苦荞蛋白模拟消化产物的抗氧化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苦荞具有很高的营养价值和药用价值。苦荞类黄酮和蛋白质是其最主要的生物活性成分,赋予荞麦抗氧化、降血糖、降血脂和抗肿瘤等多种生理功能。近年来对苦荞蛋白的研究结果表明苦荞蛋白质拥有:降低人体血液胆固醇、抑制脂肪蓄积,促进肌肉增长、抑制胆结石的形成等生理功能,使得苦荞蛋白质越来越受到重视。但其经人体消化后的活性状况变化未见报道。为此本文以苦荞面粉为原料,采用碱萃取工艺提取苦荞蛋白,并对影响其溶解性和乳化性的因素进行了分析,同时模拟体外消化过程及吸收过程,研究苦荞蛋白质消化后产生的组成、活性状况及其吸收特性。主要结论如下:
     1.苦荞蛋白质碱萃取过程中pH值为主要影响因素,此外pH值和料液比的交互作用以及温度和料液比的交互作用对萃取过程也有显著影响。对碱萃取工艺分析,得到回归模型:Y=-1980.08+408.85X_1-1.93X_2+17.23X_3-2.60X_1X_3+0.13X_2X_3-18.52X_1~2,提取最佳条件为:pH值10.0,提取温度50℃,料液比1:10,在此条件下苦荞蛋白质得率为138.8±4.16g·kg~(-1)。最佳酸沉淀pH值为4.2。
     2. pH、温度和离子强度对其溶解性和乳化性等功能特性有着不同影响。远离等电点的pH值使苦荞蛋白质产生的静电斥力,增加其溶解性和乳化性;低离子强度(<0.5%)的盐溶作用能不同程度的改善苦荞蛋白质的溶解性和乳化性;高离子强度(>0.5)降低其溶解性和乳化性。
     3.苦荞蛋白质经模拟消化过程10小时时产生多对?OH清除率、DPPH清除率、大鼠肝脂质过氧化抑制率和大鼠H_2O_2诱导红细胞溶血抑制率达到最高,O2~(-·)清除率及总还原能力在10小时时都有较理想效果,但在11小时时含量降低,氨基态氮含量升高,各抗氧化指标都有显著下降趋势。
     4.葡聚糖凝胶G-25与G-15串联柱对荞麦多模拟消化过程10小时所产生多进行分离,分离出5个组分分子量分别为:峰Ⅰ,5100 Da~5200Da;峰Ⅱ,2700 Da~2800 Da;峰Ⅲ,1300 Da~1400 Da;峰Ⅳ,870 Da~970 Da;峰Ⅴ,570 Da~670Da。其中第4个组分对大鼠肝脂质过氧化抑制率和红细胞溶血抑制率表现出很强的活性,IC50分别0.056mg·mL~(-1)和0.13 mg·mL~(-1),其分子量为870 Da~970 Da。
     5.利用模拟消化过程不同时间下H2O2诱导大鼠红细胞氧化溶血抑制率与动力学模型所求得的水解度进行非线性回归分析,结果发现单变量抛物线模型决定系数最高(R2=0.9935)。将动力学模型代入相关模型中,最终得到以酶用量(E0)、底物浓度(S0)和消化时间(t)为自变量,抗氧化活性为因变量的相关模型。模型如下:模拟胃消化过程:y= 0. 792- 0.05·{0.189·Ln[1+(0.0169·E_0/S_0-0.0919)·t]-3.333}~2模拟肠消化过程: y=0. 792- 0.05·{1.28·[1+(0.002290E_0/S_0-0.0101)·(t-t_0)]-3.333}~2式中:E_0为初始酶添加量(U/mL);S0为初始底物浓度(g/mL);t为总消化时间(h);t0为胃消化时间(h)。
     模型可预测范围为胃消化过程1~8小时;肠消化过程1~8小时。对最终相关模型进行验证,结果表明相关模型所得预测值与试验实测值比较偏差较小,方程拟和度良好,模拟消化抗氧化相关模型能够较好的预测模拟消化过程抗氧化指标变化。
     6.苦荞蛋白质经模拟人体消化可得到血管紧张素转运酶(Angiotensin I-Converting Enzyme, ACE)抑制活性,肠消化过程是ACE抑制活性产生的主要过程。在模拟消化过程10小时时,ACE抑制活性最强。荞麦蛋白模拟消化所得多分子量范围在870-970Da有最强的ACE抑制活性。经大鼠离体肠道吸收试验表明,回肠是ACE抑制活性最佳吸收部位,经消化后所产生的多分子量为1300 Da~1400 Da,870 Da~970 Da,570 Da~670Da可被大鼠离体小肠吸收。
Tartary buckwheat, a traditional Asian food stuff, is said to be one of the candidates responsible for beneficial health effects. The main active component are the tartary buckwheat flavone and protein. They are endowed with various physiological activity, for example, antioxidant activity, hypoglycemic activity, reducing blood lipid activity, antitumor activity, et al. The tartary buckwheat protein has many physiological activity as follows: lower the cholesterol in human blood, inhibit lipid accumulation, promote muscle growth, inhibit cholelithiasis formation, et al. But there lack of researching on the physiological activity after degistion. The tartary buckwheat protein was extracted from the tartary buckwheat flour, and it was digested by simulating gastrointestinal digestion, and then the antioxidation activity and the ACE-inhibitory properties was determined, the absorption was also determined by perfusing of isolated small intestine in rats. The main results was showed as follow:
