多自由度检测机器人控制系统开发与位姿误差补偿
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声无损检测技术在产品质量控制中有着举足轻重的作用,尤其是对具有复杂形面的曲面工件,提高检测的精度、效率和自动化程度,是超声检测研究的热点和重点问题。论文以“航空螺旋桨水浸超声自动检测系统”研发为背景课题,开发了基于PC和PMAC双CPU伺服控制系统为核心的机器人检测系统,结合相应的误差补偿和控制策略实现了超声检测的高精度自动化。系统利用增量式编码器实现全闭环位置控制和利用PAMC卡自带软件实现PID参数优化调节控制,并把自适应PID参数调整应用到系统中,实现伺服系统的精确控制;通过分析检测系统机械运动特性,利用摄动误差补偿法对机器人系统进行误差补偿,消除由于机械装配、加工等因素产生的误差对探头位姿的影响,提高整套检测系统的位置控制精度。
     第一章为绪论。本章首先介绍了论文的课题背景和研究意义,着重介绍了国内外对高精度超声检测机器人系统及误差补偿的研究情况;最后介绍了论文的主要研究内容和各个章节组织情况。
     第二章为检测机器人总体结构介绍。本章主要完成了对检测机器人机械结构介绍和机器人的动力驱动及机器人控制系统控制模式的选择。
     第三章为超声检测机器人控制系统开发。本章重点介绍了超声检测机器人数控系统的开发和研究,分析了系统软硬件的设计及其实现;对超声检测机器人系统的硬件结构和主要部件进行了说明,简单介绍了检测系统的软件子模块;最后介绍PMAC控制器的PID控制原理,重点分析PID参数的调节方法及优化,同时针对系统的需要应用了PID参数的自适应调整方法。
     第四章为超声检测机器人系统的运动学建模分析。首先介绍了机器人运动学建模的一般方法;然后以超声检测机器人为研究对象,分析机器人的结构原理,建立起运动学模型,根据实际空间区域及项目要求推导出运动学正解及逆解,为后章的机器人误差补偿提供理论依据。
     第五章为超声检测机器人系统位姿误差分析与补偿。本章首先分析了检测机器人误差来源,对由多种静态因素引起的机器人综合位姿误差补偿作了分析。应用摄动误差补偿法,即给机器人各连杆预加一个附加变量运动,使末端执行器相应做出微小的附加运动来抵消或减小机器人末端的实际运动误差,达到理想的定位精度。最后利用实验数据验证误差补偿方法的实用性和可行性。
     第六章为总结与展望。对全文工作进行了总体概括,总结了论文的不足之处,并对将来进一步工作做出展望。
Ultrasonic non-destructive inspection is important in products quality control. For the freeform surface parts, how to improve the precision, efficiency, the level of automation is a very important and pop problem in ultrasonic inspection. The paper is based on the project background which manufactures the Air propeller flooding automatic ultrasonic testing system. The servo control equipment based on double CPU of the IPC and the PMAC is the core of the robot system. Combined with the corresponding error compensation and control strategies, the robot system achieves the high-precision ultrasonic testing automation. The system uses the incremental encoder which realizes the closed-loop position control and the PMAC software which can adjust PID parameters adaptively. Both implement high-precision positioning of the servo system. By analyzing mechanical movement characteristics of the inspection system, we know some factors may affect the probe gesture, such as the mechanical assembly, the mechanical machining error, and so on. Given the negative direction of movement ahead of the schedule, the robot system can produce an additional movement which offers the actual error. Taking advantage of the way, the system can raise the position precision.
     In chapter one, this is the preface of this dissertation. The chapter firstly introduces the project background and research significance, and then highlights the study about the high-precision ultrasonic testing robot system and error compensation at home and abroad .In the end, the dissertation show major content and organization of the various chapters.
     In chapter two, this introduce the mechanical structure of the robot system. The section mainly achieves the explanation about the robot system' mechanical structure and the choice on the power-drive and robot control mode.
