基于熵测度的短时心脏动力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心血管疾病的无创无损早期检测是目前生物医学领域面临的重大挑战,心脏动力学分析是克服该挑战的有效手段之一。熵测度是一类常用的心脏动力学分析工具,其在分析有限长度含噪生理序列方面具有显著优势。
     本文旨在探究短时心脏动力学分析用于心血管疾病无创无损早期检测的潜在价值。定义了分析熵测度统计性能的定量指标,对比研究了现有熵测度的稳定性和一致性。提出了分布熵算法及其对应的多尺度和多变量形式,验证了它们分析短时序列时的统计性能。基于分布熵分析,系统研究了短时心脏动力特征在老年人群和心衰患者中的变化规律。所做主要工作如下:
     (1)引入调整因子λ,定义了物理模糊隶属函数,提出了改进的模糊熵测度族。仿真试验结果表明:改进的模糊熵测度族相比原始算法具有显著提高的稳定性,其一致性与原始算法相当;λ的取值与时间序列的噪声水平相关,当λ较大时,隶属函数会过高地估计噪声水平,影响算法的一致性;折中考虑算法的稳定性和一致性,对λ的取值范围作了经验规定。
     (2)定义了定量评价熵测度统计性能的分辨能力指数和可靠水平指数,建立了算法统计性能的科学评价体系。通过耦合宽带噪声模型、耦合MIX(p)模型、耦合Henon映射和耦合Rossler系统,对比研究了互熵和多变量熵的统计性能,结果表明:互熵仅对线性随机过程有效,而对非线性混沌系统难以获得客观结果;相比多变量熵,互熵的参数依赖性较高;低频趋势会对多变量熵分析结果造成影响;多尺度分析时,互熵和多变量熵的统计性能均无显著改善。
     (3)建立了分布熵测度及对应的多变量和多尺度形式。提出经典熵测度统计性能难以获得进一步提升的根源在于它们仅对序列的相空间特征进行了局部评估,基于向量间的距离分布特征,提出了相空间的全局度量算法,建立了分布熵测度;定义了多变量联合相空间重构算法,建立了多变量分布熵测度,对分布熵和多变量分布熵的统计性能进行了定量分析。结果表明:相比样本熵和改进的模糊熵,分布熵的一致性和稳定性显著提高;当时间序列仅具有50个有效采样点时,分布熵也具有相当优越的统计性能;多变量分布熵能够有效挖掘多通道序列间的耦合性,相比多变量样本熵和改进的多变量模糊熵,多变量分布熵的统计性能显著提高。
     (4)研究了短时心脏电动力学特征随年龄的变化趋势,揭示了老年人群自主神经功能的退化规律。试验结果表明:短时心动周期序列的分布熵值和改进的模糊熵值在不同年龄人群间具有显著差异,而经典熵测度不能有效区分不同年龄人群间的差异;相比改进的模糊熵,分布熵结果随年龄的变化趋势更为显著;当年龄超过40岁时,短时心动周期序列原始尺度上的分布熵开始显著降低,年龄超过70岁后,这种降低趋势不再继续,分布熵在较低水平上维持不变;高时间尺度上的分布熵结果在不同年龄人群间无显著差异。
     (5)率先研究了年龄对短时心脏机械动力学特征和心脏电-机械耦合特征的影响,为无创无损检测心血管疾病提供了新的有益思路。试验结果表明:健康年轻人群中,短时心脏舒张间期序列的分布熵与短时心动周期序列相当,心动周期-舒张间期的多变量分布熵较高,即两者之间存在显著耦合;年龄超过40岁后,短时舒张间期序列的分布熵显著低于短时心动周期序列,它们的耦合性也显著降低,且随年龄的增加耦合性继续降低,提示老龄化可能引发心脏机械功能的退化,影响心脏的收缩或舒张运动。
     (6)基于短时心脏动力学分析,构建了无创无损心衰检测指标。临床试验表明:短时电动力学特征、短时机械动力学特征和电-机械耦合特征在心衰患者中均显著下降;与年龄造成的影响不同,心衰同时造成高尺度上各动力学特征的降低;短时电动力学特征用于检测心衰的敏感性和特异性分别为92.31%和96.00%;短时机械动力学特征和电-机械耦合特征能够提供独立于电动力学特征之外的有益信息,基于上述全部短时动力学特征所建立的心衰检测指标,其敏感性和特异性分别达到96.15%和100%。
The early noninvasive and nondestructive detection of cardiovascular diseases is a contemporary challenge in the field of biomedicine. Concepts from cardiac dynamics appear to provide it promising methods through the assessment of the integrated behaviors of the cardiovascular signals on a system level. Entropy measures are commonly applied in cardiac dynamics. They have been shown to be very promising in the dynamical analysis of physiological series with finite length and various noises.
     This dissertation aimed to probe deeply into the significance of short-term cardiac dynamics in the noninvasive and nondestructive detection of cardiovascular diseases. Briefly, quantitative indices for the evaluation of statistical abilities were defined first and the stability as well as the consistency of conventional entropy measures were compared. Then this dissertation established a novel distribution entropy measure and its multiscale and multivariate counterparts. Their statistical abilities were also examined rigorously. Finally, the significance of short-term cardiac dynamical features estimated by distribution entropy was explored with real-world cardiovascular data. Main works in this dissertation are listed as follows.