     1. The pH value was the main influence factor of the alkali extraction of the tartary buckwheat protein. It was the significant effect that the interaction of the pH value and the solid-liquid ratio during the alkali extraction. The model was obtained by analysising on the alkali extraction,it was as follow: Y=-1980.08+408.85X_1-1.93X_2+17.23X_3-2.60X_1X_3+0.13X_2X_3-18.52X_1~2. The optimum conditions of the alkali extraction technology were obtained as follows: pH value 10.0, temperature 50℃, the ratio of material to solvent 1:10. At the optimized condition, the extraction yield of was 138.8g/kg. The best pH value of acid precipitation was 4.2.
     2. The solubility of tartary buckwheat protein was the lowest around isoelectric point, and the solubility increased with the increase of low ion concentration. Effects of pH and ion concentrations on concentration on emulsibility were similar to those effects on solubility. The higher the concentration of tartary buckwheat protein the better of its emulsibility.
     3. The clearance rate of·OH, DPPH and the inhibition rate of lipid peroxidation and red blood hemolysis reached the maximum at the 10 hour of the process of the tartary buckwheat protein by simulating gastrointestinal digestion. The clearance rate of O_2~(·) and the total reduction ability also get the ideal effect at the time point. But the six indexes of the antioxidation activity decreased significantly at the 11 hour of the process of the tartary buckwheat protein by simulating gastrointestinal digestion, dure to the peptides content decreased.
     4. The digestive production of the 10 hour of the process of the tartary buckwheat protein by simulating gastrointestinal digestion was separated by gel filtration chromatography on series connection of Sephadex G-25 and Sephadex G-15. Five major peptide fractions were present, and were estimated to be 5100-5200, 2700-2800, 1300-1400, 870-970 and 570-670 Da. Peak 4 possessed the strongest inhibition rate of lipid peroxidation and red blood hemolysis (IC50=0.056mg·mL~(-1) and 0.13 mg·mL~(-1)). The molecular weight was estimated to be 870 Da~970 Da.
     5. the nonlinear regression analyses the inhibition rate of red blood hemolysis and dynamic model of simulating gastrointestinal digestion. The single variable parabola model has the best coefficient of determination(R2=0.9935). And then the antioxidation activity model was obtained as follow:
     The process of simulating gastric digestion y= 0. 792- 0.05·{0.189·Ln[1+(0.0169·E_0/S_0-0.0919)·t]-3.333}~2The process of simulating intestinal digestion: y=0. 792- 0.05·{1.28·[1+(0.002290E_0/S_0-0.0101)·(t-t_0)]-3.333}~2the letters of the model as follow: E_0: addition of initial enzyme(U/mL);S0: initial substrate concentration(g/mL);t: total digestion time(h);t0: gastric digestion time(h).
     6. Buckwheat protein has the high ACE inhibitory activity via simulating gastrointestinal digestion. The process of simulating intestinal digestion was the main process of production of ACE inhibitory activity peptides. The buckwheat peptides with Mr 870-970 possessed the strongest ACE inhibitory activity, and the IC50 is 0.07mg/mL. The peptides with molecular weight at 1300 Da~1400 Da, 870 Da~970 Da, 570 Da~670Da can be absorbed by IIR, and the best absorb part was the ileum.
