志2003;11(7):1064-1067
    [57]Boulay J L, Mild G, Lowy A, et al. SMAD4 is a predictive marker for 5-fluorouracil-based chemotherapy in patients with colorectal cancer[J]. British Journal of Cancer.2002; 87(6),630-634.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700