广州地铁1号线监控系统主控单元设计与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代地铁列车运行速度的不断提高,运输负载量的不断增大,发车间隔的不断缩短,这对地铁列车的安全性和可靠性提出了更高要求。地铁列车监控系统能够实现列车全线自动驾驶、超速防护以及故障分析和远程监控的功能,减少了人工控制的环节,提高了系统响应时间和速度。
     本论文以“广州地铁1号线国产化改造”为背景,全面实现了地铁列车监控系统主控单元的国产化设计。基于对原有模块总线传输特性的研究,本设计选用了新的列车总线和车辆总线,在全面分析其协议性能的基础上对应用层的协议转换模型进行了深入的研究和探讨。
     主控单元在结构上主要分为四个模块:HDLC总线通信模块、车辆和列车总线的CAN通信模块、数据缓冲模块、主CPU模块。其中HDLC模块使用串行通信控制器实现监控系统的大部分控制功能;CAN总线通信模块使用CAN控制、收发器采集车辆的状态信息;数据缓冲模块通过双口RAM实现HDLC和CAN总线的数据交换;主CPU模块使用ARM7微控制器加载uC/OS-Ⅱ实时操作系统对多任务进行调度,同时为满足系统对分时任务的需求,对uC/OS-Ⅱ的调度算法增加了一级时间片轮转的调度策略。然后,利用RM模型对系统的周期性多任务进行了可调度性分析,并对多影响因素反复测试、计量,使之达到综合最优调度,确保了系统任务设计的合理、安全、可靠。
     最后通过搭建的模拟平台进行了多项组网测试,充分验证了广州地铁1号线监控系统主控单元整体的实时性、负载能力以及可靠性,完成了国产化设计。
With the running speed accelerating, the transportation load increasing, and the idle time declining of modern subway, the security and reliability of the train become more and more important. The train monitoring system is designed to realize automatic drive, speed limit, malfunction analysis and remote control. These functions reduce the risks from manual operation, and enhance the response time and performance.
     This paper described the detailed design of the central control unit used in the train monitoring system, which belonged to the project "Localization of Guangzhou Metro Line No.1". The new train bus and vehicle bus were chosen in this design based on the analysis of performance of the original module bus, and detailed research of the protocol convertion model in application layer was made based on the deep analysis of performance of the bus.
     Central control unit consisted of 4 modules: HDLC communication bus module, vehicle and train CAN communication bus module, data buffer module, the host CPU module. The HDLC module took charge of main control tasks of the monitoring system using high-level communication controller; The CAN module collected the status of vehicle by CAN controller and transceiver; The data buffer module finished the data change of HDLC and CAN via dpram;The host CPU module was designed with real-time OS-uC/OS-II transplanted the ARM miro controller to schedule the system mutil-tasks. Meanwhile the uC/OS-II was improved through increasing the Round-Robin scheduling strategy. Then the performanced possibility of periodic mutil-tasks was proved and the multi-influencing factor was tested repeatedly to achieve the most superior schedule making use of RM model fully to guarante the security, reliability, rationality.
     Through several networking tests based on building simulation platform, the central control unit in montoring system for metro Guangzhou Linel was verificated to be reliable and high response under heavy load environment and localized successfully.