引文
[1] Zhou Xiao-li, et al. Review on Characteristic and Food Satety of Buckwheat[J]. Food Science, 2004, 25(10): 426-430.
    [2]武素平.大有发展前途的苦荞麦保健食品.营养卫生, 1999: 25-26.
    [3]王红育,李颖.荞麦的研究现状及应用前景.食品科学, 2004, 25(10): 388-391.
    [4]朗桂常.苦荞买的营养价值及其开发价值[J].中国粮油学报,1996,(3):9-14.
    [5] Javornik B,Eggum B,Kreft I.Studies on protein fractions and protein quality of buckwheat[J]. Genetika,1981,13:115-121.
    [6] Pomeranz, Y. Buckwheat: structure, composition, and utilization[J]. Critical Reviews in Food Science Nutrition, 1983, 19: 213-258.
    [7]李丹,丁霄霖.荞麦生物活性成分的研究进展———荞麦蛋白质的结构、功能及食品利用(1)[J].西部粮油科技, 2000, 25(5): 30-33.
    [8]魏益民,张国权.同源四倍体荞麦籽粒品质性状研究[J].中国农业科学, 1995, 28(增刊): 34-40.
    [9] Feliciano P. Bejosano, Harold Corke. Properties of protein concentrates and hydrolysates from Amaranthus and Buckwheat[J]. Industrial Crops and Products, 1999, 10: 175-183.
    [10] Kayashita J, Shimaoka I, Nakajoh M. Hypocholesterolemic effect of buckwheat protein extract in rats fed cholesterol enrich diets[J]. Nutr Res, 1995, 15: 691-698.
    [11] Kayashita. Consumption of buckwheat protein lowers plasma cholesterol and raises fecal neutral sterols in cholesterol of its low digestibility[J]. The Journal of Nutrition, 1997, 127: 1395-1400.
    [12] Hiroyuki Tomotake. A Buckwheat Protein Product Suppresses Gallstone Formation and Plasma Cholesterol More Strongly than Soy Protein Isolate in Hamsters[J]. Nutr., 2000, 130(7): 1670-1674.
    [13]Kayashita, J., Shimaoka, I.. Muscle hypertrophy in rats fed on a buckwheat protein extract[J]. Biosci.Biotechnol. Biochem, 1999, 63(7): 1242-1245.
    [14]Oka T., Ohwada K.. Arginine-enriched solution induces a marked increase in muscle glutamine concentration and enhances muscle protein synthesis in tumor-bearing rats.[J]. Parenter. Enteral Nutr., 1994, 18: 491-496.
    [15]Kayashita, J., Shimaoka, I., Nakajoh, M., et al. Consumption of a buckwheat protein extract retards 7,12-dimethylbenzanthracene-induced mammary carcinogenesis in rats[J]. Biosci. Biotechnol. Bio-chem, 1999, 63: 1837-1839.
    [16]Kayashita. Feeding of buckwheat protein extract reduces hepatic triglyceride concentration, adipose tissue weight, and hepatic lipogenesis in rats[J]. The Journal of Nutrition Biochemistry, 1996, 7(10): 555-559.
    [17]张政.苦荞蛋白复合物的营养成分及其抗衰老作用的研究[J].营养学报, 1999, 21(2): 159-162.
    [18] Zhihe Liu, Wakako Ishikawa, Xuxin Huang, et al. A Buckwheat Protein Product Sup presses 1,2-Dimethylhydrazine Induced Colon Carcinogenesis in Rats by Reducing Cell Proliferation[J]. The Journal of Nutrition, 2001,131 (6): 1850-1853.
    [19]Choi H S, Sohn K Y. The study on emulsifying and foaming properties of buckwheat protein isolate[J]. Journal of Korean Society of Food Science, 1995, 9(1): 43-51.
    [20]Zheng. G H, Sosulski F W, Tyler R T. Wet-milling, composition and functional properties of starch and protein isolated from Buckwheat groats[J]. Food Research International, 1998, 30(7): 493-502.
    [21]Tomotake H,Shimaoka I,Kayashita J,et al.Physicochemical and Functional Properties of Buckwheat Protein Product[J]. Agric Food Chem, 2002, 50: 2125-2129.