     (1) A physical fuzzy membership function was defined by introducing an adjustable factor λ; a refined family of fuzzy entropy was developed accordingly. Simulation results indicated that the refined algorithms had clearly improved stability in comparison with the original ones. Their consistency was highly comparable with the original algorithms. The value of λ depended on the noise level of the time-series; the noise level would be over-estimated by relatively large λ, which could consequently affect the consistency. Its value could thus be selected empirically by a compromise between the stability and consistency.
     (2) Systematically methods for the evaluation of the statistical abilities of entropy measures were established. Prior to the evaluation, a distinguishability index and a reliability index was defined. This work then implemented elaborate tests on the consistency of both cross entropies and multivariate entropies through4distinctly different theoretical models-coupled broadband noise model, coupled MIX(p) process, coupled Henon map, and coupled Rossler system. Results indicated that cross entropies failed to work in nonlinear chaotic systems although they could work relatively well in linear stochastic processes. Multivariate entropies could, however, work well in both; they were also less dependent on input parameters in comparison with cross entropies. However, the low-frequency trend in time-series could affect the performances of both multivariate entropy measures. Their abilities could not be further improved by multiscale analysis.
     (3) A novel distribution entropy and its multivariate and multiscale counterparts were developed. It indicated in this dissertation that conventional entropy measures did not fully characterize the information carried in the state space, which accounted much for their inconsistency and instability. This work developed a novel distribution entropy metric by integrating the information carried therein. Besides, it established a joint procedure for multivariate state-space reconstruction. The multivariate distribution entropy was developed accordingly. Their stability and consistency were subsequently examined quantitatively and rigorously. Results showed distribution entropy a very robust metric for assessing the complexity. In comparison with both sample entropy and refined fuzzy entropy, it had significantly improved consistency and stability. It was also very stable in data sets in as small as50data points. Besides, multivariate distribution entropy inherited the advantages of distribution entropy, indicating by far better performances in assessing the multivariate complexity of simulation models compared to conventional algorithms.
     (4) Aging effects on the short-term cardiac electrodynamical features were investigated in this dissertation, which should probably be a new dynamical picture of the autonomic control. Results indicated that both the distribution entropy and the refined fuzzy entropy had significant differences among different aging groups. However, conventional measures failed to captures these differences. In comparison with refined fuzzy entropy, distribution entropy showed more significant varying patterns with aging. The distribution entropy of short-term heartbeat interval data at the first scale declined significantly in group with age>40year. But for old people whose ages were70year and above, the distribution entropy did not reduce further; it maintained in a relatively low level. By comparison, no significant variation was captured in distribution entropy at higher scales.
     (5) This dissertation had explored, for the first time, the aging effects on the short-term cardiac mechano-dynamical features and the electromechanical coupling, which should provide valuable tools for the noninvasive and nondestructive detection of cardiovascular diseases. Results showed that distribution entropy of short-term cardiac diastolic period was highly comparable with that of heartbeat interval data in healthy young adults. The multivariate distribution entropy of heart rate-diastolic period was relative large, showing a tight coupling between them. The distribution entropy of the cardiac diastolic period was significantly lower than that of heartbeat interval data. Their coupling was also declined and this declining tendency maintained with aging. Those results suggested a possible mechanism of aging induced damage in cardiac mechanic function which should affect the contraction and relaxation of the heart.
     (6) Noninvasive and nondestructive indices for the detection of heart failure were established by short-term cardiac dynamics. Clinical trials showed that the electrodynamical, mechano-dynamical features and the electro-mechanical coupling at the first scale all significantly depressed in heart failure patients. Additionally, these features were also distinctly declined at higher scales, which were different from the affects of aging. There was a certain merit of short-term cardiac electrodynamical features in HF detection. However, the short-term cardiac mechano-dynamical features and the electro-mechanical coupling could indeed be capable of providing additional valuable information in this specific task. The index constructed by all dynamical features resulted obviously improved performances with sensitivity of96.15%and specificity of100%, in comparison with that developed by solely electrodynamical features, whose sensitivity and specificity was92.31%and96.00%, respectively.
引文
[1]State of the heart:cardiovascular disease report[R]. the World Heart Federation,2010.
    [2]中国心血管病报告2012[R].国家心血管病中心,2013.
    [3]Global atlas on cardiovascular disease prevention and control[R]. the World Health Organization in collaboration with the World Heart Federation and the World Stroke Organization,2011.
    [4]孙欣.心血管疾病早期检测关键技术研究[D]:山东大学,2010.
    [5]Wolf M.M., Varigos G.A., Hunt D., et al. Sinus arrhythmia in acute myocardial infarction[J]. Med. J. Aust.,1978,2(2):52-53.
    [6]Akselrod S., Gordon D., Ubel F.A., et al. Power spectrum analysis of heart rate fluctuation:a quantitative probe of beat-to-beat cardiovascular control[J]. Science,1981,213(4504):220-222.
    [7]Ewing D.J., Martyn C.N., Young R.J., et al. The value of cardiovascular autonomic function tests:10 years experience in diabetes[J]. Diabetes Care, 1985,8(5):491-498.
