新型电化学传感器的构建及其在环境检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学传感器是一种由感应元件和换能器组成的,基于待测物的电化学性质对目标物进行检测的分析系统。作为分析检测领域重要的技术,电化学传感器具有操作简便、价格低廉、选择性高、分析速度快、可进行在线分析等传统分析方法不可比拟的优势,已经在环境检测、食品工业、生物医学研究、发酵工业生产等领域得到了高度的关注和广泛的应用。本论文针对电化学传感器研究和环境分析检测中的一些关键问题,即如何高效、清洁地将材料固定到传感器上,如何快速、灵敏地检测五氯苯酚、甲基对硫磷、亚硝酸盐等环境污染物,通过变换不同的材料、使用不同的修饰方法制备出了一系列新型的电化学传感器,并将其应用于环境分析检测中。采用循环伏安(CV)、方波阳极溶出伏安(SWV)、时间-电流法(i-t)、差分脉冲伏安(DPV)等多种电化学技术,以及电致化学发光(ECL)、紫外可见分光光度法(UV-vis)、傅里叶红外光谱(FTIR)2荧光分光光度法(FL)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等其他技术手段,详细研究了构建的电化学传感器的结构、性质及其检测性能。本论文主要研究工作如下:1.通过电化学还原的方法将氧化性碳量子点/氧化石墨烯(OCQDs/GO)一步电还原为碳量子点/石墨烯(CQDs/GR),同时由于OCQDs/GO与CQDs/GR溶解度的不同,制备出的CQDs/GR复合材料随之沉积在了电极表面。通过SEM、TEM、 FL、UV-vis、CV和ECL对CQDs/GR复合材料进行了表征,实验结果表明制得的CQDs/GR复合材料非常稳定,能使传感器保持很好的稳定性;同时由于石墨烯(GR)优良的导电性,放大了ECL信号,大大提高了传感器的灵敏度;并且GR巨大的比表面积增加了碳量子点(CQDs)负载量,整个复合材料表现出良好的ECL检测性能,最终成功实现了对五氯苯酚(PCP)的高灵敏特异性检测,检测线性范围为1.0x10-12~1.0×10-8M,检测下限达到1.0×10-12M。同时该传感器实现了对实际土壤中PCP的检测,说明该传感器具有良好的实际应用前景。本论文首次通过一步电沉积的方法,以GR为模板实现了CQDs的固定化,从而使传感器的重复使用成为可能;同时利用GR可以放大ECL信号的作用和CQDs对PCP特异性氧化的作用,实现了高灵敏特异性检测PCP的目的。该研究方法为检测环境中的持久性有机污染物质提供了一条可能的思路:调控量子点尺寸,通过寻找与目标检测物氧化电位相匹配的量子点,利用GR为量子点固定化模板,实现对环境中有机污染物的高灵敏特异性检测。
     2.首先将玻碳电极置于氧化石墨烯(GO)和壳聚糖(CS)的混合溶液中,接着通过一步电还原方法制备出稳定的石墨烯/壳聚糖(GR/CS)复合材料。GO的电化学还原过程消耗了H+,增大了电极附近溶液的pH值,从而使得CS变得不溶;同时由于GO电还原生成的石墨烯(GR)不易溶于水,因而最终GR与CS一起电沉积在玻碳电极表面上,并且由于浓度梯度差,保证了生成的GR/CS源源不断地被沉积到了在电极表面。实验结果表明,该GR/CS复合物可以用作固相萃取模板,对甲基对硫磷(MP)表现出良好的富集性能,并且基于其所构建的电化学无酶传感器能快速地实现对MP产生检测电流响应,在最优实验条件下,该GR/CS无酶传感器具有很宽的线性范围4.0-400ng/mL,检测限达到了0.8ng/mL。同时,该传感器具有良好的重现性,稳定性以及较好的选择性,为绿色、快速、简单、灵敏的检测有机磷农药提供了新的途径。
     3.将氧化石墨烯(GO)和碳纳米管(CNTs)分散到壳聚糖(CS)中,形成GO/CNTs/CS混合液。由于氧化石墨烯(GO)的电化学还原过程消耗了H+,增大了电极附近溶液的pH值,从而使壳聚糖(CS)变得不溶;而基于GO电还原生成的石墨烯(GR)也不易溶于水;同时酸化的CNTs表面带有大量的含氧官能团,电还原过程中导致大量含氧官能团被还原,使得CNTs水溶性变差,该性质与GR类似;由此,利用它们三者电还原前后溶解度不同的原理,通过电沉积的方法直接一步制备出了GR/CNTs/CS复合材料,并且由于浓度梯度差,保证了生成的GR/CNTs/CS源源不断地被沉积到了在电极表面。该种方法由于不涉及到化学还原过程中经常使用的一些有毒还原剂如肼等,因此对环境友好而且不会造成二次环境污染。结合GR、CNTs和CS的各自优点,该GR/CNTs/CS可以用作固相萃取模板,对甲基对硫磷(MP)表现出良好的富集性能。在最优实验条件下,该GR/CNTs/CS电化学无酶传感器对MP检测线性范围为2.0-500ng/mL,检测限达到了0.5ng/mL。并且该传感器不但稳定性和重现性良好,而且具有较强的选择性。
     4.由于π-π相互作用,可以利用DNA实现碳纳米管(CNTs)的功能化后,通过简单的直流电沉积方法将DNA/CNTs/Cu2+复合材料固定于玻碳电极表面。电沉积在玻碳电极表面的DNA/CNTs/Cu2+复合材料对亚硝酸盐(N02-)具有良好的电催化性能,由此构建出一个灵敏的N02-电化学传感器。为了获得最高的灵敏度,通过实验详细研究了沉积液中Cu2+浓度、DNA浓度、CNTs浓度、电沉积时间等电沉积条件以及pH值和应用电位等检测条件对N02-在DNA/CNTs/Cu2+玻碳电极上响应电流的影响。实验结果表明,在最优条件下,该DNA/CNTs/Cu2+电化学传感器对N02-的检测线性范围为3.0×10-8-2.6×10"3M,检测限为3.0×10-8M,响应时间在3s以内。并且该DNA/CNTs/Cu2+电化学传感器表现出良好的稳定性、重现性和抗干扰能力,因此具有巨大的实际应用前景。
     5.通过一步电还原的方法,将玻碳电极置于由氧化石墨烯(GO)、壳聚糖(CS)和葡萄糖氧化酶(GOx)组成的GO/CS/GOx混合溶液中,直接在电极表面制备出石墨烯/壳聚糖/葡萄糖氧化酶(GR/CS/GOx)新型纳米复合膜。整个过程仅需要几分钟,而且形成的GR/CS/GOx膜均匀且厚度可控。循环伏安实验结果表明,GR/CS/GOx膜中的GOx保持了自身良好的生物活性,可以与电极之间发生直接电子转移,从而能够进一步用于对葡萄糖的检测。在最优实验条件下,该GR/CS/GOx电化学传感器对葡萄糖的检测线性范围为4.0×10-7~2.0×10-3M,检测限为4.0×10-7M,与其他采用滴涂的方法得到的GR/CS/GOx传感器相比,检测限降低了50倍。同时该传感器具有良好的稳定性、重现性和抗干扰能力,利用该GR/CS/GOx电化学传感器对实际人血清样本中葡萄糖的检测效果令人满意,与医院生化分析仪器所得结果一致,实际应用的潜力非常巨大。
An electrochemical sensor, which combines a sensing element and an energy transducer, is an analytic device that basing on the electrochemical property of the analyte. As an important technology of analytical chemistry, electrochemical sensor has been widely used in various areas, such as environmental monitoring, food testing industry, biomedical science, fermentation industrial production and so on, due to its simplicity, low-cost, high sensitivity, high selectivity, rapidity and potential ability for real-time and on-line analysis. Our work focused on the key issues of the fabrication of electrochemical sensor and its analysis detection in environment, that is, how to immobilize component onto the energy transducer surface efficiently and cleanly, how to detect the environmental pollutants including pentachlorophenol, methyl parathion and nitrite sensitively and rapidly. This paper is concentrated on the preparations of novel electrochemical sensors using various modified materials and modified methods, and their aplications in the field of environmental analysis detection. The electrochemical sensors have been investigated by cyclic voltammetry (CV), square wave anodic stripping voltammetry (SWV), current-time technique (i-t), differential pluse voltammetry (DPV), electrogenerated chemiluminescence (ECL), ultraviolet-visible spectrophotometry (UV-vis), fourier transform nfrared spectroscopy (FTIR), fluorescence spectrophotometry (FL), scanning electron microscopy (SEM), transmission electron microscopy (TEM), etc. The main points of this dissertation are summarized as follows:
     1. The oxidized carbon quantum dots/graphene oxide (OCQDs/GO) mixture has been reduced into carbon quantum dots/graphene (CQDs/GR) hybrid by one-step electrochemical reduction technology. The obtained CQDs/GR hybrid is attached onto the electrode surface directly, utilizing the difference of the solubility between OCQDs/GO and CQDs/GR. The proposed CQDs/GR hybrid has been investigated by SEM, TEM, FL, UV-vis, CV and ECL. The experimental results show that the structure of the CQDs/GR hybrid is very stable which ensures the stability of the ECL sensor in practical application. The sensitivity of the ECL sensor has been greatly enhanced, owing to the good conductivity of GR which can amplify the signal, meanwhile, a large amount of CQDs can be absorbed onto GR due to the large specific surface area of GR. The CQDs/GR sensor shows good ECL property and enables the real-time detection of pentachlorophenol (PCP) with unprecedented sensitivity reaching 1.0×10-12M concentration in a wide linear range from1.0x10-12~1.0x11-8M. The ECL sensor shows high selectivity to chlorophenols (CPs),especially to PCP. The practicability of the sensing platform in real soil samples shows ideal recovery rates. Herein, for the first time, through one-step electrochemical reduction technology, GR serves as both the ECL amplification reagent and the immobilization platform for CQDs, which not only enhance the detection sensitivity but also achieve the recyclability of CQDs. This work may present an important strategy to design QDs ECL sensors and expand their applications in ultratrace environmental sensing.