    [22]陶健.荞麦蛋白的功能特性研究[J].中国粮油学报, 2005, 20(5): 46-50.
    [23] IKEDA,K., ARIOKA, K., FUJII, S.,et al.. Effect on B uckwheat protein quality of seed Germination and changes in Trypsin Inhibitor content[J]. C ereal Chemistry. 1984, 61(3): 236-238.
    [24]Ikeda, k., Kusano, T.. Isolation and some properties of a Trypsin Inhibitor from Buckwheat Grain [J]. Agric Biol Chem. 1978, 42(2): 309-314.
    [25]Ikeda, k. and Kusano T.. Purification and properties of Trypsin Inhibitors from Buckwheat Seed[ J]. Agric. Biol. Chem. 1983, 47(7): 1481-1486.
    [26]李俊安.苦荞胰蛋白酶抑制剂的纯化及特性研究[J].生物化学杂志. 1991, 7 (4): 385-389.
    [27]张政,王转花,林汝法等.苦荞胰蛋白酶抑制剂分离纯化及部分性质研究[J].中国生物化学与分子生物学报,1999,15(2): 2 47-251.
    [28]Knuckles, b. e., Kuzmicky, D. D. and Betschart, A. A.. Efect of phytate and partially hydrolyzed phytate on in vitro protein digestibility. J. Food Sci. 1985, 50: 1090-108.
    [29]Acton, J. C., Breyer, L. And Satterlee, L. D.. Efect of dietary fiber constituents on the in vitor digestibility of casein. J. Food Sci. 1982, 47: 556-560.
    [30]Ikeda,K. and Kusano, T.. In vitor inhibition of digestive enzymes by indigestible polysaccharides[J]. Cereal Chem. 1983, 60: 260-262.
    [31]Ikeda, K., Oku, M., Kusano, T., et al.. In hibitory potency of plant antinutrients towards the in virto digestibility of buckwheat protein. J. Food Sci. 1986, 51: 1527-1530.
    [32]辛力.苦荞麦的性质研究及其产品研制[D].硕士学位论文,中国农业大学: 1999).
    [33]徐宝才,丁霄霖.荞麦抗营养素的研究进展团粮食与饲料工业[J], 2001, (7): 39-41).
    [34]Sewald N, Jakubke HD. 2002. Peptides: chemistry and biology. Weinheim, G ermany: Wiley-Vch. Verlag GmbH. p562.
    [35]Korhonen H, Pihlanto A. 2003. Food-derived bioactive peptides-opportunities for designing future foods. Curt. Pharm. Des. 9(16): 1297-308.
    [36]Mellander O. 1950. The physiological importance of the casein phosphopeptide calcium salts.Ⅱ. Peroral ca lcium dosage of infants. Acta. Soc. Med. Uppsala. 55 (5-6): 247-55.
    [37]Ahn SW, Kim KM, Yu KW, Noh DO, Suh HJ. 2000. Isolation of angiotensinⅠconverting enzyme inhibitory peptide from soybean hydrolysate. Food Sci. Biotechnol. 9: 378-81.
    [38]Gobbeti M, Stepaniak L, De Angelis M, Corseti A, Di Cagno R. 2002. Latent bioactive peptides in milk proteins: proteolytic activation and significance in dairy processing. Crit. Rev. Food Sci. N utr. 42(3):223-39.
    [39]Rhyu MR, Kim EY, Han JS. 2002. Antihypertensive effect of the soybean paste fermented with the fungus Monascus. Int. J. Food Sci. Technol. 37: 585-8.
    [40] Clare DA, Catignani GL, Swaisgood HE. 2003. Biodefense properties of milk: the role of antimicrobial proteins and peptides. Curr. Ph arm. Des. 9(16): 1239-55.
    [41]Kitts DD, Weiler K. 2003. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curt. Pharm. Des. 9(16): 1309-1323.
    [42]Korhonen H, Pihlanto A. 2003. Food-derived bioactive peptides-opportunities for designing future foods. Curt. Pharm. Des. 9(16): 1297-308.
    [43]Jeong HJ. Lam Y, de Lumen BO. 2002. Barley lunasin suppresses ras-induced colony formation and inhibits core histone acetylation in mammalian cells. J. Agric. Food Chem. 50 (21):5903-8.