    [8]Electrophysiology Task Force of the European Society of Cardiology the North American Society of Pacing. Heart rate variability:standards of measurement, physiological interpretation, and clinical use[J]. Circulation, 1996,93(5):1043-1065.
    [9]Lipsitz L., Goldberger A.L. Loss of complexity and aging:potential applications of fractals and chaos theory to senescence[J]. JAMA,1992, 267(13):1806-1809.
    [10]Iyengar N., Peng C.K., Morin R., et al. Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics[J]. Am. J. Physiol. Heart Circ. Physiol.,1996,271(4):R1078-R1084.
    [11]Kaplan D.T., Furman M.I., Pincus S.M., et al. Aging and the complexity of cardiovascular dynamics[J]. Biophys. J.,1991,59(4):945-949.
    [12]Goldberger A.L. Non-linear dynamics for clinicians:chaos theory, fractals, and complexity at the bedside[J]. Lancet,1996,347(9011):1312-1314.
    [13]Griffith T.M., Holstein-Rathlou N.-H., Persson P.B. Chaos:introduction to the spotlight issue[J]. Cardiovasc. Res.,1996,31(3):331.
    [14]Wagner C.D., Persson P.B. Chaos in the cardiovascular system:an update[J]. Cardiovasc. Res.,1998,40(2):257-264.
    [15]Hofstadter D. Godel, Escher, Bach:an Eternal Golden Braid[M]:Basic Books Press,1979.
    [16]Huikuri H.V., Perkiomaki J.S., Maestri R., et al. Clinical impact of evaluation of cardiovascular control by novel methods of heart rate dynamics[J]. Phil. Trans. R. Soc. A,2009,367(1892):1223-1238.
    [17]Goldberger A.L., Findley L.J., Blackburn M.R., et al. Nonlinear dynamics in heart failure:implications of long-wavelength cardiopulmonary oscillations[J]. Am. Heart J.,1984,107(3):612-615.
    [18]Hon E.H., Lee S.T. Electronic evaluation of the fetal heart rate. VIII. Patterns preceding fetal death, further observations[J], Am. J. Obstet. Gynecol.,1963, 87:814-826.
    [19]Peng C.K., Buldyrev S.V., Havlin S., et al. Mosaic organization of DNA nucleotides[J]. Phys. Rev. E,1994,49(2):1685-1689.
    [20]Yeragani V.K., Sobolewski E., Kay J., et al. Effect of age on long-term heart rate variability[J]. Cardiovasc. Res.,1997,35(1):35-42.
    [21]Goldberger A.L., Peng C.K., Lipsitz L.A. What is physiologic complexity and how does it change with aging and disease?[J]. Neurobiol. Aging,2002, 23(1):23-26.
    [22]Schmitt D.T., Ivanov P. Fractal scale-invariant and nonlinear properties of cardiac dynamics remain stable with advanced age:a new mechanistic picture of cardiac control in healthy elderly[J]. Am. J. Physiol. Regul. Integr. Comp. Physiol.,2007,293(5):R1923-R1937.
    [23]Schmitt D.T., Stein P.K., Ivanov P. Stratification pattern of static and scale-invariant dynamic measures of heartbeat fluctuations across sleep stages in young and elderly[J]. IEEE Trans. Biomed. Eng.,2009,56(5): 1564-1573.
    [24]Schumann A.Y., Bartsch R.P., Penzel T., et al. Aging effects on cardiac and respiratory dynamics in healthy subjects across sleep stages[J]. Sleep,2010, 33(7):943-955.
    [25]Bauer A., Kantelhardt J.W., Bunde A., et al. Phase-rectified signal averaging detects quasi-periodicities in non-stationary data[J]. Physica A,2006,364(0): 423-434.
    [26]Choi J.-B., Hong S., Nelesen R., et al. Age and ethnicity differences in short-term heart-rate variability[J]. Psychosom. Med.,2006,68(3):421-426.
    [27]Ryan S.M., Goldberger A.L., Pincus S.M., et al. Gender-and age-related differences in heart rate dynamics:are women more complex than men?[J]. J. Am. Coll. Cardiol.,1994,24(7):1700-1707.
    [28]Hayano J., Yamada M., Sakakibara Y., et al. Short-and long-term effects of cigarette smoking on heart rate variability [J]. Am. J. Cardiol.,1990,65(1): 84-88.
    [29]Malpas S.C., Whiteside E.A., Maling T.J. Heart rate variability and cardiac autonomic function in men with chronic alcohol dependence [J]. Br. Heart J., 1991,65(2):84-88.
    [30]Togo F., Yamamoto Y. Decreased fractal component of human heart rate variability during non-REM sleep[J]. Am. J. Physiol. Heart Circ. Physiol., 2001,280(1):H17-21.
    [31]Coumel P., Hermida J.-S., Wennerblom B., et al. Heart rate variability in left ventricular hypertrophy and heart failure, and the effects of beta-blockade:a non-spectral analysis of heart rate variability in the frequency domain and in the time domain[J]. Eur. Heart J.,1991,12(3):412-422.
    [32]Ivanov P.C., Amaral L.A.N., Goldberger A.L., et al. Multifractality in human heartbeat dynamics[J]. Nature,1999,399(6735):461-465.