引文
[1]沈忠红.广州地铁一号线诊断系统[J].机车电传动,2000-10:26-29
    [2]蔡铭军.列车的自动防护和自动驾驶技术[J].电子工程师,2000-08:30-33
    [3]邓家龙,周建乐.无人驾驶城轨列车控制系统的研究与开发[J].城市轨道车辆,2007-09:22-25
    [4]黄良骥,唐涛.地铁列车自动运行系统的分析与设计[J].城市轨道交通研究,2003-02:51-55
    [5]邓家龙,周建乐.无人驾驶城轨列车控制系统的研究与开发[J].城市轨道车辆,2007-09:22-25
    [6]张士超.现场总线的技术特点及应用分析[J].国外机电一体化技术,2007-03:16-31
    [7]蔡秀珍.高级数据链路控制(HDLC)协议[J].福建电脑,2005-07:35-36
    [8]ZTE.高级数据链路控制规程HDLC[DB/OL].http://www.21ic.com,2004-05
    [9]李正军.现场总线及其应用技术[M].北京:机械工业出版社,2006-01
    [10]李晋辉,王建林.PCI-CAN总线互连技术及其实现方法的研究:[D],北京:北京化工大学,2003:18-19
    [11]史久根,张培人,陈真勇.CAN现场总线系统设计技术[M].国防工业出版社,2004-10
    [12]周立功等.ARM嵌入式系统基础教程[M].北京:北京航空航天大学出版社,2004-11
    [13]Sipex Corporation.SPX1117-800mA Low Dropout Voltage Regulator[DB/OL].2004-05
    [14]S.M.Qasim,S.A.Abbasi.FPGA implementation of a single-channel HDLC Layer-2protocol transmitter using VHDL[A].Proceedings of the 15th International Conference on Microelectronics[C].USA:IEEE Press,2003 Page(s):265-268
    [15]曾富前.基于PCI总线实现HDLC协议的通信系统设计与实现[D].西安:电子科技大学,2002-03
    [16]邢然.地铁列车故障诊断系统中央控制单元设计[D].北京:北京交通大学,2006-11
    [17]韩露.专用HDLC协议芯片的应用[J].移动通信,2003增刊,231-232
    [18]刘玉印.高级串行通信控制器SAB82525及其应用[J].计算机应用,2002-3:136-139
    [19]谈国文.基于HDLC协议的实时通信软件的设计与实现[J].计算机工程与科学,2000-4:87-90
    [20]Siemens Corporarion.SAB82525-High-Level Serial Communications Controller Extended[DB/OL].1996-02
    [21]张宗旺.基于HDLC协议的数据通信通路(DCC)接口应用设计与实现[J].光通信技术,2005-07:52-54
    [22]卢君.SAB82538H通信接口板在电力稳定控制系统中应用[J].电力自用动化设备,2006-08:95-97
    [23]Siemens Corporarion.SAB82525-High-Level Serial Communications Controller Extended[DB/OL].1996-02
    [24]冯涛.可编程逻辑器件开发技术—MAX+plus Ⅱ入门与提高[M].北京:人民邮电出版社,2002
    [25]李逢.基于单片机与CPLD的高速数据采集系统[J].自动化与仪表,2003,18(3):57
    [26]Application Note.基于32何ARM7的CAN节点设计[J].广州致远电子有限公司,2006-12
    [27]许荣.基于SPI的实时时钟设计[J].机电工程技术,2006-03:56-58
    [28]张卫杰,王远,魏震生.双端口RAM的并口设计应用[J].国外电子元器件,2001-10:68-73
    [29]李付军.基于IDT7132并行传输技术的激光雕刻控制系统研制[J].控制与检测,2005-08:55-59
    [30]彭春辉,王长林.双口RAM芯片IDT7132在LonWorks智能节点中的应用[J].电子元器件应用,2006-11:13-15
    [31]Jean J.Labrosse.嵌入式实时操作系统uC/OS-Ⅱ(第2版)[M].邵贝贝等[译].北京:北京航空航大大学出版社,2003
    [32]Savitzky,Stephen.Real-Time Microcessor System.New York:Van Nostrand Reinhold.ISBN 0-422-28048-3
    [33]Han CC,Lin KJ,Hou CJ.Distance-Constrained Scheduling and its applications to real-time systems.IEEE Trans.on Computers,1996,45(7):814-826
    [34]王永占,陈秋萍.单调速率及其可扩展的调度判别[J].软件学报,2004-15:20-25
    [35]Liu CL,Layland JW.Scheduling algorithms for multiprogramming in a hard real-time environment.Journal of ACM,1983,20(1):174-189
    [36]Burchard A,Liebeherr J,Oh YF,Son SH.New strategies for assigning real-time tasks to multiprocessor systems.IEEE Trans.on Computers,1995,44(12):1429-1442
    [37]Lehoczky JP,Sha L,Ding Y.The rate monotonic scheduling algorithm:Exact characterization and average case behavior In:Proc,of the 10th IEEE Real-Time system Symp Santa Monica:IEEE Computer Society Press,1989,166-171
    [38]Jeffay K,Stone DL Accounting for interrupt handling costs in dynamic priority task systems.In:Proc.of the IEEE Real-Time System Symp.Raleigh Durham:IEEE Computer Society Press,1993,212-221
    [39]刘军祥.一种改进的RM可调度性判定算法[J].软件学报,2005-16:25-28
    [40]王田苗.嵌入式实时系统性能分析[J].工程应用技术与实现,2006-11:5-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700