四川猕猴MHC DRB等位基因外显子2多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验采用PCR扩增、DGGE分离基因和基因克隆等分子生物学方法对猕猴DRB等位基因多样性测定与分析,测得四川5个猕猴群体DRB基因2号外显子部分序列。利用测得的基因序列,列出76个猕猴实验样本DRB基因种类,并对新等位基因命名。分析所有等位基因氨基酸序列,在NCBI上下载其它灵长类DRB基因2号外显子序列,采用N-J法构建DRB基因聚类树。并分析5个群体内基因平均遗传距离,群体间遗传平均距离分析。各项分析主要结果如下:
     1)利用PCR、DGGE和基因克隆测序技术得到69个DRB等位基因,其中57个为本实验测定出的新等位基因。5个群体共检测出DRB1、3、4、5和W座位基因和21个亚座位,DRB1座位检测出8个亚座位,DRB4座位和DRB5座位都只检测出一个亚座位。各亚座位具有群体特殊性:DRB~*W25和DRB~*W37亚座位为小金群体独有;DRB~*W31和DRB~*W40亚座位为黑水群体独有;其它亚座位都为两个或多个群体共有,DRB~*W53亚座位为本实验首次报道的一个新的DRB~*W亚座位
     2)利用MEGA4.0软件将获得的基因序列翻译成氨基酸序列后,所有氨基酸序列对比分析得出在不同座位和亚座位间氨基酸差异体现在二级结构β区域,同一亚座位中等位基因氨基酸序列差异主要体现在α区域。通过与人HLA-DRB基因2号外显子相应位点基因氨基酸序列对比,实验猕猴DRB基因与相应的人HLA-DRB基因在β区域差异不大,差异主要体现在α区域,证明猕猴与人这两物种间DRB基因氨基酸差异规律一样。
     3)聚类树分析得出DRB*W07、DRB1*07、DRB*W02、DRB*W31三个亚座位在其它灵长类中无对应亚座位,可能属于猕猴特有亚座位,这些猕猴独有亚座位在人HLA-DRB相关免疫医学研究中,只能采用猕猴作为研究模型。DRB1*03、DRB1*10、DRB*W01亚位点和人HLA-DRB1*13亚座位聚成一个大支,DRB1*04和HLA-DRB1*04聚成一支,DRB3*04和HLA-DRB*02、01聚成一支。这几个亚座位与人HLA-DRB相应亚座位相近,可以作为人类DRB基因免疫医学用。
     4)各群体内平均遗传距离采用Nei-Gojibori-p和Kimura-2-parameters两种方法得出各群体内平均遗传距离。Kimura一2-parameters计算出各群体内遗传距离由大到小顺序为:汉源群体>巴中群体>九龙群体>小金群体>黑水群体。表明由总的核苷酸变异造成的平均遗传距离汉源最大,黑水最小,即汉源群体DRB等位基因多样性最丰富,黑水群体基因多样性最弱。Nei-Gojibori-p法计算出各群体平均遗传距离由大到小为:小金群体>汉源群体>九龙群体>黑水群体>巴中群体,表明由氨基酸差异造成的平均遗传距离小金最大,巴中最小。由组内总的核苷酸差异引起的遗传距离黑水群体最小,汉源群体最大,但是由氨基酸差异引起的组内平均遗传距离,小金群体最大,巴中群体最小。利用软件MEGA4.0软件计算出5个猕猴群体间遗传距离表明各群体间遗传距离实际地理位置不符合。各群体DRB等位基因均受到正向选择压力,九龙群体和巴中群体受到选择压力分别为最大和最小。
76 indivalduals from 5 Sichuan Macaca mulatta wild groups have been selected to uesed for DRB gene exon 2 partial sequences diversity analysis by PCR amplitication, DGGE seperation and gene colone.In all 76 Macaca mulatta samples,the gene typles was listed for each sample,meanwhile,new allelic gene was named.After all amimo acid sequences was analysised,applied N-J methouds to constract DRB gene phylogenetic trees that contant the other specis primates genes which were downloaded from NCBI gene bank. Finally,in 5 groups,gene evolution pressurs,inter-group gene average genetic distance, between-group genetic distance,each one was anlysised.The results for each analysis were listed:
     1) 69 alleles has been detected by PCR amplification,DGGE and gene colone.57 of the 69 alleles are newly.In 5 populations,DRB1,3,4,5 and W,the 5 local alleles has been detected,meanwhile,21 sub-locus have been observed.Each sub-locus show the populational perticularies:Sub-locus DRB*W25 and DRB*W37 the two sub-locus only were detected in population Xiaojin;Sub-locus DRB*W31 and DRB*W40 have been only detected in population Heishui.The other sub-loci,have been observed in more than 2 populations simultaneously.