    [33]Costa M., Goldberger A.L., Peng C.K. Multiscale entropy analysis of complex physiologic time series[J]. Phys. Rev. Lett.,2002,89(6):068102.
    [34]Costa M., Goldberger A.L., Peng C.K. Multiscale entropy analysis of biological signals[J]. Phys. Rev. E,2005,71(2):021906.
    [35]Costa M., Goldberger A.L., Peng C.K. Broken asymmetry of the human heartbeat:loss of time irreversibility in aging and disease[J]. Phys. Rev. Lett., 2005,95(19):198102.
    [36]Costa M., Peng C.K., Goldberger A. Multiscale analysis of heart rate dynamics:entropy and time irreversibility measures[J]. Cardiovasc. Eng., 2008,8(2):88-93.
    [37]Hou F., Zhuang J., Bian C., et al. Analysis of heartbeat asymmetry based on multi-scale time irreversibility test[J]. Physica A,2010,389(4):754-760.
    [38]Hou F.z., Ning X.b., Zhuang J.j., et al. High-dimensional time irreversibility analysis of human interbeat intervals[J]. Med. Eng. Phys.,2011,33(5): 633-637.
    [39]Wang J., Ning X., Chen Y. Multifractal analysis of electronic cardiogram taken from healthy and unhealthy adult subjects[J]. Physica A,2003,323(0): 561-568.
    [40]Wang J., Ning X., Ma Q., et al. Multiscale multifractality analysis of a 12-lead electrocardiogram[J]. Phys. Rev. E,2005,71(6 Pt 1):062902.
    [41]von Kanel R., Carney R., Zhao S., et al. Heart rate variability and biomarkers of systemic inflammation in patients with stable coronary heart disease: findings from the Heart and Soul Study[J]. Clin. Res. Cardiol.,2011,100(3): 241-247.
    [42]Lavoie K.L., Fleet R.P., Laurin C., et al. Heart rate variability in coronary artery disease patients with and without panic disorder[J]. Psychiatry Res., 2004,128(3):289-299.
    [43]Leistedt S.J., Linkowski P., Lanquart J.P., et al. Decreased neuroautonomic complexity in men during an acute major depressive episode:analysis of heart rate dynamics[J]. Transl. Psychiatry,2011,1:e27.
    [44]Stapelberg N.J., Hamilton-Craig I., Neumann D.L., et al. Mind and heart: heart rate variability in major depressive disorder and coronary heart disease -a review and recommendations[J]. Aust. N. Z. J. Psychiatry,2012,46(10): 946-957.
    [45]彭秋莲,胡孝昌,李满华,等.两种熵测度分析HRV预测阵发性房颤的比较研究[J].科技通报,2011,27:366-370.
    [46]祁佳,马玉茹,杨永丽,等.高血压合并室性早搏患者线性及非线性心率变异性分析[J].山东大学学报(医学版),2013,51(3):68-71.
    [47]韩清鹏,王平.HRV的最大李雅普诺夫指数估计[J].生物医学工程学杂志,2007,24(4):732-735.
    [48]Peng C.K., Mietus J.E., Liu Y., et al. Quantifying fractal dynamics of human respiration:age and gender effects[J]. Ann. Biomed. Eng.,2002,30(5): 683-692.
    [49]Kantelhardt J.W., Penzel T., Rostig S., et al. Breathing during REM and non-REM sleep:correlated versus uncorrelated behaviour[J]. Physica A, 2003,319(0):447-457.
    [50]West B.J., Griffin L.A., Frederick H.J., et al. The independently fractal nature of respiration and heart rate during exercise under normobaric and hyperbaric conditions [J]. Respir. Physiol. Neurobiol.,2005,145(2-3): 219-233.
    [51]Van den Aardweg J.G, Karemaker J.M. Influence of chemoreflexes on respiratory variability in healthy subjects[J]. Am. J. Respir. Crit. Care Med., 2002,165(8):1041-1047.
    [52]Parati G, Ochoa J.E., Lombardi C., et al. Assessment and management of blood-pressure variability[J]. Nat. Rev. Cardiol.,2013,10(3):143-155.
    [53]Rothwell P.M. Limitations of the usual blood-pressure hypothesis and importance of variability, instability, and episodic hypertension [J]. Lancet, 2010,375(9718):938-948.
    [54]张黎明,贺茜,陈志龙,等.自发性高血压大鼠血压波动、昼夜模式及靶器官损伤[J].中国现代医学杂志,2002,12(7):51-54.
    [55]Asayama K., Kikuya M., Schutte R., et al. Home blood pressure variability as cardiovascular risk factor in the population of Ohasama[J]. Hypertens., 2013,61(1):61-69.
    [56]Vrtovec B., Starc V., Starc R. Beat-to-beat QT interval variability in coronary patients[J]. J. Electrocardiol.,2000,33(2):119-125.
    [57]Liu C., Liu C., Li L., et al. Systolic and diastolic time interval variability analysis and their relations with heart rate variability[C]//2009 3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing, China,2009,2609-2612.
    [58]Carrasco-Sosa S., Guillen-Mandujano A. Variability of the systolic and diastolic electromechanical periods in healthy subjects. Computing in Cardiology. Belfast, Northern Ireland:IEEE 2010:133-136.