    [44]Floris R, Recio I, Berkhout B, Visser S. 2003. Antibacterial and antiviral effects of milk proteins and derivatives thereof. Curr. Pharm. Des. 9(16): 1257-75.
    [45]Matsui T Matsufuji H, Seki E, Osajima K, Nakashima M, Osajima Y. 1993. Inhibition of angiotensinⅠ-converting enzyme by Bacillus-licheniformis alkaline protease hydrolyzates derived from sardine muscle. Biosci. Biotechnol. Biochem. 57 (6): 922-5.
    [46]Li LT, Wang LJ, Li ZG., Tatsumi E. 2002. Effects of heat denaturation of soybean protein on tofu-gel. Journal of the Chinese Cereals and Oils Association. 17(1): 1-4( in Chinese).
    [47]Yoshikawa M, Takahashi M, Yang S. 2003. Delta opioid peptides derived from plant proteins. Curt. Pharm. Des. 9(16): 1325-30.
    [48]林煌映.小吸收机制研究进展[J].畜牧市场, 2005, 8: 76.
    [49]黎观红,乐国伟,施用晖.动物蛋白质营养中小的吸收及其生理作用[J].生物科学通报, 2004, 39(1): 20.
    [50]Grimble G K, Silk D B A. Peptides in human nutrition[J]. Nutr Res Rev, 1989, 2: 87.
    [51]林汝法等. 2001.苦荞提取物对大小鼠血糖、血脂的调节.华北农学报,16(1): 122-126.
    [52]CHUNHUI LI et al. 2002. Latent Production of AngiotensinⅠ-Converting Enzyme Inhibitors from Buckwheat Portein[J]. Jounral of Peptides Science. 8: 267-274.
    [53]林汝法等. 2004.酶法水解苦荞鼓皮蛋白生产降血压.食品科学, 25 (11): 207-209.
    [54]金肇熙等. 2004.苦养加工利用新技术研究[J].食品科学, 25 (11): 348-350.
    [55]Rice Evans C. Miller N J. The relative anthioxidant activities of plant derived ployphenloic flavonoids[J]. Free radical Res, 1995, 22: 375-383.
    [56]刘莉华,宛晓春,李大样.黄酮类化合物抗氧化活性构效关系的研究进展[J].安徽农业大学学报,2002, 29(3): 265-270.
    [57]方允中,郑荣梁主编.自由基生物学的理论与应用[M].北京:科学出版社, 2002, 133-138.
    [58]Cushman D W, Ondetti M A. Design of angitotensin converting enzyme inhibitors[J]. Nature Medicine, 1999, 5: 1110-1112.
    [59]王海燕,张佳程.食品降血压的比较与评价方法[J].食品与发酵工业, 2001, 27(10):67-70.
    [60]Maruyamas S, Suzuki H. Apeptide inhibitor of agiotensinI Converting enzyme in the tryptic hydrilysis of casein[J]. Agric Biol Chem, 1982, 46: 1393.
    [61]Masuda O, et al. Antihypertensive peptides are persent in anta after oral administration of sour milk containing these peptides to spontaneously hypertensive rats[J]. J Nutr, 1996, 126: 3063-3068.
    [62]赵海珍,陆兆新,刘战民.天然食品来源的血管紧张素转换酶抑制的研究进展[J].中国生化药物杂志, 2004, 25: 315-317.
    [63]Mito K, Fujii M, Kuwahara M, et al. Antihypertensive effect of angiotensinIconverting enzyme inhibitory peptides derived from hemoglobin[J]. European Journal of Phamacology, 1996, 304: 93-98.
    [64]Matusfuji H, Matsui T. AngiotensinIconverting enzyme inhibitory peptides in an alkaline protease hydrolyzate derived from sardine mascle[J]. Bio Sci, 1994, 58: 2244-2245.
    [65]Pihlanto Leppala A, Rokka T, Korhonen H. AngiotensinIconverting enzyme inhibitory peptides derived from bovine milk protein[J]. Int. Dairy Journal, 1998, 8: 325-331.
    [66]Miyoshi S, Ishukawa H, Kabeko T, et al. Structures and activity of angiotensin converting enzyme inanα-zein hydrolyzate[J]. Agchem, 1991, 55: 1318-1319.
    [67]Yoshiyukin H, Hanagata E, et al. Angiotensin converting enzyme inhibitory activities of various fermented foods[J]. Bio Sci, 1995, 59: 1147-1149.