     2. Firstly, the glassy carbon electrode is immersed into the mixture of graphene oxide (GO) and chitosan (CS), and then the stable graphene/chitosan (GR/CS) composite is obtained by one-step electrochemical reduction technology. The proton consumption during electroreduction of GO increases the local solution pH near the electrode surface, leading to the insolubility of CS. Meanwhile, the obtained GR is insoluble in aqueous solution, thus co-deposition of GR and CS is achieved. The GR/CS composite can capture methyl parathion (MP) efficiently and be used as solid phase extraction, thus the goal for MP sensing is achieved. Under the optimal conditions, the proposed sensor exhibits a wide linear range from4.0~400ng/mL, and a low detection limit of0.8ng/mL. Moreover, the proposed sensor shows good reproducibility, long-time stability and satisfactory anti-interference ability. The obtained GR/CS sensor opens a new opportunity for green, fast, simple and sensitive detection of organophosphate pesticides.
     3. Graphene oxide (GO) and carbon nanotube (CNTs) are dispersed in chitosan (CS) solution to form a GO/CNTs/CS mixture. The proton consumption during electroreduction of GO increases the local solution pH near the electrode surface, leading to the insolubility of CS. The obtained graphene (GR) is also insoluble in aqueous solution. Meanwhile, the surface of CNTs owns large amounts of oxygen-containing functional groups after acidification, which can be reduced during the electroreduction process, resulting in the insolubility of CNTs. Thus, co-electrodeposition of GR. CNTs and CS is achieved. The GR/CNTs/CS composite can capture methyl parathion (MP) efficiently and be used as solid phase extraction, thus the goal for MP sensing is also achieved. Under the optimal conditions, the proposed sensor exhibits a wide linear range from2.0~500ng/mL, and a low detection limit of0.5ng/mL. The proposed sensor shows good reproducibility, long-time stability and satisfactory anti-interference ability.
     4. Carbon nanotube (CNTs) are functionalized by DNA through the π-π interactions between the nanotube sidewalls and the nucleic acid bases, and then the DNA/CNTs/Cu2+hybrid is fixed onto glassy carbon electrode through electrodeposition under controlled dc potential. Electrochemical experiments reveal that the DNA/CNTs/Cu2+hybrid showed high electrocatalytic activity to the reduction of nitrite (NC2-), thus a sensitive sensor for the determination of NO2-is constructed. Effects of the electrodeposition conditions such as the concentration of Cu2+, DNA, CNTs and electrodeposition time and the determination conditions such as applied potential and pH value on the current response of the proposed DNA/CNTs/Cu2+sensor toward NO2-have been optimized in order to obtain the maximal sensitivity. Under the optimal conditions, the response is fast (less than3s), the linear range of the determination of NO2-is from3.0×10-8~2.6×103M, and the detection limit is3.0×10-8M. Moreover, the DNA/CNTs/Cu2+sensor shows good stability, high reproducibility and well antijamming capability, thus the proposed sensor may have great actual application prospect.
     5. Graphene oxide (GO), chitosan (CS) and glucose oxidase (GOx) are mixed together directly to form a graphene oxide/chitosan/glucose oxidase (GO/CS/GOx) solution. The stable graphene/chitosan/glucose oxidase (GR/CS/GOx) film can be obtained on the glassy carbon electrode by one-step electrochemical reduction technology. The procedure takes only several minutes, and the thickness of the resulting film is uniform and controllable. Since good bioactivity of GOx is achieved and the reversible2-proton and2-electron transfer between glucose and GOx is also exhibited, the GR/CS/GOx hybrid can be used for glucose sensing. The biosensor has a detection limit of4.0×10-7M (50-fold lower compared to the biosensor prepared by drop-casting method), and the response linear range is4.0×10-7~2.0×10-3M. The GR/CS/GOx biosensor shows good stability, high reproducibility and well anti-interference ability.