    [59]Kabir M.M., Dimitri H., Sanders P., et al. Cardiorespiratory phase-coupling is reduced in patients with obstructive sleep apnea[J]. PLoS ONE,2010,5(5): e10602.
    [60]Kuhnhold A., Schumann A.Y., Bartsch R.P., et al. Cardio-respiratory phase synchronization from reconstructed respiration[C]//Proceedings of Biosignal, Berlin, Germany,2010,1-4.
    [61]Iatsenko D., Bernjak A., Stankovski T., et al. Evolution of cardiorespiratory interactions with age[J]. Phil. Trans. R. Soc. A,2013,371(1997):20110622.
    [62]Berger R.D. QT interval variability:is it a measure of autonomic activity?[J]. J. Am. Coll. Cardiol.,2009,54(9):851-852.
    [63]Yeragani V., Raghunandan M.S., Yeragani S., et al. Increased chaos of beat-to-beat QT interval variability in patients with congestive cardiac failure:decreased chaos of QT with clinical improvement[J]. Cardiovasc. Eng.,2002,2(4):161-167.
    [64]Li P., Liu C., Liu C., et al. Higher order spectra for heart rate variability and QT interval variability analysis:a comparison between heart failure and normal control groups[C]//Computing in Cardiology, Hangzhou, China, 2011,309-312.
    [65]Baumert M., Starc V., Porta A. Conventional QT variability measurement vs. template matching techniques:comparison of performance using simulated and real ECG[J]. PLoS ONE,2012,7(7):e41920.
    [66]Voss A., Heitmann A., Schroeder R., et al. Short-term heart rate variability—age dependence in healthy subjects[J]. Physiol. Meas.,2012, 33(8):1289-1311.
    [67]Pena M.A., Echeverria J.C., Garcia M.T., et al. Applying fractal analysis to short sets of heart rate variability data[J]. Med. Biol. Eng. Comput.,2009, 47(7):709-717.
    [68]Pincus S.M. Approximate entropy as a measure of system complexity[J]. PNAS,1991,88(6):2297-2301.
    [69]Eckmann J.P., Ruelle D. Ergodic theory of chaos and strange attractors[J]. Rev. Mod. Phys.,1985,57(3):617-656.
    [70]Pincus S.M. Approximating Markov chains[J]. PNAS,1992,89(10): 4432-4436.
    [71]Pincus S.M., Huang W.M. Approximate entropy:statistical properties and applications[J]. Commun. Statist. Theory Meth.,1992,21(11):3061-3077.
    [72]Pincus S.M., Goldberger A.L. Physiological time-series analysis:what does regularity quantify?[J]. Am. J. Physiol. Heart Circ. Physiol.,1994,266(4 Pt 2):H1643-H1656.
    [73]Pincus S.M., Singer B.H. Randomness and degrees of irregularity [J]. PNAS, 1996,93(5):2083-2088.
    [74]Grassberger P., Procaccia I. Measuring the strangeness of strange attractors[J]. Physica D,1983,9(1-2):189-208.
    [75]Richman J.S., Moorman J.R. Physiological time-series analysis using approximate entropy and sample entropy[J]. Am. J. Physiol. Heart Circ. Physiol.,2000,278(6):H2039-H2049.
    [76]Castiglioni P., Di Rienzo M. How the threshold "R" influences approximate entropy analysis of heart-rate variability[C]//Computers in Cardiology,2008, 561-564.
    [77]Lu S., Chen X., Kanters J.K., et al. Automatic selection of the threshold value r for approximate entropy[J]. IEEE Trans. Biomed. Eng.,2008,55(8): 1966-1972.
    [78]Chon K., Scully C.G., Lu S. Approximate entropy for all signals[J]. IEEE Eng. Med. Biol. Mag.,2009,28(6):18-23.
    [79]Liu C., Liu C., Shao P., et al. Comparison of different threshold values r for approximate entropy:application to investigate the heart rate variability between heart failure and healthy control groups[J]. Physiol. Meas.,2011, 32(2):167-180.
    [80]Porta A., Castiglioni P., Bari V., et al. K-nearest-neighbor conditional entropy approach for the assessment of the short-term complexity of cardiovascular control[J]. Physiol. Meas.,2013,34(1):17.
    [81]Xie H.B., He W.X., Liu H. Measuring time series regularity using nonlinear similarity-based sample entropy[J]. Phys. Lett. A,2008,372(48):7140-7146.
    [82]Chen W., Zhuang J., Yu W., et al. Measuring complexity using FuzzyEn, ApEn, and SampEn[J]. Med. Eng. Phys.,2009,31(1):61-68.
    [83]Zadeh L.A. Fuzzy sets[J]. Inform. Contr.,1965,8(3):338-353.
    [84]Liu C., Zhao L. Using fuzzy measure entropy to improve the stability of traditional entropy measures[C]//Computing in Cardiology, Hangzhou, China,2011,681-684.
    [85]Liu C., Li K., Zhao L., et al. Analysis of heart rate variability using fuzzy measure entropy [J]. Comput. Biol. Med.,2013,43(2):100-108.
    [86]Vaillancourt D.E., Newell K.M. Changing complexity in human behavior and physiology through aging and disease[J]. Neurobiol. Aging,2002,23(1): 1-11.