    [68]Ekmekcioglu. Cintestinal bioavailability of minerals and trace elements from milk and beverages in humans[J]. Nahrung, 2000, 44: 390-307.
    [69]Narasinga Rao B S, Prabhavathi T. An in vitro method for predicting the bioavailablity of iron from foods[J]. Am J Clin. Nutr, 1978, 31: 169-175.
    [70]Wolters M G, Schreuder H A, van den Heuvel G, et al. A continuous in vitro method for estimation of the bioavailability of minerals and trace elements in foods: application to breads carrying in phytic acid content[J]. Br. J Nutr, 2003, 69: 849-861.
    [71]Glahn R P, Wien E M, Van Campen, et al. CaCO2 cell iron uptake from meat and casein digests parallels in vito studies: use of a novel in vitro method for rapid estimation of iron bioavailability[J]. J Nutr, 1996, 126: 332-339.
    [72]Ekmekcioglu C, Pomazal K, Steffan I, et al. Calcium transport from mineral waters across CaCO2 cells[J]. J Agric Food Chem, 1999, 47: 2594-2599.
    [73]Feldman M, Cryer B, Mc Arthur K E, et al. Effects of aging and gastritis on gastric acid and pepsin secretion in humans: aprospective study[J]. Gastroenterology, 1996, 110: 1043-1052.
    [74]Tougas G, Eaker E Y, Abell T L, et al. Assessment of gastric emptying using a low fat meal: establishment of international control values[J]. Am J Gastroenterol, 2000, 95: 1456-1462.
    [75]Robertson M D, Mathers J C. Gastric emptying rate of solids is reduced in a group of ileostomy patients[J]. Dig Dis Sci, 2000, 45: 1285-1292.
    [76]Lam W F, Gielkens H A, Coenraad M, et al. Effect of insulin and glucose on basal and cholecystokin in-stimulated exocrine pancreatic secretion in humans[J]. Pancreas, 1999, 18: 252-258.
    [77]Fallingborg J. Intraluminal pH of the human gastrointestinal tract[J], Dan Med Bull, 1999, 46: 183-196
    [78]Russell T L, Berardi R R, Barnett J L, et al. Upper gastrointestinal pH in seventy-nine healthy, elderly, North American men and women[J]. Pharm Res, 1993, 10: 187-196.
    [79]Ma T Y, Hollander D, Bhalla D, et al. IEC-18, anontransformed small intestinal cell line for studying epithelial permeability[J]. J Lab Clin Med, 1992, 120: 329-341.
    [80]Soergel K H. Showdown at the tight junction[J]. Gastroenerology, 1993, 105: 1247-1250.
    [81]Adson A Raub, T J Burton, P S Barsuhn, et al. Quantitative approaches to delineate paracellular diffusion in cultured epithelial cell monolayers[J]. J Pharm Sci, 1994, 83: 1529-1536.
    [82]赵锐,顾谦群,管华诗.多物质分离与分析方法研究进展[J],中国海洋药物,2000,(3):48-53.
    [83]苏拔贤.生物化学制备技术,第1版[M],北京:科学出版社,1986:6-22.
    [84]吴梧桐主编.生物制药工艺学[M],北京:中国医学科技出版社,1993: 290.
    [85]张晓楠,郭立安.超滤在蛋白质纯化中的应用[J].中国生化药物杂志,1999, 20(2):97-98.
    [86] Wen-Dee Chiang, Chieh-Jen Shih, Yan-Hwa Chu.Functional properties of soy protein hydrolysates produced from a continuous membrane reactor system [J]. Food Chem.1999, 65: 189-194.
    [87] F. W. David Deeslie, Munir Cheryan.Functional properties of soy protein hydrolysates from a continuous ultrafiltration reactor [J]. J. Agric. Food Chem.1988, 36:26-31.
    [88] N.D.Alvise, C. Lesueur-Lambert, B. Fertin.Hydrolysis and large scale ultrafiltration study of alfalfa protein concentrate enzymatic hydrolysate [J].Enzyme and Microbial Technology, 2000, 27:286-294.
    [89]赵永芳编.生物化学技术原理及其应用,第2版[M].武汉大学出版社,2000,122-155.
    [90]倪莉,陶冠军,戴军,等.血管紧张素转化酶活性抑制剂—丝素的分离、化和结构鉴定[J].色谱,2001, 19 (3): 222-225.