引文
[1]王化正.电化学传感器.计测技术,1990,6(2):26-29
    [2]贾伯年,俞朴.传感器技术.第3版.南京:东南大学出版社,1997,105-106
    [3]郭萌,姚寨筱,张卫国等.电化学传感器的研究和进展.见:2004年全国电子电镀学术研讨会论文集.北京:中国电子学会电子制造与封装技术分会,2004,45-49
    [4]Clark L C, Monitor and Control of Blood Tissue Oxygen Tensions, Transactions-American Society for Artificial Internal Organs.1956,2(1):41-48
    [5]Clark L C, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences,1962, 102(1):29-45
    [6]Updike S J, Hicks G P. The enzyme electrode. Nature,1967,214(6):986-988
    [7]Lee J H, Oh B K, Choi J W. Electrochemical sensor based on direct electron transfer of HIV-1 Virus at Au nanoparticle modified ITO electrode. Biosensors and Bioelectronics,2013,49(15):531-535
    [8]Ramulu T S, Venu R, Sinha B, et al. Nanowires array modified electrode for enhanced electrochemical detection of nucleic acid. Biosensors and Bioelectronics,2013,40(1):258-264
    [9]Wu X, Liu H, Liu J, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnology, 2003,21(1):41-46
    [10]Lin Z Z, Li X H, Kraatz H B. Impedimetric Immobilized DNA-Based Sensor for Simultaneous Detection of Pb2+, Ag+, and Hg2+. Analytical Chemistry,2011, 83(17):6896-6901
    [11]Sassolas A, Blum L J, Leca-Bouvier B D. Immobilization strategies to develop enzymatic biosensors. Biotechnology Advanced,2012,30(3):489-511
    [12]Li J Z, Wang N Y, Tran T T, et al. Electrogenerated chemiluminescence detection of trace level pentachlorophenol using carbon quantum dots. Analyst,2013, 138(7):2038-2043
    [13]Kerman K, Morit Y, Takamura Y, et al. Escherichia coli single-strand binding protein-DNA interactions on carbon nanotube-modified electrodes from a label-free electrochemical hybridization sensor. Analytical and Bioanalytical Chemistry.2005,381(6):1114-1121
    [14]Piermarinia S, Michelia L, Ammida N H S, et al. Electrochemical immunosensor array using a 96-well screen-printed microplate for aflatoxin B1 detection. Biosensors and Bioelectronics,2007,22(7):1434-1440
    [15]Parker C O, Lanyon Y H, Manning M, et al. Electrochemical Immunochip Sensor for Aflatoxin M1 Detection. Analytical Chemistry,2009,81 (13):5291-5298
    [16]Tan Y, Chu X, Shen G L, et al. A signal-amplified electrochemical immunosensor for aflatoxin B1 determination in rice. Analytical Biochemistry,2009, 387(1):82-86
    [17]Cass A E G, Francis D G, Hill H A O. Ferrocene-Mediated Enzyme Electrode for Amperometric Determination of Glucose. Analytical Chemistry,1984, 56(4):667-671
    [18]Janata I. Immunoelectrode. Journal of the American Chemical Society.1975, 97(10):2914-2916
    [19]Du B Z, Cui J Q, Qu M J, et al. Preparation and Application of Potentionmetric Vitamin C Sensor Modified by Sol-gel. Journal of Analytical Science,2010, 26(4):463-465
    [20]Eric Bakker. Potentiometric sensors for trace-level analysis. TrAC Trends in Analytical Chemistry,2005,24(3):199-207
    [21]Malitesta C, Palmisano F, Torsi L, et al. Glucose fast-response amperometric sensor based on glucose oxidase immobilized in an electropolymerized poly(o-phenylenediamine) film. Analytical Chemistry,1990,62(24):2735-2740
    [22]Yao S J, Xua J H, Wang Y, et al. A highly sensitive hydrogen peroxide amperometric sensor based on MnO2 nanoparticles and dihexadecyl hydrogen phosphate composite film. Analytica Chimica Acta,2006,557(1-2):78-84
    [23]Casella I G, Cataldia T R I, Guerrieri A, et al. Copper dispersed into polyaniline films as an amperometric sensor in alkaline solutions of amino acids and polyhydric compounds. Analytica Chimica Acta,1996,335(3):217-225
    [24]Miura N, Lu G, Ono M, et al. Selective detection of NO by using an amperometric sensor based on stabilized zirconia and oxide electrode. Solid State Ionics,1996, 117(3-4):283-290
    [25]Mao L, Yamamoto K. Amperometric on-line sensor for continuous measurement of hypoxanthine based on osmium-polyvinylpyridine gel polymer and xanthine oxidase bienzyme modified glassy carbon electrode. Analytica Chimica Acta, 2000,415(1-2):143-150
    [26]Santos W J R, Sousa A L, Luz R C S, et al. Amperometric sensor for nitrite using a glassy carbon electrode modified with alternating layers of iron(Ⅲ) tetra-(N-methyl-4-pyridyl)-porphyrin and cobalt(Ⅱ) tetrasulfonated phthalocyanine. Talanta,2006,70(3):588-594
    [27]Wu K, Su Y Y, Hu S H. Development of an amperometric indole-3-acetic acid sensor based on carbon nanotubes film coated glassy carbon electrode. Sensors and Actuators B:Chemical,2003,96(3):658-662
    [28]Sacks V, Eshkenazi I, Neufeld T, et al. Immobilized Parathion Hydrolase:An Amperometric Sensor for Parathion. Analytical Chemistry,2000, 72(9):2055-2058
    [29]Aizawa M, Morioka A, Suzuki S, et al. Enzyme immunosenser:III. Amperometric determination of human cherienic gonadotropin by membrane-bound antibody. Analytical Biochemisty,1979,94(1):22-28
    [30]Seddon B J, Shao Y, Giraultb H H. Printed microelectrode array and amperometric sensor for environmental monitoring. Electrochimica Acta,1994, 39(16):2377-2386
    [31]Mishima B A L, Lescano D, Holgado T M, et al. Electrochemical oxidation of ammonia in alkaline solutions:its application to an amperometric sensor. Electrochimica Acta,1998,43(3-4):395-404
    [32]Miura N, Ono M, Shimanoe K, et al. A compact solid-state amperometric sensor for detection of NO2 in ppb range. Sensors and Actuators B:Chemical,1998, 49(1-2):101-109
    [33]Bott B, Jones T A. A highly sensitive NO2 sensor based on electrical conductivity changes in phthalocyanine films. Sensors and Actuators B:Chemical,1984, 5(l):43-53
    [34]Sandberg R G, Van Houten L J, Schwartz J L, et al. A Conductive Polymer-Based Immunosensor for the Analysis of Pesticide Residues. ACS Symposium Series, 1992,511(8):81-88
    [35]Fercher G, Haller A, Smetana W, et al. End-to-End Differential Contactless Conductivity Sensor for Microchip Capillary Electrophoresis. Analytical Chemistry,2010,82 (8):3270-3275
    [36]Limbut W, Kanatharana P, Mattiasson B, et al. A reusable capacitive immunosensor for carcinoembryonic antigen (CEA) detection using thiourea modified gold electrode. Analytical Chimica Acta,2006,561(1-2):55-61
    [37]Li S S, Cui H C, Yuan Q, et al. AC electrokinetics-enhanced capacitive immunosensor for point-of-care serodiagnosis of infectious diseases. Biosensors and Bioelectronics,2014,51(15):437-443
    [38]Li C M, Pan L K, Luong, J H T. Capacitance immunosensors based on an array biotape. Analyst,2006,131(7):788-790
    [39]Samanmana S, Kanatharana P, Asawatreratanakul P, et al. Characterization and application of self-assembled layer by layer gold nanoparticles for highly sensitive label-free capacitive immunosensing. Electrochimica Acta,2012, 80(1):202-212
    [40]Limbut W, Hedstrom M, Thavarungkul P, et al. Capacitive biosensor for detection of endotoxin. Analytical and Bioanalytical Chemistry,2007, 389(2):517-525
    [41]Shi W, Li X H, Ma H. A Tunable Ratiometric pH Sensor Based on Carbon Nanodots for the Quantitative Measurement of the Intracellular pH of Whole Cells. Angewandte Chemie,2012,124(26):6538-6541
    [42]Jin T, Sasaki A, Kinjo M, et al. A quantum dot-based ratiometric pH sensor. Chemical Communications,2010,46(14):2408-2410
    [43]Grover A, Schmidt B F, Salter R D, et al. Genetically Encoded pH Sensor for Tracking Surface Proteins through Endocytosis. Angewandte Chemie,2012, 51(20):4838-4842
    [44]Khun K, Ibupoto Z H, AH S M U, Iron Ion Sensor Based on Functionalized ZnO Nanorods. Electroanalysis,2012,24(3):521-528,
    [45]Praveen L, Reddy M L P, Luxmi V R. Dansyl-styrylquinoline conjugate as divalent iron sensor. Tetrahedron Letters,2010,51(50):6626-6629
    [46]Crack J C, Green J, Thomson A J, et al. Iron-sulfur cluster sensor-regulators. Current Opinion in Chemical Biology,2012,16(1-2):35-44
    [47]Frant M S, Ross Jr J W. Electrode for Sensing Fluoride Ion Activity in Solution. Science,1966,154(3756):1553-1555
    [48]Moody G J, Oke R B, Thomas J D R. A calcium-sensitive electrode based on liquid ion exchanger in a poly(vinyl chloride) matrix. Analyst,1970, 95(1136):910-918
    [49]Buhlmann P, Pretsch E, Bakker E. Carrier-Based Ion-Selective Electrodes and Bulk Optodes.2. Ionophores for Potentiometric and Optical Sensors. Chemical Reviews,1998,98(4):1593-1687
    [50]杨邦朝,张益康.气体传感器研究动向。传感器世界,1997,3(9):1-8
    [51]Leite E R, Weber I T, Longo E, et al. A New Method to Control Particle Size and Particle Size Distribution of SnO2 Nanoparticles for Gas Sensor Applications. Advanced Materials,2000,12(13):965-968
    [52]Xua J P, Pan Q Y, Shun Y A, et al. Grain size control and gas sensing properties of ZnO gas sensor. Sensors and Actuators B:Chemical,2000,66(1-3):277-279
    [53]Chen J, Xu L, Li W, et al. a-Fe2O3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications. Advanced Materials,2005,17(5):582-586
    [54]马丽杰.日本气体传感器产业化发展现状.云南大学学报:自科版,1997,19(2):211-216
    [55]Shimizu K, Kashiwagi K, Nishiyama H, et al. Impedancemetric gas sensor based on Pt and WO3 co-loaded TiO2 and ZrO2 as total NOX sensing materials. Sensors and Actuators B:Chemical,2008,130(2):707-712
    [56]Chan C Y, Lehmann M, Chan K, et al. Designing an amperometric thick-film microbial BOD sensor. Biosensors and Bioelectronics,2000,15(7-8):343-353
    [57]Okuyama M, Kobayashi N, Takeda W, et al. Enzyme-linked immunosorbent assay for monitoring toxic dioxin congeners in milk based on a newly generated monoclonal anti-dioxin antibody. Analytical Chemistry,2004,76(7):1948-1956
    [58]Backer M, Rakowski D, Poghossian A, et al. Chip-based amperometric enzyme sensor system for monitoring of bioprocesses by flow-injection analysis. Journal of Biotechnology,2013,163(4):371-376
    [59]王永康,王立.纳米材料科学与技术.杭州:浙江大学出版社,2002,130-132
    [60]中国科学院计算机网络信息中心. 小尺寸效应http://www.kepu.net.cn/gb/basic/nano/effect/eff02.html,2009-02-12
    [61]马登军.纳米材料的表面和界面效应.河北建筑工程学院学报,1996,4(13):37-42
    [62]Kroto H W, Heath J R, O'brien S C, et al. C60:Buckminsterfullerene. Nature, 1985,318:162-163.