    [87]Xiong G.L., Zhang L., Liu H.S., et al. A comparative study on ApEn, SampEn and their fuzzy counterparts in a multiscale framework for feature extraction[J]. J. Zhejiang Univ. Sci. A,2010,11(4):270-279.
    [88]Nikulin V.V., Brismar T. Comment on'multiscale entropy analysis of complex physiologic time series'[J]. Phys. Rev. Lett.,2004,92(8):089803.
    [89]Costa M., Goldberger A.L., Peng C.K. Costa, Goldberger, and Peng reply to comment on'multiscale entropy analysis of complex physiologic time series'[J]. Phys. Rev. Lett.,2004,92(8):089804.
    [90]Thuraisingham R.A., Gottwald GA. On multiscale entropy analysis for physiological data[J]. Physica A,2006,366:323-332.
    [91]Valencia J.F., Porta A., Vallverdu M., et al. Refined multiscale entropy: application to 24-h Holter recordings of heart period variability in healthy and aortic stenosis subjects[J]. IEEE Trans. Biomed. Eng.,2009,56(9): 2202-2213.
    [92]Huang N.E., Shen Z., Long S.R., et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. P. Roy. Soc. Lond. A,1998,454(1971):903-995.
    [93]Amoud H., Snoussi H., Hewson D., et al. Intrinsic mode entropy for nonlinear discriminant analysis[J]. IEEE Signal Process. Lett.,2007,14(5): 297-300.
    [94]Hu M., Liang H. Adaptive multiscale entropy analysis of multivariate neural data[J]. IEEE Trans. Biomed. Eng.,2012,59(1):12-15.
    [95]Xie H.B., Guo J.Y., Zheng Y.P. A comparative study of pattern synchronization detection between neural signals using different cross-entropy measures[J]. Biol. Cybern.,2010,102(2):123-135.
    [96]Xie H.B., Zheng Y.P., Guo J.Y., et al. Cross-fuzzy entropy:a new method to test pattern synchrony of bivariate time series[J]. Inform. Sciences,2010, 180(9):1715-1724.
    [97]Cao L., Mees A., Judd K. Dynamics from multivariate time series[J]. Physica D,1998,121(1-2):75-88.
    [98]Ahmed M.U., Mandic D.P. Multivariate multiscale entropy:a tool for complexity analysis of multichannel data[J]. Phys. Rev. E,2011,84(6-1): 061918.
    [99]Ahmed M.U., Mandic D.P. Multivariate multiscale entropy analysis[J]. IEEE Signal Process. Lett.,2012,19(2):91-94.
    [100]李鹏,刘澄玉,李丽萍,等.多尺度多变量模糊熵分析[J].物理学报,2013,62(12):120512.
    [101]Porta A., Guzzetti S., Montano N., et al. Entropy, entropy rate, and pattern classification as tools to typify complexity in short heart period variability series[J]. IEEE Trans. Biomed. Eng.,2001,48(11):1282-1291.
    [102]Porta A., Faes L., Mase M., et al. An integrated approach based on uniform quantization for the evaluation of complexity of short-term heart period variability:Application to 24 h Holter recordings in healthy and heart failure humans[J]. Chaos,2007,17(1):015117.
    [103]徐寅林,宁新宝,陈颖,等.模式熵与高频心电图信号不规则性的动态分析[J].科学通报,2004,49(13):1317-1321.
    [104]Bandt C., Pompe B. Permutation entropy:a natural complexity measure for time series[J]. Phys. Rev. Lett.,2002,88(17):174102.
    [105]李锦,宁新宝.短时心率变异性信号的基本尺度熵分析[J].科学通报,2005,50(14):1438-1441.
    [106]张梅,崔超,马千里,等.基于符号化部分互信息熵的多参数生物电信号的耦合分析[J].物理学报,2013,62(6):068704.
    [107]Morabito F.C., Labate D., La Foresta F., et al. Multivariate multi-scale permutation entropy for complexity analysis of Alzheimer's disease EEG[J]. Entropy,2012,14(7):1186-1202.
    [108]Nikita K.S., Lin J.C., Fotiadis D.I., et al. Editorial:special issue on mobile and wireless technologies for healthcare delivery[J]. IEEE Trans. Biomed. Eng.,2012,59(11):3083-3089.
    [109]Li P., Liu C., Wang X., et al. Cross-sample entropy and cross-fuzzy entropy for testing pattern synchrony:how results vary with different threshold value r[C]//World Congress on Medical Physics and Biomedical Engineering, Beijing, China,2012,485-488.
    [110]陈小军,李赞,白宝明,等.一种基于模糊熵的混沌伪随机序列复杂度分析方法[J].电子与信息学报,2011,33(5):1198-1203.
    [111]孙克辉,贺少波,尹林子,等.模糊熵算法在混沌序列复杂度分析中的应用[J].物理学报,2012,61(13):130507.
    [112]Schiff S.J., So P., Chang T., et al. Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble[J]. Phys. Rev. E,1996,54(6):6708-6724.
    [113]Ansari-Asl K., Senhadji L., Bellanger J.J., et al. Quantitative evaluation of linear and nonlinear methods characterizing interdependencies between brain signals[J]. Phys. Rev. E,2006,74(3 Pt 1):031916.