    [91] Jean-Marie Piot, Qiuyu Zhao, Didier Guillochon, et al. Isolation and characterization of two opiod peptides from a bovine hemoglobin peptic hydrolysate [J]. Biochemical and Biophysical Reaserch Communications, 1992, 189(1):101-110.
    [92]唐易全.化学研究中的高效液相色谱[J].色谱,1990, 8 (6) : 368-372.
    [93] K.霍斯泰特曼等著,赵维民等译,制备色谱技术在天然产物分离中的应用[M],北京:科学出版社,2000: 265-267.
    [94] Wilce MCJ, et a1.High performance liquid chromatography of amino acids, peptide and proteins. CV II .Analysis of group retention contributions for high performance liquid chromatography [J]. J Chromatogr, 1991, 536:165.
    [95] Henderson DE, Mello JA. Physicochemical studies of biologically active peptide by low temperature reverse phase high performance liquid chromatography [J].J Chromatogr, 1990, 499:79.
    [96] M.C.Hughes, et al.Proteolysis of bovine F-actin by Cathepsin B [J].Food Chemistry 1999, 64: 525-530.
    [97] S.S.Haileselassie, et al, Dairy food Purification and identification of potentially bioactive peptides from Enzyme-modified Cheese [J], J Dairy Sci., 1999, 82(2):1612-1617.
    [98] Petra W.J.R. Caessens, et al.β-Lactoglobulin Hydrolysis.l .Peptide composition and functional properties of hydrolysates obtained by the action of plasmin, Trypsin, and Staphylococcus aureus V8 protease [J]. J. Agric. Food Chem.1999, 47(8):2973-2979.
    [99] Petra W.J.R. Caessens, et al,β-Lactoglobulin Hydrolysis.2.Peptide Identification, SH/SS Exchange, and Functional properties of Hydrolysate Fractions formed by the action of plasmin [J]. J. Agric. Food Chem. 1999, 47 (8):2980-2990.
    [100]Hiroyuki Moriyama, et al, Rapid separation of peptides and proteins on 2μm porous microspherical reversed-phase silica material[J].Journal of Chromatography A, 1996, 729: 81-85.
    [101]T. Issaeva, et al, Super-high-speed liquid chromatography of proteins and peptides on non-porous Micra NPS-RP packings [J]. Journal of Chromatography A, 1999, 846:13-23.
    [102]崔洪斌主编.大豆生物活性物质的开发与应用,第1版[M].北京:中国轻工业出版社,2001,3 ,241.
    [103] Kayashita J, Shimaoka I, Kondoh M, et al. Muscle Hypertrophy in rats fed on a buckwheat protein extract [J]. Bioscience Biotechnology and Biochemistry, 1999, 63(7): 1242-1245.
    [104] Tomotake H, Shimaoka I, Kayashita J, et al. Physicochemical and functional properties of buckwheat protein product [J]. Journal of Agricultural and Food Chemistry, 2002, 50:2 125-2129.
    [105]黄伟坤主编.食品检验与分析[M].中国轻工业出版社1993:50-51.
    [106]黄晓钰,刘邻渭主编.食品化学综合实验[M].中国农业大学出版社2002:121-122.
    [107] Tang C H, Yang X Q, Chen Z, et al. Physicochemical and structural characteristics of sodium caseinate biopolymers induced by microbial transglutaminase [J]. Journal of Food Biochemistry, 2005, 29: 403-422.
    [108]米宏伟,唐传核,杨晓泉.加工工艺对荞麦蛋白功能特性的影响[J].食品与发酵工业,2006, 32(2):128-131.
    [109]杨春波,谢正军,金征宇.苜蓿蛋白质的提取及功能性研究[J].粮食与食品工业,2007, 14(4):25-29.
    [110] Owen R. Fennema.食品化学[M].王璋译(第三版),北京:中国轻工业出版社,2003:302- 328.
    [111]姚磊,朱秀清,许慧等.大豆乳清蛋白乳化性的研究[J].食品科技,2007,11:29-32.
    [112]张涛,江波,王璋.鹰嘴豆分离蛋白的乳化性及结构关系[J].食品与发酵工业,2004,12(2):10-14.