    [63]Iijima S. Helical microtubules of graphitic carbon. Nature,1991, 354(6348):56-58
    [64]Novoselov K S, Geim A K, Morozov S V, et al. Electric Field Effect in Atomically Thin Carbon Films. Science,2004,306(5696):666-669
    [65]Liu P, Xu D, Li Z J, et al. Fabrication of CNTs/Cu composite thin films for interconnects application. Microelectronic Engineering,2008,85(10):1984-1987
    [66]Shi Y, Yang R Z, Yuet P K. Easy decoration of carbon nanotubes with well dispersed gold nanoparticles and the use of the material as an electrocatalyst. Carbon,2009,47(4):1146-1151
    [67]QinY X, Hu M. Effects of microwave plasma treatment on the field emission properties of printed carbon nanotubes/Ag nano-particles films. Applied Surface Science,2008,254(6):1757-1762
    [68]Guo S J, Dong S J, Wang E K. Constructing Carbon Nanotube/Pt Nanoparticle Hybrids Using an Imidazolium-Salt-Based Ionic Liquid as a Linker. Advanced Materials,2010,22(11):1269-1272
    [69]Chen G Z, Shaffer M S P, Coleby D, et al. Carbon Nanotube and Polypyrrole Composites:Coating and Doping. Advanced Materials,2000,12(7):522-26
    [70]Deng J G, Ding X B, Zhang W C, et al. Carbon nanotube-polyaniline hybrid materials. European Polymer Journal,2002,38(12):2497-2501
    [71]Frackowiaka E, Khomenkob V, Jurewicz K, et al. Supercapacitors based on conducting polymers/nanotubes composites. Journal of Power Sources,2006, 153(2):413-418
    [72]Feng W, Ji P J. Enzymes immobilized on carbon nanotubes. Biotechnology Advances,2011,29(6):889-895
    [73]Kim J, Yoo K H. Glucose oxidase nanotube-based enzymatic biofuel cells with improved laccase biocathodes. Physical Chemistry Chemical Physics,2013, 15(10):3510-3517
    [74]Wooten M, Karra S, Zhang M, et al. On the Direct Electron Transfer, Sensing, and Enzyme Activity in the Glucose Oxidase/Carbon Nanotubes System. Analytical Chemistry,2014,86(1):752-757
    [75]Urbanova V, Etienne M, Walcarius A. One Step Deposition of Sol-Gel Carbon Nanotubes Biocomposite for Reagentless Electrochemical Devices. Electroanalysis,2013,25(l):85-93
    [76]Pasricha R, Gupta S, Srivastava A K. A facile and novel synthesis of Ag-graphene-based nanocomposites. Small,2009,5(20):2253-2259.
    [77]Liu C B, Wang K, Luo S L, et al. Direct electrodeposition of graphene enablingthe one-step synthesis of graphene-metal nanocomposite films. Small, 2011,7(9):1203-1206
    [78]Liang J, Bi H, Wan D Y, et al. Novel Cu Nanowires/Graphene as the Back Contact for CdTe Solar Cells. Advanced Functional Materials,2012, 22(6):1267-1271
    [79]Guo S, Dong S, Wang E. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet:Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano,2009,4(1):547-555
    [80]Liang J, Huang Y, Zhang L, et al. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Advanced Functional Materials,2009,19(14):2297-2302
    [81]Si P, Ding S J, Lou X W, et al. An electrochemically formed three-dimensional structure of polypyrrole/graphene nanoplatelets for high-performance supercapacitors. RSC Advances,2011,1(7):1271-1278
    [82]Domingues S H, Salvatierra R V, Oliveira M M, et al. Transparent and conductive thin films of graphene/polyaniline nanocomposites prepared through interfacial polymerization. Chemical Communications,2011,47(9):2592-2594
    [83]Goenka S, Sant V, Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering. Journal of Controlled Release,2014,173(10):75-88
    [84]Zhang X H, Liao Q L, Chu M M, et al. Structure effect on graphene-modified enzyme electrode glucose sensors. Biosensors and Bioelectronics,2014, 52(15):281-287
    [85]Xue T, Peng Bo, Xue M, et al. Integration of molecular and enzymatic catalysts on graphene for biomimetic generation of antithrombotic species. Nature Communications,2014, DOI:10.1038/ncomms4200
    [86]Deng C Y, Chen J Z, Nie Z, et al. Electrochemical detection of nitrite based on the polythionine/carbon nanotube modified electrode. Thin Solid Films,2012, 520(23):7026-029
    [87]Remes A, Pop A, Manea F, et al. Electrochemical Determination of Pentachlorophenol in Water on a Multi-Wall Carbon Nanotubes-Epoxy Composite Electrode. Sensors,2012,12(6):7033-7046
    [88]Barathi P, Senthil A. Kumar Electrochemical Conversion of Unreactive Pyrene to Highly Redox-Active 1,2-Quinone Derivatives on a Carbon Nanotube-Modified Gold Electrode Surface and Its Selective Hydrogen Peroxide Sensing. Langmuir, 2013,29(34):10617-10623
    [89]Zhang M G, Gorski W. Electrochemical Sensing Platform Based on the Carbon Nanotubes/Redox Mediators-Biopolymer System. Journal of The American Chemical Society,2005,127(7):2058-2059
    [90]Zhang M G, Gorski W. Electrochemical Sensing Based on Redox Mediation at Carbon Nanotubes. Analytical Chemistry,2005,77(13):3960-3965
    [91]Miinzer A M, Michael Z P, Star A. Carbon Nanotubes for the Label-Free Detection of Biomarkers. ACS Nano,2013,7(9):7448-7453
    [92]Pumera M, Ambrosi A, Bonanni A, et al. Graphene for electrochemical sensing and biosensing. TrAC Trends in Analytical Chemistry,2010,29(9):954-965
    [93]Mao Y, Bao Y, Gan S Y, et al. Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element. Biosensors and Bioelectronics,2011,28(1):291-297
    [94]Huang K J, Niu D J, Liu X, et al. Direct electrochemistry of catalase at amine-functionalized graphene/gold nanoparticles composite film for hydrogen peroxide sensor. Electrochimica Acta,2011,56(7):2947-2953
    [95]Gan T, Sun J Y, Meng W, et al. Electrochemical sensor based on graphene and mesoporous TiO2 for the simultaneous determination of trace colourants in food. Food Chemistry,2013,141(4):3731-3737
    [96]Shiu W Y, Ma K C, Varhanickova D, et al. Chlorophenols and alkylphenols:a review and correlation of environmentally relevant properties and fate in an evaluative environment. Chemosphere,1994,29(6):1155-1224
    [97]Keith L, Telliard W. ES&T special report:priority pollutants:I-a perspective view. Environmental Science & Technology.1979,13(4):416-423
    [98]United States Environmental Protection Agency. Toxic Substance Control Act. Washington D C:United States Environmental Protection Agency,1979,700-799
    [99]Leblance Y G, Gilbert R, Hubert J. Determination of Pentachlorophenol and Its Oil Solvent in Wood Pole Samples by SFE and GC with Postcolumn Flow Splitting for Simultaneous Detection of the Species. Analytical Chemistry,1999, 71(1):78-85
    [100]Mardones C, Palma J, Sepulveda C, et al. Determination of tribromophenol and pentachlorophenol and its metabolite pentachloroanisole in Asparagus officinalis by gas chromatography/mass spectrometry. Journal of Separation Science,2003, 26(9-10):923-926