    [114]Kreuz T., Mormann F., Andrzejak R.G., et al. Measuring synchronization in coupled model systems:a comparison of different approaches[J]. Physica D, 2007,225(1):29-42.
    [115]Li P., Liu C., Wang X., et al. Testing pattern synchronization in coupled systems through different entropy-based measures[J]. Med. Biol. Eng. Comput.,2013,51(5):581-591.
    [116]Dauwels J., Vialatte F., Musha T., et al. A comparative study of synchrony measures for the early diagnosis of Alzheimer's disease based on EEG[J]. Neurolmage,2010,49(1):668-693.
    [117]Rulkov N.F., Sushchik M.M., Tsimring L.S., et al. Generalized synchronization of chaos in directionally coupled chaotic systems[J]. Phys. Rev. E,1995,51(2):980-994.
    [118]Rosenblum M.G., Pikovsky A.S., Kurths J. Phase synchronization of chaotic oscillators[J]. Phys. Rev. Lett.,1996,76(11):1804-1807.
    [119]Rodriguez E., George N., Lachaux J.-P., et al. Perception's shadow: long-distance synchronization of human brain activity [J]. Nature,1999, 397(6718):430-433.
    [120]Quian Quiroga R., Kreuz T., Grassberger P. Event synchronization:a simple and fast method to measure synchronicity and time delay patterns[J]. Phys. Rev. E,2002,66(4):041904.
    [121]Poon C.S., Merrill C.K. Decrease of cardiac chaos in congestive heart failure[J]. Nature,1997,389(6650):492-495.
    [122]Yentes J.M., Hunt N., Schmid K.K., et al. The appropriate use of approximate entropy and sample entropy with short data sets[J]. Ann. Biomed. Eng.,2013,41(2):349-365.
    [123]Lake D.E., Moorman J.R. Accurate estimation of entropy in very short physiological time series:the problem of atrial fibrillation detection in implanted ventricular devices[J]. Am. J. Physiol. Heart Circ. Physiol.,2011, 300(1):H319-325.
    [124]Govindan R.B., Wilson J.D., Eswaran H., et al. Revisiting sample entropy analysis[J]. Physica A,2007,376:158-164.
    [125]Ahmed M.U., Rehman N., Looney D., et al. Dynamical complexity of human responses:A multivariate data-adaptive framework[J]. Bull. Pol. Ac. Tech., 2012,60(3):433-445.
    [126]Marwan N., Carmen Romano M., Thiel M., et al. Recurrence plots for the analysis of complex systems[J]. Rhys. Rep.,2007,438(5-6):237-329.
    [127]Clifford GD., Moody GB. Signal quality in cardiorespiratory monitoring[J]. Physiol. Meas.,2012,33(9):E01.
    [128]Kohle B.U., Hennig C., Orglmeister R. The principles of software QRS detection[J]. IEEE Eng. Med. Biol. Mag.,2002,21(1):42-57.
    [129]Ahlstrom M.L., Tompkins W.J. Automated high-speed analysis of Holter tapes with microcomputers[J]. IEEE Trans. Bio-Med. Eng.,1983, BME-30: 651-657.
    [130]Christov, Ⅱ. Real time electrocardiogram QRS detection using combined adaptive threshold[J]. Biomed. Eng. Online,2004,3(1):28.
    [131]Li C., Zheng C., Tai C. Detection of ECG characteristic points using wavelet transforms[J]. IEEE Trans. Biomed. Eng.,1995,42(1):21-28.
    [132]Nygards M.-E., Sornmo L. Delineation of the QRS complex using the envelope of the ECG[J]. Med. Biol. Eng. Comput.,1983,21:538-547.
    [133]Narsimha B., Suresh E., Punnamchandar K., et al. Denoising and QRS detection of ECG signals using empirical mode decomposition[C]// Proceedings of the 2011 International Conference on Communications and Signal Processing,2011,439-442.
    [134]Ruha A., Sallinen S., Nissila S. A real-time microprocessor QRS detector system with a 1-ms timing accuracy for the measurement of ambulatory HRV[J]. IEEE Trans. Biomed. Eng.,1997,44(3):159-167.
    [135]刘少颖,卢继来,郝丽,等.基于数学形态学和小波分解的QRS波群检测算法[J].清华大学学报(自然科学版),2004,44(6):852-855.
    [136]李鹏,刘常春,张明,等.一种QRS波群实时检测方法[J].生物物理学报,2011,27(3):222-230.
    [137]李丽萍,杨静,刘澄玉,等.滑动窗口脉冲抑制滤波用于心电间期序列坏点去除[J].光电子·激光,2010,21(9):1426-1430.
    [138]Liu C., Li L., Zhao L., et al. A combination method of improved impulse rejection filter and template matching for identification of anomalous intervals in RR sequences[J]. J. Med. Biol. Eng.,2012,32(4):245-250.
    [139]Hu Y.H., Palreddy S., Tompkins W.J. A patient-adaptable ECG beat classifier using a mixture of experts approach[J]. IEEE Trans. Biomed. Eng.,1997, 44(9):891-900.
    [140]Zhang X., Zhu Y., Thakor N.V., et al. Detecting ventricular tachycardia and fibrillation by complexity measure[J]. IEEE Trans. Biomed. Eng.,1999, 46(5):548-555.