     In chapter three, this is the study and research of the ultrasonic testing robot system. The section focuses on exploitation of the ultrasonic testing robot CNC system, analyzing the design and implementation of the hardware and software. This chapter introduces the robot system hardware architecture and explains those main components. In the end, the section introduces the PMAC's PID control principle, the adjustment method and optimization about PID parameters. At the same time, we apply the PID adaptively adjustment method to meet the need.
     The chapter four introduces kinematics modeling method on robot system Firstly; the section introduces kinematics modeling method on robot system. After analyzing the robot structure theory, we establish the kinematical model of the ultrasonic testing robot system. Finally, according to the actual thing and need of the project, we gain the Forward Kinematics and inverse kinematics, which is the theoretical basis of the robot error compensation in chapter five.
     In chapter five, this is the error analysis and compensation of the ultrasonic inspecting robot system. This chapter analyzes the sources of error, Appling the perturbation error compensation method eliminates the error which was caused by some factors. We make every pole move additional variable ahead of schedule which makes tiny additional campaigns on the end of the robot.The additional campaigns can offset or reduce the actual error of the robot system. Finally, the experimental dates validates that error compensation method is practicalities and feasibilities.
     The chapter six is the Summary and Outlook .The section summarizes the retrospections and conclusions of this paper. At the same time, the future work suggestions were given.
引文
[1] 陈积懋.无损检测新技术20年回顾.无损检测,1998,20(7)
    [2] 冯若主编.超声手册.南京:南京大学出版社,1999.10
    [3] 张旭辉,马宏伟.超声无损检测技术的现状和发展趋热.机械制造,2002,40(7):24—26
    [4] 中国无损检测学会.无损检测概论.机械工业出版社,1993
    [5] 中国机械工程学会无损检测分会.超声波检测.北京:机械工业出版社,2000
    [6] 张俊哲等.无损检测技术及其应用.科学出版社,2003
    [7] 张伯鹏,张昆等.机器人工程基础.北京:机械工业出版社,1989
    [8] 耿荣生,新千年的无损检测技术—从罗马会议看无损检测技术的发展方向。无损检测 2001
    [9] 刘福顺、汤明著.无损检测基础,北京:北京航天大学出版社,2002
    [10] 魏娟,马宏伟.基于PC的超声自动扫描控制系统.组合机床与自动化技术,2001
    [11] 吴思源.曲面工件起声自动检测中若干关键技术研究 杭州:浙江大学博士论文,2006
    [12] 王艳颖 复杂形状工件测量、建模和超声检测一体化技术研究,杭州:浙工大学博士论文,2003
    [13] W. Haase, A. Maurer..Latest developments on industrial ultrasonic testing of aircraft components. Proceeding of the World Conference on Non-Destructive testing, 2004