    [101]Tayal A, Das L, Kaur I. Biodegradation of pentachlorophenol (PCP) by white rot fungal strains screened from local sources and its estimation by high-performance liquid chromatography. Biomedical Chromatography.1999,13(3):220-224
    [102]Fischer W, Bund O, Hauck H E. Thin-layer chromatographic analysis of phenols on TLC aluminium sheets RP-18 F. Fresenius'Journal of Analytical Chemistry, 1996,354(7-8):889-891
    [103]Kang Q, Yang L X, Chen Y F, et al. Photoelectrochemical detection of pentachlorophenol with a Multiple Hybrid CdSexTe1-x/TiO2 Nanotube Structure-Based Label-Free Immunosensor. Analytical Chemistry,2010, 82(23):9749-9754
    [104]Lei J P, Ju H X. Fundamentals and bioanalytical applications of functional quantum dots as electrogenerated emitters of chemiluminescence. TrAC Trends in Analytical Chemistry,2011,30(8):1351-1359
    [105]Jie G F, Zhang J J, Wang D C, et al. Electrochemiluminescence Immunosensor Based on CdSe Nanocomposites. Analytica Chemistry,2008,80(11):4033-4039
    [106]Wang Y, Lu J, Tang L H, et al. Graphene Oxide Amplified Electrogenerated Chemiluminescence of Quantum Dots and Its Selective Sensing for Glutathione from Thiol-Containing Compounds. Analytical Chemistry,2009, 81(23):9710-9715
    [107]Liu X, Zhang Y, Lei J, et al. Quantum Dots Based Electrochemiluminescent Immunosensor by Coupling Enzymatic Amplification with Self-Produced Coreactant from Oxygen Reduction. Analytical Chemistry,2010, 82(71):7351-7356
    [108]Bae Y, Myung N, Bard A J. Electrochemistry and Electrogenerated Chemiluminescence of CdTe Nanoparticles. Nano Letters,2004,4(6):1153-1161
    [109]Ding S N, Xu J J, Chen H Y. Enhanced solid-state electrochemiluminescence of CdS nanocrystalscomposited with carbon nanotubes in H2O2 solution. Chemical Communications,2006,34:3631-3633
    [110]Guldi D M, Aminur Rahman G M, Sgobba V, et al. CNT-CdTe Versatile Donor-Acceptor Nanohybrids. Journal of The American Chemical Society,2006, 128(7):2315-2323
    [111]Zheng L, Chi Y W, Dong Y Q, et al. Electrochemiluminescence of Water-Soluble Carbon Nanocrystals Released Electrochemically from Graphite. Journal of The American Chemical Society,2009,131 (13):4564-4565
    [112]Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature,2009,457(7230):706-710
    [113]Geim A K. Graphene:Status and Prospects. Science,2009,32(5934):1530-1534
    [114]Katsnelson M I. Graphene:carbon in two dimensions. Materials Today,2007, 10(1-2):20-27
    [115]Baby T T, Jyothirmayee A S S, Arockiadoss T, et al. Metal decorated graphene nanosheets as immobilization matrix for amperometric glucose biosensor. Sensors and Actuators B:Chemical,2010,145(1):71-77
    [116]Yoo E J, Okata T, Akita T, et al. Enhanced Electrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface. Nano Letters,2009, 9(6):2255-2259
    [117]Ling L L, Liu K P, Yang G H, et al. Fabrication of graphene-quantum dots composites for sensitive electrogenerated chemiluminescence immunosensing. Advanced Functional Materials,2011,21(5):869-878
    [118]William S, Hummers J R, Richard E O. Preparation of graphitic oxide. Journal of The American Chemical Society,1958,80(6):1339-1339
    [119]Dong Y Q, Zhou N N, Lin X M, et al. Extraction of Electrochemiluminescent Oxidized Carbon Quantum Dots from Activated Carbon. Chemistry of Materials, 2010,22(21):5895-5899
    [120]Chen L Y, Tang Y H, Wang K, et al. Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochemistry Communications,2011,13(2):133-137
    [121]Dresselhaus M S, Jorio A, Hofmann M, et al. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Letters,2010,10(3):751-758
    [122]Jie G F, Li L L, Chen C, et al. Enhanced electrochemiluminescence of CdSe quantum dots composited with CNTs and PDDA for sensitive immunoassay. Biosensors and Bioelectronics,2009,24(11):3352-3358
    [123]Wang H F, He Y, Ji T R, et al. Surface Molecular Imprinting on Mn-Doped ZnS Quantum Dots for Room-Temperature Phosphorescence Optosensing of Pentachlorophenol in Water. Analytical Chemistry,2009,81(4):1615-1621
    [124]Mufeed Awawdeh A, Harmon H J. Spectrophotometric detection of pentachlorophenol (PCP) in water using immobilized and water-soluble porphyrins. Biosensors and Bioelectronics,2005,20(8):1595-1601
    [125]Gremaud E, Turesky R J. Rapid Analytical Methods To Measure Pentachlorophenol in Wood. Journal of Agricultural and Food Chemistry,1997, 45(4):1229-1233
    [126]Li C C, Kang Q, Chen Y F, et al. Electrochemiluminescence of luminol on Ti/TiO2 NT electrode and its application for pentachlorophenol detection. Analyst,2010,135(11):2806-2810
    [127]Li J X, Yang L X, Luo S L, et al. Polycyclic Aromatic Hydrocarbon Detection by Electrochemiluminescence Generating Ag/TiO2 Nanotubes. Analytical Chemistry, 2010,82(17):7357-7361
    [128]Arduin F, Ricci F, Tuta C S, et al. Detection of carbamic and organophosphorous pesticides in water samples using a cholinesterase biosensor based on Prussian Blue-modified screen-printed electrode. Analytica Chimica Acta,2006, 580(2):155-162
    [129]Li B X, He Y Z, Xu C L. Simultaneous determination of three organophosphorus pesticides residues in vegetables using continuous-flow chemiluminescence with artificial neural network calibration. Talanta,2007,72(1):223-230
    [130]Wang Y H, Qiu H G, Hu S Q, et al. A novel methyl parathion electrochemical sensor based on acetylene black-chitosan composite film modified electrode. Sensors and Actuators B:Chemical,2010,147(2):587-592
    [131]Kumar J, D'Souza S F. An optical microbial biosensor for detection of methyl parathion using Sphingomonas sp. immobilized on microplate as a reusable biocomponent. Biosensors and Bioelectronics,2010,26(4):1292-1296
    [132]Zhou Q X, Bai H H, Xie G H, et al. Trace determination of organophosphorus pesticides in environmental samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction. Journal of Chromatography A,2008, 1188(2):148-153
    [133]Lin Y, Lu E, Wang J. Disposable Carbon Nanotube Modified Screen-Printed Biosensor for Amperometric Detection of Organophosphorus Pesticides and Nerve Agents. Electroanalysis,2004,16(1-2):146-149
    [134]Wang J, Pumera M, Chatrathi M P, et al. Single-Channel Microchip for Fast Screening and Detailed Identification of Nitroaromatic Explosives or Organophosphate Nerve Agents. Analytical Chemistry,2002,74(5):1187-1191
    [135]Chen P S, Huang S D. Determination of ethoprop, diazinon, disulfoton and fenthion using dynamic hollow fiber-protected liquid-phase microextraction coupled with gas chromatography-mass spectrometry. Talanta,2006, 69(3):669-675
    [136]Rotiroti L, Stefano L D, Rendina I, et al. Optical microsensors for pesticides identification based on porous silicon technology. Biosensors and Bioelectronics, 2005,20(10):2136-2139