     2) After all gene sequences be translated into amimo acid ensued with sequence-blast by solftware MEGA4.0,the difference between locus amimo acids focus on the secondary constractureβregion,althrough,in the same locus,the distinction between two alleles focus onαregion.Compared with human equivalents the difference amimo acids comcentrate onαregions,aboutβregion the difference showed lower thanα.
     3) Gene phylogenetic tree by solftware MEGA4.0 was used by method N-J.From tree, consenqued that DRB*W07、DRB1*07、DRB*W02、DRB*W31 the 3 sub-locus did not detected in other primers except Macaca mulatta,may they belongs to Macaca mulatta perticulary,other loci can be finded in other primates yet.Locus DRB1*03、DRB1*10、DRB*W01 clusterd with human HLA-DRB1*13,DRB1*04 clusterd with human HLA-DRB1*04,DRB3*04 clusterd with human HLA-DRB*02、01,all the loci adhered with human counterparter may could be used for human immun-medicology.
     4) The average genetic distance in each group was caculated by solfteware MEGA4.0 with methods Nei-Gojibori-p and Kimular-2-parameters respectly.Results by method Kimular-2-parameters,the genetic distance in each group were arranged from high to low: group Hanyuan>group Bazhong>group Jiulong>group Xiaojin>group Heishui.This category document that,the average genetic distance influenced by uncletide acid disparity were the lowsted in group HeiShui and the hightest in group HanYuan.But results by method Nei-Gojibori-p,the genetic distance in each group were arranged from high to low were dismarch with results by method Kimura-2-parameter:group Xiaojin>group Hanyuan>group Jiulong>group Heishui>group Bazhong.This categry recover different with results by method Kimura-2-paramete,by method Nei-Gojibori-p,the average genetic distance influenced by amimo acid disparity were the lowest in group Bazhong and the highest in group Xiaojin.All the above conclude that:genetic distance influenced by nucletide acid disparity in inner-group,group Heishui was the lowest and group Hanyuan were the highest,however,by amimo acid disparity,group Xiaojin and Bazhong show the hightest and lowest respectily.The average genetic distance in 5 groups were caculated by sorlftware MEGA4.0 resoults show that the genetic distance between two groups dis-accordant with the real geographic setting.In DRB alleles evolution,although the dynamic in all populations were positive selections pressure,the pressure in each population show the differences that in population Xiaojin the pressure showed the hightest, but in Bazhong the pressure showed the lowest.
引文
[1]蒋学龙 等.中国猕猴的分类及分布.动物学研充1991,19:241-247.
    [2]van Rood JJ.The discovery of 4a and 4b.Vox Sang,1984,46(3):238.
    [3]Kelley J,Walter L,Trowsdale J.Comparative genomics of major histocompatibility complexes.Immunogenetics,2005,56(4):683.
    [4] Flajnik MF, Kasahara M. Comparative genomics of the MHC: glimpses into the evolution of the adaptive system. Immunty, 2001, 15(5):351.
    [5] Stet RJM, Kruiswijk CP, Dixon B. Major Histocompatibility lineages and immune gene function in fish: the road not taken. Crit Rev Immunol, 2003,23(3):441.
    [6] Kasahara M. Genome dynamics of the major histocompatibility complex: insights from genome paralogy. Immunogenetics , 1999, 50(5): 134.
    [7] Parham P, Ohta T. Population biology of antigen presentation by MHC class I molecules. Science, 1996, 272(5):67.
    
    [8] Lafont BAP, Buckler-White A, Plishka R, Buckler C, Martin MA. Characterization of pigtailed macaque classical MHC class 1 genes: Implications for MHC evolution and antigen presentation in macaques. Immunol, 2003, 171 (4):875.
    [9] Adams EJ, Parham P. Genomic analysis of common chimpanzee major histocompatibility complex class I genes. Immunogenetics ,2001,53(3):200.