    [14] WuDongmei, DuZhijing. A new robot-assisted orthopedic surgery simulation system. Journal of Harbin Institute of Technology Vol. 13, No. 3, 2006
    [15] F.S. Tan, L.N. Sun, W. B. Rong.. Modeling of micromanipulation robot in virtual environment Robotic reasearch Insttitute. Harbin institute of Technology, Harbin5001, china, 2004
    [16] M. M. Syrkin. Improving Stability of Scanning Mechanism for Automated Ultrasonic Tests, Rusian Journal ofNondestructive Testing, Vol. 38, No. 2, 2002
    [17] 陈继芳.航空锻件超声自动检测系统若干问题研究 杭州:浙江大学硕士研究生论文,2004
    [18] Wang. x.s, Tso. Path error compensation of a two-link flexible robot arm based on intergrated lasdt transducers. IEEE international conference 1997
    [19] 孙迪生.机器人控制技术.北京:机械工业出版社,1997
    [20] 黄家贤.机构精确度.第2版.西安:西安电子科技大学出版社,1994
    [21] 王庭树.机器人运动学及动力学.西安电子科技大学出版社,1990
    [22] 秦国华,张卫红.基于运动学方法的线性尺寸定位误差通用建模与分析.机械科学与技术,Vol.23.NO.11 2004
    [23] 杨超,胡澄.面各IC测试技术的精密运动平台的设计.机械工程,2006
    [24] 谭月胜,孙汉旭,肖爱平.模块化柔性臂空间机器人运动误差分析.机械设计,2004
    [25] 刘振明,潜伟建.水平机器人平面直航运动稳定性分析.舰艇工程,2004
    [26] 郑小武.两自由度机器人周期运动的倍周期分岔.西南交通大学学报,2006
    [27] 张淑芬,张彦斌,王彦生.机械系统运动稳定性分析的Routh-Hurwitz法.河南科技大学学报,Vol.25,No.2 2004
    [28] 赵国群,郑毅,孙胜,基于有限元技术的运动稳定性实时仿真分析.机械工程学报,2002
    [29] 余晓锷,康立丽,林木炎.CT机中诊视床运动精度的检测方法和结果.北京生物医学工程,2001
    [30] YANG Zhi-yong, ZHANG Da-wei..Research on Axial Trall of High-Speed GAS Painting Automizor. Transactions of Tianjin University
    [31] Younkoo Jeong, Yoon Kyong. Design and control of a wearable robot. Robot and Human Interactive Communication, 2001
    [32] Hanajima. n, Goto. T, Ohta. Y.A motion rule for human-friendly robots based on electrodermat activity investigations and its application to mobile robot. Intelligent and system, 2005, 2-6 Aug, 2005 page(s)3791-3797
    [33] Chen. j, Li-Ren. li. Path planning protocol for collaborative multi-robot systems. Computational intelligentce in Robotic and Automation, 2005
    [34] 雷勇涛,李大明.机器人运动稳定性分析.茂名学院学报,2006
    [35] 杨晓论,张炅.提高测控设备稳定性可靠性方法研究.导弹试验技术,2005
    [36] 鞠华,李剑,陈子辰.自由曲面的反求工程与快速成形技术.机电工程,2000
    [37] 何幼英,张金萍.凸轮反求系统的开发及重构精度的研究.昆明理工大学学报,Vol29,No.5,2004
    [38] 陈廉清,王龙山,王乔冠.基于NURBS自由曲面重构的精度分析.农业机械学报,第37卷第3期,2006
    [39] 金涛,匡继勇.产品反求模型的精度评价.机械制造,Vol.28,No.2,2001
    [40] 鄢波,颜国正,付西光.基于遗传算法的机器人末端位置补偿轨迹规划.振动、测试与诊断,Vol.25,No.2,2005
    [41] 周凤余,李贻斌,苏学成.高精度伺服控制系统位置检测单元的设计.电气传动,2000
    [42] 杨化书,曲新峰.工业机器人技术的应用及发展.黄河水利职业技术学院学报,2004
    [43] 王水林.工业机器人技术概述与前瞻,软件技术,Vol.23,No.4,2004
    [44] 田建君.机器人手臂位置控制系.液压与气动,2004
    [45] 路敦民,张立勤,董玉红.平面五杆机器人位置精度分析及仿真.机械设计,2005
    [46] 乐光学.数控机床位置精度分析与误差补偿技术.现代制造工程,2003