    [137]Leandro C C, Hancock P, Fussell R J, et al. Comparison of ultra-performance liquid chromatography and high-performance liquid chromatography for the determination of priority pesticides in baby foods by tandem quadrupole mass spectrometry. Journal of Chromatography A,2006,1103(1):94-101
    [138]Garrido E M, Delerue-Matos C, Lima J L F C, et al. Electrochemical Methods in Pesticides Control. Analytical letters,2004,37(9):1755-1791
    [139]Liu G D, Lin Y H. Electrochemical stripping analysis of organophosphate pesticides and nerve agents. Electrochemistry Communications,2005, 7(4):339-343
    [140]Ni Y N, Qiu P, Kokot S. Simultaneous determination of three organophosphorus pesticides by differential pulse stripping voltammetry and chemometrics. Analytica Chimica Acta,2004,516(1-2):7-17
    [141]Kumaravel A, Chandrasekaran M. A novel nanosilver/nafion composite electrode for electrochemical sensing of methyl parathion and parathion. Journal of Electroanalytical Chemistry,2010,638(2):231-235
    [142]Bard A J, Falkner L R. Electrochemical Methods:Fundamentals and applications. New York:Wiley,1980,226-230
    [143]Du D, Ye X P, Zhang J D, et al. Cathodic electrochemical analysis of methyl parathion at bismuth-film-modified glassy carbon electrode. Electrochimica Acta, 2008,53(13):4478-4484
    [144]Mayorov A S, Gorbachev R V, Morozov S V, et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Letters,2011,11 (6):2396-2399
    [145]Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials. Nature,2006,442(1700):282-286
    [146]Ramanathan T, Abdala A A, Stankovich S, et al. Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology,2008,3(6):327-331
    [147]Shao Y Y, Wang J, Wu H, et al. Graphene Based Electrochemical Sensors and Biosensors:A Review. Electroanalysis,2010,22(10):1027-1036
    [148]Ao Z M, Yang J, Li S, et al. Enhancement of CO detection in Al doped graphene. Chemical Physics Letters,2008,461(4-6):276-279
    [149]Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon,2007, 45(7):1558-1565
    [150]Ferrari A C. Raman spectroscopy of graphene and graphite:Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications,2007,143(1-2):47-57
    [151]Xiang G L, He J, Li T Y, et al. Rapid preparation of noble metal nanocrystalsvia facile coreduction with graphene oxide and their enhanced catalytic properties. Nanoscale,2011,3(9):3737-3742
    [152]Liu G D, Lin Y H. Electrochemical Sensor for Organophosphate Pesticides and Nerve Agents Using Zirconia Nanoparticles as Selective Sorbents. Analytical Chemistry,2005,77(18):5894-5901
    [153]Parham H, Rahbar N. Square wave voltammetric determination of methyl parathion using ZrO2-nanoparticles modified carbon paste electrode. Journal of Hazardous Materials,2010,177(1-3):1077-1084
    [154]Du D, Chen W J, Zhang W Y, et al. Covalent coupling of organophosphorus hydrolase loaded quantum dots to carbon nanotube/Au nanocomposite for enhanced detection of methyl parathion. Biosensors and Bioelectronics,2010, 25(6):1370-1375
    [155]Kok F N, Hasirci V. Determination of binary pesticide mixtures by an acetylcholinesterase-choline oxidase biosensor. Biosensors and Bioelectronics, 2004,19(7):661-665
    [156]Allen M J, Tung V C, Kaner R B. Honeycomb Carbon:A Review of Graphene. Chemical reviews,2010,110(1):132-145
    [157]Liu S, Tian J G, Wang L, et al. Self-assembled graphene platelet-glucose oxidase nanostructures for glucose biosensing. Biosensors and Bioelectronics, 2011,26(11):4491-4496
    [158]Qin X Y, Luo Y L, Lu W B, et al. One-step synthesis of Ag nanoparticles-decorated reduced graphene oxide and their application for H2O2 detection. Electrochimica Acta,2012,79(30):46-51
    [159]Wu J F, Xu M Q, Zhao G C. Graphene-based modified electrode for the direct electron transfer of Cytochrome c and biosensing. Electrochemistry Communications,2010,12(11):175-177
    [160]Liang H, Miao X J, Gong J M. One-step fabrication of layered double hydroxides/graphene hybrid as solid-phase extraction for stripping voltammetric detection of methyl parathion. Electrochemistry Communications,2012, 20(41):149-152
    [161]Guo Y J, Guo S J, Ren J T, et al. Cyclodextrin Functionalized Graphene Nanosheets with High Supramolecular Recognition Capability:Synthesis and Host-Guest Inclusion for Enhanced Electrochemical Performance. ACS Nano, 2010,4(7):4001-4010
    [162]Pumera M. Graphene in biosensing. Materials today,2011,14(7-8):308-315
    [163]Yang S L, Luo S L, Liu C B, et al. Direct synthesis of graphene-chitosan composite and its application as an enzymeless methyl parathion sensor. Colloids and Surfaces B:Biointerfaces,2012,96(1):75-79
    [164]Wu S, Lan X Q, Cui L J, et al. Application of graphene for preconcentration and highly sensitive stripping voltammetric analysis of organophosphate pesticide. Analytica Chimica Acta,2011,699(2):170-176
    [165]Zhang J, Lee J K, Wu Y, et al. Photoluminescence and Electronic Interaction of Anthracene Derivatives Adsorbed on Sidewalls of Single-Walled Carbon Nanotubes. Nano Letters,2003,3(3):403-407
    [166]Star A, Han T R, Gabriel J C P, et al. Interaction of Aromatic Compounds with Carbon Nanotubes:Correlation to the Hammett Parameter of the Substituent and Measured Carbon Nanotube FET Response. Nano Letters,2003,3(10):1421-1423
    [167]Du D, Wang M H, Zhang J M, et al. Application of multiwalled carbon nanotubes for solid-phase extraction of organophosphate pesticide. Electrochemistry Communications,2008,10(1):85-89
    [168]Ravelo-Perez L M, Herrera-Herrera A V, Hernandez-Borges J, et al. Carbon nanotubes:solid-phase extraction. Journal of Chromatography A,2010, 1217(16):2618-2641
    [169]Li B J, Cao H Q, Yin G. Mg (OH)2@ reduced graphene oxide composite for removal of dyes from water. Journal of Materials Chemistry,2011, 21(36):13765-13768
    [170]Gong J M, Wang L Y, Miao X J, et al. Efficient stripping voltammetric detection of organophosphate pesticides using NanoPt intercalated Ni/Al layered double hydroxides as solid-phase extraction. Electrochemistry Communications,2010, 12(11):1658-1661
    [171]Hennion M C. Graphitized carbons for solid-phase extraction. Journal of Chromatography A,2000,855(1-2):73-95
    [172]Shi L H, Liu X Q, Li H J, et al. Electrochemiluminescent Detection Based on Solid-Phase Extraction at Tris(2,2'-bipyridyl)ruthenium(II)-Modified Ceramic Carbon Electrode. Analytical Chemistry,2006,78(20):7330-7334
    [173]Shi L H, Liu X Q, Li H J, et al. Application of Ceramic Carbon Materials for Solid-Phase Extraction of Organic Compounds. Analytical Chemistry,2006, 78(4):1345-1348
    [174]Kim B, Sigmund W M. Functionalized Multiwall Carbon Nanotube/Gold Nanoparticle Composites. Langmuir,2004,20(19):8239-8242