    
    [10] Groh V, Bahram S, Bauer S, Herman A, Beauchamp M,Spies T. Cell stress regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci USA, 1996, 93(5):12445.
    
    [11]Radosavljevic M, Bahram S. From MIC to Raetl loci. Immunogenetics, 2003, 55(4):1.
    [12] Leelayuwat C, Townend DC, Deli-Eposit MA, Abraham LJ, Dawkins RL. A new polymorphic and multicopy MHC gene family related to nonmammalian class I. Immunogenetics, 1994, 40(5):339.
    [13] Cadavid LF, Hughes AL, Watkins DI. MHC class I processed pseudogenes in New World Primates provide evidence for rapid turnover of MHC class I genes. Immunol, 1996, 157(2):2403.
    [14] Gyllensten U, Bergstrom T, Josefsson A, Sundvall M, Erlich HA. Rapid allelic diversification and intensified selection at antigen recognition sites of the Mhc class II DRB1 locus during hominoid evolution. Tissue Antigens , 1996,47(5):212.
    [15] Groh V, Bahram S, Bauer S, et al. Cell stress regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci USA, 2001,93(5):1245.
    [16] Krebs KC, Jin Z, Rudersdorf R, et al. Unusually high frequency MHC class I alleles in Mauritian origin cynomolgus macaques. Immunol, 2005,175(2):5230.
    [17] Vogel N, Otting N,Heijmans C, et al. Unparalleled complexity of the MHC class I region in rehesus macaques[J].PNAS, 1986,102(5): 134-141.
    [18] Klein J, Horejsi V. The various function of MHC class II in rehesus macaques. Immunology, 1997,13(2):35-43.
    [19] Dengjel J, Schoor O, Fischer R, Reich M, Kraus M, et al. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Nat Acad Sci USA, 2005, 102(4):7922-7927.
    [20]Huber I, Walter L, Wimmer R, et al. Cytogenetic mapping and orientation of the rhesus macaque MHC[J]. Cytogenet Genome Res, 2003, 103(8): 144-149.
    [21] Otting N, HeijmansC, et al . The duplication of the MHC class I region in rhesus macaques[J]. PNAS, 2004, 102(5): 1626-1631.
    [22] Sauermann U. Making the animal model for AIDS research more precise: the impact of major histocompatibility complex(MHC)genes on pathogenesis and disease progression in SIV-infec ted monkeys [J]. Curr Mol Med , 2001, 1(1): 515-522.
    [23] Urvater JA, Otting N, Loehrke JH, et al. Mamu-I: A novel primate MHC class I B-related locus with unusually low variability[J]. The Journal of Immunology, 2000, 164(7): 1386-1398.
    [24] Slukvin II, Lunn DP, Watkins DI, et al. Placental expression of the nonclassical MHC class I mo lecule Mamu-AG at implantation in the rhesus monkey [J]. PNAS, 2000, 97(9): 9104-9109.
    [25] Boyson JE, McAdam SN, Gallimo re A, et al. The MHC-E locus in macaques is polymorphic and is conserved between ma caques and humans[J ]. Immunogenetics, 1995, 41 (2-3): 59-68.
    [26] Otting N, Bontrop RE. Characterization of the rhesus macaque (Macaca mulatta)equivalent of HLA-FE[J]. Immunogenetics, 1993, 38(3): 141-145.
    [27] Ryan AF, Grendel RL, Geraghty DE, et al. A Soluble isoform of the rhesus monk ey nonclassical MHC class I molecule mamu — AG is expressed in the placenta and the testis [J]. The Journal of Immunology, 2002, 169(10): 673-683.
    [28] BoDon J, 1 wanaga K, Urvater J, et el. Evolution of new nonclassical MHC class I locus in two Old World primate species. Immunogenetics, 1999, 49(3): 86-98.
    [29] Riaz AA, Wan MX, Schaefer T, et al. Fundamental and distence roles of P-selection and LFA-1 in ischemia/reperfusion-inducedleukocyte endothelium interactions in the mous colon[J]. Ann Surg, 2002, 236(7):777-784.
    [30] David J, Michael GC, Keith TO, et al. Cytoprotection by diclofenacsodiuum after interaction ischemia/reperfusion injury[J]. J Pediatr Surg, 1994, 29(1): 1044.