    [141]Lagerholm M., Peterson C., Braccini G., et al. Clustering ECG complexes using Hermite functions and self-organizing maps[J]. IEEE Trans. Biomed. Eng.,2000,47(7):838-848.
    [142]de Chazal P., O'Dwyer M., Reilly R.B. Automatic classification of heartbeats using ECG morphology and heartbeat interval features[J]. IEEE Trans. Biomed. Eng.,2004,51(7):1196-1206.
    [143]Shyu L.Y., Wu Y.H., Hu W.C. Using wavelet transform and fuzzy neural network for VPC detection from the holter ECG[J]. IEEE Trans. Biomed. Eng.,2004,51(7):1269-1273.
    [144]Sun Y, Chan K.L., Krishnan S.M. Life-threatening ventricular arrhythmia recognition by nonlinear descriptor[J]. Biomed. Eng. Online,2005,4(1):6.
    [145]de Chazal P., Reilly R.B. A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features[J]. IEEE Trans. Biomed. Eng., 2006,53(12):2535-2543.
    [146]Inan O.T., Giovangrandi L., Kovacs G.T.A. Robust neural-network-based classification of premature ventricular contractions using wavelet transform and timing interval features[J]. IEEE Trans. Biomed. Eng.,2006,53(12): 2507-2515.
    [147]Lim J.S. Finding features for real-time premature ventricular contraction detection using a fuzzy neural network system[J]. IEEE Transactions on Neural Networks,2009,20(3):522-527.
    [148]Homaeinezhad M.R., Tavakkoli E., Ghaffari A. Discrete wavelet-based fuzzy network architecture for ECG rhythm-type recognition:Feature extraction and clustering-oriented tuning of fuzzy inference system[J]. Int. J. Signal Process. Image Process. Pattern Recogn.,2011,4(3):107-130.
    [149]Llamedo M., Martinez J.P. Heartbeat classification using feature selection driven by database generalization criteria[J]. IEEE Trans. Biomed. Eng., 2011,58(3):616-625.
    [150]Zhou H., Hou K.M., Ponsonnaille J., et al. A real-time continuous cardiac arrhythmias detection system:RECAD[C]//27th Annual International Conference of the Engineering in Medicine and Biology Society, Shanghai, China,2005,875-881.
    [151]Hu S., Wei H., Chen Y., et al. A real-time cardiac arrhythmia classification system with wearable sensor networks[J]. Sensors,2012,12(9): 12844-12869.
    [152]Berger R.D. QT variability[J]. J. Electrocardiol.,2003,36(Suppl):83-87.
    [153]Li P., Liu C, Wang X., et al. A low-complexity data-adaptive approach for premature ventricular contraction recognition[J]. Signal Image Video Process.,2014,8(1):111-120.
    [154]Fawcett T. An introduction to ROC analysis[J]. Pattern Recogn. Lett.,2006, 27(8):861-874.
    [155]Tripathi K.K. Very low frequency oscillations in the power spectra of heart rate variability during dry supine immersion and exposure to non-hypoxic hypobaria[J]. Physiol. Meas.,2011,32(6):717-729.
    [156]Liu C., Zheng D., Li P., et al. Is cross-sample entropy a valid measure of synchronization between sequences of RR interval and pulse transit time?[C]//Computing in Cardiology, Zaragoza, Spain,2013,939-942.
    [157]Liu C, Zheng D., Zhao L., et al. Elastic properties of peripheral arteries in heart failure patients in comparison with normal subjects[J]. J. Physiol. Sci., 2013,63(3):195-201.
    [158]姚泰.生理学[M].第6版.北京:人民卫生出版社,2003.
    [159]Li P., Liu C., Sun X., et al. Age related changes in variability of short-term heart rate and diastolic period [C]//Computing in Cardiology, Zaragora, Spain,2013,995-998.
    [160]Yambe T., Shiraishi Y., Saijo Y., et al. Clinical research on the accuracy in determining the pulse wave rising point[J]. Scr. Med.,2009,82(3):164-174.
    [161]Yancy C.W., Jessup M., Bozkurt B., et al.2013 ACCF/AHA Guideline for the Management of Heart Failure:A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines[J]. J. Am. Coll. Cardiol.,2013,62(16):e147-e239.
    [162]Krumholz H.M., Chen Y.T., Wang Y, et al. Predictors of readmission among elderly survivors of admission with heart failure[J]. Am. Heart J.,2000, 139(1 Pt 1):72-77.
    [163]Isler Y, Kuntalp M. Combining classical HRV indices with wavelet entropy measures improves to performance in diagnosing congestive heart failure[J]. Comput. Biol. Med.,2007,37(10):1502-1510.
    [164]Melillo P., Fusco R., Sansone M., et al. Discrimination power of long-term heart rate variability measures for chronic heart failure detection[J]. Med. Biol. Eng. Comput.,2011,49(1):67-74.
    [165]Smilde T.J., Veldhuisen D., Berg M. Prognostic value of heart rate variability and ventricular arrhythmias during 13-year follow-up in patients with mild to moderate heart failure[J]. Clin. Res. Cardiol.,2009,98(4):233-239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700