    [113]Clemente A. Enzymatic Protein Hydortysates in Human Nutrition[J].Trends Food Sci Technol,2000, 11:254-262.
    [114]刘先国.生理学[M].科学出版社,2003:214-248.
    [115]任大喜,郭鸰,霍贵成.体外模拟法研究生物利用率的影响因素[J].食品科技,2007,4:12-14.
    [116]Fallingborg J.. Intraluminal pH of the human gastrointestinaltract. Dan Med Bull,1999,46:183- 196.
    [117]Emma L., Hala M., Abdul W.. Gut instincts: Explorations in intestinal physiology and drug delivery. International Journal of Pharmaceutics, 2008,12:1-14.
    [118]徐怀德,殷金莲,陈沁.甲鱼酶解产物抗氧化功能的研究[J].中国食品学报, 2007, 7(4):25-32.
    [119]姜瞻梅,田波,吴刚等.酶解牛乳酪蛋白制备ACE抑制的研究[J].中国食品学报, 2007, 7(6):39-43.
    [120]范晓,严小军,房国明等.高分子量褐藻多酚抗氧化性质研究[J].水生生物学报,1999,23(5):494-499.
    [121]高春燕,田呈瑞.枸杞多糖体外抗氧化特性研究[J].粮食与油脂,2005,(7):28-29.
    [122]Lee Y L , Yen M T , Mau J L . Antioxidant properties of various extracts from Hypsizigus marmoreus[J]. Food chemistry, 2007,104(1):1-9.
    [123]Tsai S Y, Huang S J, Mau J L. Antioxidant properties of hot water extracts from Agrocybe cylindracea[J]. Food chemistry, 2006,98(4):670-677.
    [124]陈奇.中药药理研究方法学[M].第一版,北京:人民出版社,1993:941.
    [125]王官林,田兵,方宏筠等.芦荟抗氧化物质活性及对红细胞的保护作用[J].营养学报,2002,24(4):380-384.
    [126]郭晓娜,姚惠源,陈正行.苦荞蛋白质的低消化性研究Ⅱ——酶解产物的超微结构分析和分子量分布[J].食品科学2007,28(1):183-186.
    [127]任大喜,郭鸰,霍贵成.体外模拟法研究生物利用率的影响因素[J].食品科技,2007,4:12-14.
    [128] Marquez M C, Vazquez M A. Modeling of enzymatic protein hydrolysis [J]. Process Biochemistry, 1999, 35:111-117.
    [129] Fallingborg J.. Intraluminal pH of the human gastrointestinaltract. Dan Med Bull,1999,46:183- 196
    [130] Emma L., Hala M., Abdul W.. Gut instincts: Explorations in intestinal physiology and drug delivery. International Journal of Pharmaceutics, 2008,12:1-14.
    [131]Cushman D W, Ondetti M A. Design of angitotensin converting enzyme inhibitors[J]. Nature Medicine, 1999, 5: 1110-1112.
    [132]Kawasaki T, Itoh K, Ogaki T, Yoshimizu Y, Ghimire PK, Regmi P, et al. 1995. A study on the genesis of hypertension in mountain people habitually taking Tibetan tea and buckwheat in Nepal. J Health Sci. 17, 121-30.
    [133]Ari Yildizoglu-N, Altan VM, Altinkurt O, Ozturk Y. 2006. Pharmacological effects of rutin. Phytother Res. 5, 19-23.
    [134]Yusuke Ushida, Toshiro Matsui, Mitsuru Tanaka, Kiyoshi Matsumoto, Hirokazu Hosoyama, Atsuhiro Mitomi, Yuko Sagesaka, Takami Kakuda. 2008. Endothelium-dependent vasorelaxation effect of rutin-free tartary buckwheat extract in isolated rat thoracic aorta. Journal of Nutritional Biochemstry.19, 700-707.
    [135]Cushman D W, Cheung H S. Spectrophoto metric assay and properties of the angiotensin-converting enzyme of rabbit lung [J]. Biochem Pharmacol, 1971.20:1637-1648.
    [136] Michio Muguruma, Abdulatef M. Ahhmed, Kazunori Katayama, Satoshi Kawahara, Masugi Maruyama, Toyoo Nakamura. 2008. Identification of pro-drug type ACE inhibitory peptide sourced from porcine myosin B: Evaluation of its antihypertensive effects in vivo. Food Chemistry. 81, 124-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700