    [175]Wang M, Li Z Y. Nano-composite ZrO2/Au film electrode for voltammetric detection of parathion. Sensors and Actuators B:Chemical,2008,133(2):607-612
    [176]Du D, Ye X, Zhang J, et al. Stripping voltammetric analysis of organophosphate pesticides based on solid-phase extraction at zirconia nanoparticles modified electrode. Electrochemistry Communications,2008,10(5):686-690
    [177]Manisankar P, Selvanathan G, Vedhi C. Determination of pesticides using heteropolyacid montmorillonite clay-modified electrode with surfactant. Talanta, 2006,68(3):686-692
    [178]Karnati C, Du H, Ji H F, et al. Organophosphorus hydrolase multilayer modified microcantilevers for organophosphorus detection. Biosensors and Bioelectronics, 2007,22(11):2636-2642
    [179]Du D, Ye X X, Cai J, et al. Acetylcholinesterase biosensor design based on carbon nanotube-encapsulated polypyrrole and polyaniline copolymer for amperometric detection of organophosphates. Biosensors and Bioelectronics, 2010,25(11):2503-2508
    [180]Huang Y G, Ji J D, Hou Q N. A study on carcinogenesis of endogenous nitrite and nitrosamine, and prevention of cancer. Mutation Research,1996,358(1):7-14
    [181]Lijinsky W, Epstein S S. Nitrosamines as environmental carcinogens. Nature, 1970,225(5227):21-23
    [182]Wolf I A, Wasserman A E. Nitrates, Nitrites, and Nitrosamines. Science,1972, 177(4043):15-19
    [183]Wang S, Yin Y, Lin X. Cooperative effect of Pt nanoparticles and Fe(III) in the electrocatalytic oxidation of nitrite. Electrochemistry Communications,2004, 6(3):259-262
    [184]Zhao K, Song H, Zhuang S, et al. Determination of nitrite with the electrocatalytic property to the oxidation of nitrite on thionine modified aligned carbon nanotubes. Electrochemistry Communications,2007,9(1):65-70
    [185]Abbasour A, Mehrgardi M A. Electrocatalytic activity of Ce(III)-EDTA complex toward the oxidation of nitrite ion. Talanta,2005,67(3):579-584
    [186]Kamyabi M A, Aghajanloo F. Electrocatalytic oxidation and determination of nitrite on carbon paste electrode modified with oxovanadium(IV)-4-methyl salophen. Journal of Electroanalytical Chemistry,2008,614(1-2):157-165
    [187]Jiang L, Wang R, Li X, et al. Electrochemical oxidation behavior of nitrite on a chitosan-carboxylated multiwall carbon nanotube modified electrode. Electrochemistry Communications,2005,7(6):597-601
    [188]Davis J, Compton R G. Sonoelectrochemically enhanced nitrite detection. Analytica Chimica Acta,2000,404(2):241-247
    [189]Tarafder P K, Rathore D P S. Spectrophotometric determination of nitrite in water. Analyst,1988,113(7):1073-1076
    [190]Ensafi A A, Saminifar M. Kinetic spectrophotometric determination of low levels of nitrite by catalytic reaction between pyrogallol red and bromate. Talanta, 1993,40(9):1375-1378
    [191]Hertz J, Baltensperger U. Determination of nitrate and other inorganic anions (NO2-, PO43-, Cl-, SO42-) in salad and vegetables by ion chromatography. Fresenius'Zeitschrift fur analytische Chemie,1984,318(2):121-123
    [192]Miyazaki A, Asakawa T, Nakano Y, et al. Nitrite reduction on morphologically controlled Pt nanoparticles. Chemical Communications,2005,29(1):3730-3732
    [193]Zhao G, Liu K Z, Lin S, et al. Electrocatalytic Reduction of Nitrite Using a Carbon Nanotube Electrode in the Presence of Cupric Ions. Microchimica Acta, 2004,144(1-3):75-80
    [194]Wang Y, Wei W Z, Liu X, et al. Carbon nanotube/chitosan/gold nanoparticles-based glucose biosensor prepared by a layer-by-layer technique. Materials Science and Engineering:C,2009,29(1):50-54
    [195]Zhao H T, Ju H X. Multilayer membranes for glucose biosensing via layer-by-layer assembly of multiwall carbon nanotubes and glucose oxidase. Analytical Biochemistry,2006,350(1):138-144
    [196]Merkoci A, Pumera M, Llopis X, et al. New materials for electrochemical sensing Ⅵ:Carbon nanotubes. TrAC Trends in Analytical Chemistry,2005, 24(9):826-838
    [197]Gavalas V G, Law S A, Ball J C, et al. Carbon nanotube aqueous sol-gel composites:enzyme-friendly platforms for the development of stable biosensors. Analytical Biochemistry,2004,329(2):247-252
    [198]Lin Y H, Cui X L, Ye X R. Electrocatalytic reactivity for oxygen reduction of palladium-modified carbon nanotubes synthesized in supercritical fluid. Electrochemistry Communications,2005,7(3):267-274
    [199]Okahata Y, Kobayashi T, Tanaka K, et al. Anisotropic Electric Conductivity in an Aligned DNA Cast Film. Journal of The American Chemical Society,1998, 120(24):6165-6166
    [200]Boon E M, Jackson N M, Wightman M D, et al. Intercalative Stacking:A Critical Feature of DNA Charge-Transport Electrochemistry. Journal of Physical Chemistry B 2003,107(42):11805-11812
    [201]Ly D, Sanii L, Schuster G B. Mechanism of charge transport in DNA: internally-linked anthraquinone conjugates support phonon-assisted polaron hopping. Journal of The American Chemical Society,1999,121(40):9400-9410
    [202]Nakashima N, Okuzono S, Marakami H, et al. DNA dissolves single-walled carbon nanotubes in water. Chemistry Letters,2003,32(5):456-457
    [203]Guo M L, Chen J H, Liu D Y, et al. Electrochemical characteristics of the immobilization of calf thymus DNA molecules on multi-walled carbon nanotubes. Bioelectrochemistry,2004,62(1):29-35
    [204]Noguchi Y, Fujigaya T, Niidome Y, et al. Single-walled carbon nanotubes/DNA hybrids in water are highly stable. Chemical Physics Letters,2008, 455(4-6):249-251
    [205]Gao Y G, Sriam M, Wang A H J. Crystallographic studies of metal ion-DNA interactions:different binding modes of cobalt(Ⅱ), copper(Ⅱ) and barium(Ⅱ) to N7 of guanines in Z-DNA and a drug-DNA complex. Nucleic Acid Research, 1993,21(17):4093-4101
    [206]Priitz W A, Butler J, Land E J. Interaction of copper (Ⅰ) with nucleic acids. International Journal of Radiation Biology,1990,58(2):215-234
    [207]Gu T T, Hasebe Y. DNA-Cu(Ⅱ) poly(amine) complex membrane as novel catalytic layer for highly sensitive amperometric determination of hydrogen peroxide. Biosensors and Bioelectronics,2006,21(11):2121-2128
    [208]Hasebe Y, Gu T T. DNA-Cu(Ⅱ) complex as a novel electrocatalyst for a hydrogen peroxide sensor. Journal of Electroanalytical Chemistry,2005, 576(15):177-181
    [209]Du Y, Luo X L, Xu J J, et al. A simple method to fabricate a chitosan-gold nanoparticles film and its application in glucose biosensor. Bioelectrochemistry, 2007,70(2):342-347
    [210]Chen X H, Matsumoto N, Hu Y B, et al. Electrochemically Mediated Electrodeposition/Electropolymerization To Yield a Glucose Microbiosensor with Improved Characteristics. Analytical Chemistry,2002,74(2):368-372
    [211]Salimi A, Hallaj R, Soltanian S, et al. Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles. Analytica Chimica Acta,2007,594(1):24-31