    [47] 宋刚,张蕾,胡德全.基于普通编码器的高精度位置检测方法.上海交通大学学报,Vol.37,No.5,2003
    [48] 陈虹,张超群,蔡鹤皋.工业机器人性能测试仪分辨率及位置精度的分析.机电工程,2000
    [49] 侯刚.机构从动件位置精度的评定.长春理工大学学报,Vol.27,No.3,2004
    [50] 刘曙英.浅淡测量精度计算及应用.计量与测试技术,2003,NO.6
    [51] 北京元茂兴控制设备技术有限公司.PMAC用户手册
    [52] 崔丽娟.减少累积误差提高测量精度.www.brick-title.com
    [53] 王辉,倪雁冰,孔德庆等.并联机床手轮功能的实现.中国机械工程,2005
    [54] Yoram Koren. Control of Machine Tools. Trantactions of the ASME, 2003
    [55] 陈明君,郭伟星,李旦 基于PMAC开放式数控系统的研究与应用新进展,航空精密制造,2005
    [56] 宓方伟,陈功福.PMAC多轴运动控制器应用研究.机床与液压,2004.No.12
    [57] 史爱峰,张生芳,盛贤君等.基于PMAC数控系统手轮脉冲跟随功能的实现 设计与研究。2004
    [58] 欧阳航空,陆林海,华蓝青.基于PMAC的精密定位系统研究.机电一体化,2005
    [59] Rainer Hagl.空心轴不带内置轴承的角度编码器研究.制造技术与机床,2003,NO.4
    [60] 赵海军,叶佩青.手轮脉冲驱动均匀化控制.机床与液压,2003
    [61] 朱学兵.PLC在数控机床手轮控制中的应用,电气自动化,1998
    [62] 周维虎,兰一兵.丁叔丹等.空间坐标转换技术的分析与研究,航空计测技术,1998,Vol19 No4
    [63] Yangsheng Xu, Au. SK-W. Stabilization and path following of a single wheel robot. Mechatronics, IEEE/ASME Transactions Vol9, lssue 2, 2004
    [64] Peasgood. M, Clark. c, Mcphee. j. Localization of multiple robots with simple sensors. Mechatronics and Automation, 2005 IEEE international Conterence Vol 2
    [65] PMAC user' s manual. Delta Tau system inc. 2004
    [66] PMAC software reference. Delta Tau system inc. 2004
    [67] PMAC hardware reference. Delta Tau system inc. 2004
    [68] Hsiao S.W, Chuang j.c.. A reverse engineering based approach for product for design. Design Studies, 2003, 24(2)
    [69] 鞠华.逆向工程中自由曲面的数据处理与误差补偿绷究.杭州:浙江大学博士论文,2003
    [70] 李江雄.复杂曲面反求工程CAD建模技术研究.杭州:浙江大学博士论文,1998
    [71] Son S. Park, H. Lee, K.H.. Automated laser scanning system for reverse engineering and Inspecting, international. Journal of Machine Tools & Manufacture, 2002, 42:889-897
    [72] Menq c..Chen F.L.., Curve and surface approximation from CMM measurement data. Computers Industrial Engineering, 1996, 30(2)
    [73] 刘荷辉,虞刚..自由曲面二维自适应测量及测球半径的三维补偿.机械工程学报,2004
    [74] 王艳颖,徐志农..反求工程在曲面工件超声无损检测中的应用研究[J].机械科学与技术,2004,23(3):376—378
    [75] 宋德儒,吴玉厚..基于PMAC卡控制的直线电机精确定位.机械制造,2005,43(7):21-22
    [76] 田克相,李丙才..PMAC多轴运动控制器研究.兰州:兰州理工大学硕士论文,2003
    [77] 刘征,赵昀,魏头翔等.无损检测技术的发展及研究领域.中国仪器仪表,1997
    [78] 马香峰.机器人机构学.机械工业出版社,1991
    [79] Eropob OD. Mechanics and design of robot[M].Moscow:Publishing Company, 1997:167-168
    [80] 诸静,.机器人与控制技术[M],浙江大学出版社,1991
    [81] 蔡自兴.机器人原理及其应用,中南工业大学出版社,2000
    [82] 焦国太,冯永和.多因素影响下的机器人综合位姿误差分析方法.应用基础与工程科学学报.Vol.12,NO.4,2004
    [83] 焦国太,李庆等.机器人位姿误差的综合补偿[J].太原:华北工学院学报.2003,24(2)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700