    [212]Lin X Q, Jiang X H, Lu L P. DNA deposition on carbon electrodes under controlled dc potentials. Biosensors and Bioelectronics,2005,20(9):1709-1717
    [213]Zeng X D, Liu X Y, Kong B, et al. A sensitive nonenzymatic hydrogen peroxide sensor based on DNA-Cu2+ complex electrodeposition onto glassy carbon electrode. Sensors and Actuators B:Chemical,2008,133(2):381-386
    [214]Cathcart H, Quinn S, Nicolosi V, et al. Spontaneous Debundling of Single-Walled Carbon Nanotubes in DNA-Based Dispersions. The Journal of Physical Chemistry C,2007, 111(1):66-74
    [215]董绍俊,车广礼,谢远武.化学修饰电极.北京:科学出版社,1995,464-469
    [216]Tian Y, Wang J, Wang Z, et al. Electroreduction of nitrite at an electrode modified with polypyrrole nanowires. Synthetic Metals,2004,143(3):309-313
    [217]Wang H, Huang Y, Tan Z, et al. Fabrication and characterization of copper nanoparticle thin-films and the electrocatalytic behavior. Analytica Chimica Acta, 2004,526(1):13-17
    [218]Zeng J X, Wei W Z, Zhai X. R, et al. Assemble-Electrodeposited Ultrathin Conducting Poly(Azure A) at a Carbon Nanotube-Modified Glassy Carbon Electrode, and its Electrocatalytic Properties to the Reduction of Nitrite. Microchimica Acta,2006,155(3-4):379-386
    [219]Tang Q Y, Luo X X, Wen R M. Construction of a Heteropolyanion-Containing Polypyrrole/Carbon Nanotube Modified Electrode and Its Electrocatalytic Property. Analytical Letters,2005,38(9):1445-1456
    [220]Liu P F, Hu J H. Carbon nanotube powder microelectrodes for nitrite detection. Sensors and Actuators B:Chemical,2002,84(2-3):194-199
    [221]Yang S L, Zeng X D, Liu X Y, et al. Electrocatalytic reduction and sensitive determination of nitrite at nano-copper coated multi-walled carbon nanotubes modified glassy carbon electrode. Journal of Electroanalytical Chemistry,2010, 639(1-2):181-186
    [222]Pei J H, Tian F, Thundat T. Glucose biosensor based on the microcantilever. Analytical Chemistry,2004,76(2):292-297
    [223]中国疾病预防控制中心.全球每年约有300万人死于糖尿病.http://www.chinacdc.cn/gwxx/200511/t20051102_32452.htm,2005-11-02
    [224]Ahmad M, Pan C F, Luo Z X, et al. A single ZnO nanofiberbased highly sensitive amperometric glucose biosensor. The Journal of Physical Chemistry C,2010, 114(20):9308-9313
    [225]Kang X H, Wang J, Wu H, et al. Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosensors and Bioelectronics,2009,25(4):901-905
    [226]Liu X Y, Zeng X D, Mai N N, et al. Amperometric glucose biosensor with remarkable acid stability based on glucose oxidase entrapped in colloidal gold-modified carbon ionic liquid electrode. Biosensors and Bioelectronics,2010, 25(12):2675-2679
    [227]Shan C S, Yang H F, Song J F, et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Analytical Chemistry,2009, 81(6):2378-2382
    [228]Dai Z H, Ni J, Huang X H, et al. Direct electrochemistry of glucose oxidase immobilized on a hexagonal mesoporous silica-MCM-41 matrix. Bioelectrochemistry,2007,70(2):250-256
    [229]Huang Y X, Zhang W J, Xiao H, et al. An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode. Biosensors and Bioelectronics,2005,21(5):817-821
    [230]Liu Y, Wang M K, Zhao F, et al. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosensors and Bioelectronics,2005,21(6):984-988
    [231]Pulcu G S, Elmore B L, Arciero D M, et al. Direct electrochemistry of tetraheme cytochrome c554 from nitrosomonas europaea:redox cooperativity and gating. Journal of The American Chemical Society,2007,129(7):1838-1839
    [232]Zeng X D, Li X F, Liu X Y, et al. A third-generation hydrogen peroxide biosensor based on horseradish peroxidase immobilized on DNA functionalized carbon nanotubes. Biosensors and Bioelectronics,2009,25(4):896-900
    [233]Perez-Lopez B, Merkoci A. Carbon nanotubes and graphene in analytical sciences. Microchimica Acta,2012,179(1-2):1-16
    [234]Gan T, Hu S S. Electrochemical sensors based on graphene materials. Microchimica Acta,2011,175(1-2):1-19
    [235]Li D, Kaner R B. Graphene-based materials. Science,2008, 320(5880):1170-1171
    [236]Niyogi S, Bekyarova E, Itkis M E, et al. Solution properties of graphite and graphene. Journal of The American Chemical Society,2006,128(24):7720-7721
    [237]Schniepp H C, Li J L, Mcallister M J, et al. Functionalized single graphene sheets derived from splitting graphite oxide. The Journal of Physical Chemistry B, 2006,110(17):8535-8539
    [238]Xu Y, Bai H, Lu G W, et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. Journal of The American Chemical Society,2008,130(18):5856-5857
    [239]Kang X H, Mai Z B, Zou X Y, et al. Electrochemical biosensor based on multi-walled carbon nanotubes and Au nanoparticles synthesized in chitosan. Journal of Nanoscience and Nanotechnology,2007,7(4-5):1618-1624
    [240]Hu H T, Wang X B, Wang J C, et al. Microwave-assisted covalent modification of graphene nanosheets with chitosan and its electrorheological characteristics. Applied Surface Science,2011,257(7):2637-2642
    [241]Xu H F, Dai H, Chen G N. Direct electrochemistry and electrocatalysis of hemoglobin protein entrapped in graphene and chitosan composite film. Talanta, 2010,81(1-2):334-338
    [242]Wu L Q, Gadre A P, Yi H, et al. Voltage-dependent assembly of the polysaccharide chitosan onto an electrode surface. Langmuir,2002, 18(22):8620-8625
    [243]Wu L Q, Yi H, Li S, et al. Spatially selective deposition of a reactive polysaccharide layer onto a patterned template. Langmuir,2003,19(3):519-524
    [244]Wu L Q, Lee K, Wang X, et al. Chitosan-mediated and spatially selective electrodeposition of nanoscale particles. Langmuir,2005,21(8):3641-3646
    [245]Yi H, Wu L Q, Ghodssi R, et al. A robust technique for assembly of nucleic acid hybridization chips based on electrochemically templated chitosan. Analytical Chemistry,2004,76(2):365-372
    [246]Lu X B, Zhang Q, Zhang L, et al. Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid. Electrochemistry Communications,2006,8(5):874-878
    [247]Ianniello R M, Lindsay T J, Yacynych A M. Differential pulse voltammetric study of direct electron transfer in glucose oxidase chemically modified graphite electrodes. Analytical Chemistry,1982,54(7):1098-1101
    [248]Liu Q, Lu X, Li J, et al. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosensors and Bioelectronics,2007,22(12):3203-3209
    [249]Wu J, Zou Y H, Gao N, et al. Electrochemical performances of C/Fe nanocomposite and its use for mediator-free glucose biosensor preparation. Talanta,2005,68(1):12-18
    [250]Wu B Y, Hou S H, Yin F, et al. Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode. Biosensors and Bioelectronics,2007,22(6):838-844

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700