    [31] Fukatsu K, Zaraur BL, Johnson CD, et al. Enteral nutrition prevents remots organ injury and death after a gut ischemic insult[J]. Ann Surg,2001,233(8):660-668.
    [32] Tamaki T, Konoda Y, Ysuhara M, et al. Glutamine-induced heme oxygenase-1 protectes intestines and heart from war mischmic injury[J]. Transplant Proc, 1999, 31(1-2): 1018-1019.
    [33] Tamaki T, Fukatsu K. Different MHC DQA allelica diversiry in two macaques populations in from two different regions [J]. Ann Surg, 2000, 224(5):378-411.
    [34] Daza-Vamenta R, Glusman G, Rowen L, Guthrie B, Geraghty DE. Genetic divergence of the rhesus macaque major histocompatibility complex. Genome Res ,2004,14( 1): 1501.
    [35] Beck S, Trowsdale J. The human major Histocompatibility complex: lessons from the DNA sequence. Annu Rev Genomics Hum Genet, 2000, 1 (1): 117.
    [36] Carroll MC, Campbell RD, Bentley RD, Porter RR. A molecular map of the human major histocompatibility complex class III region linking complement genes C4, C2 and factor B. Nature , 1984, 307(20):237.
    [37] Bontrop RE, Broos LAM, Otting N, Jonker MJ. Polymorphism of C4 and CYP genes in various primate species. Tissue Antigens, 1991, 37(2):145.
    [38] Schneider PM, Witzel-Schlomp K, SteinhauerC,al et. Rapid detection of the ERV-K(C4) retroviral insertion reveals further structural polymorphism of the complement C4 genes in Old World primates. Exp Clin Immunogenet ,2001,18( 1): 130.
    [39] Garrigan, Hedrick. MHC Importance of genetic variation to the viability of mammalian populations. Mamm, 2003, 78(4):320-335.
    [40] Apanius, Dotting, et al. Selections the emotion to accelerat MHC evolution. Mamm, 1997, 78(4):488-523.
    [41] Doherty PC, Zinkernagel RM. Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature , 1975, 256(10): 50-52.
    [42] Kaufman J, Volk H, Wallny HJ. A minimal essential mhc and an unrecognized mhc-2 extremes in selection for polymorphism. Immunol Rev, 1995, 143(8): 63-88.
    [43] TakahataN, Nei M. Allelic genealogy under over-dominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetices, 1990, 124(7): 967-978.
    [44] Slade RW, McCallum HI.Overdominant vs frequency-dependent selection at MHC loci. Genetics, 1992, 132(6): 861-862.
    [45] Borghans JAM, Beltman JB, De Boer RJ. MHC polymorphism under host-pathogen coevolution. Immunogenetics, 2004, 55(2): 732-739.
    [46] Apanius V, PennD, Slev PR, Ruff LR, Potts WK. The nature of selection on the major histocompatibility complex. Crit Rev Immunol, 1997, 17(1): 179-224.
    [47] Doherty PC, Zinkernagel RM. Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex.. Nature, 1975, 256(4): 50-52.
    [48] De Boer, Borghans JAM, van Boven M, Kesmir C, Weissing FJ. Heterozygote advantage fails to explain the high degree of polymorphism of the MHC. Immunogenetics, 2004, 55(2):725-731.
    [49] Penn D, Potts WKChemical signals and parasite-mediated sexual selection. TREE, 1998, 13(1):391-396.
    [50] Wedekind C, Furi S. Body odour preferences in men and women: do they aim for specific MHC combinations or simply heterozygosity?. Proc R Soc London Ser B-Biol Sci, 1997, 264(5) :1471-1479.
    [51] Rulicke T, Chapuisat M, Homberger FR, Macas E, Wedekind C. MHC-genotype of progeny influenced by parental infection. Proc R Soc London Ser B-Biol Sci, 1998, 265(5): 711-716.
    [52] Alberts SC, Ober C. Genetic variability of the MHC: a review of non-pathogen mediated selective mechanisms. YearB Phys Anthropol, 1993, 36(2): 71-89.
    [53] Marsh SGE, Albert ED, Bodmer WF, al et. Nomenclature for factors of the HLA system, 2004. Tissue Antigens ,2005,65(2):301.
    [54] Robinson J, Walter MJ, Parham P, de Groot N, Bontrop R, Kennedy LJ, Stoehr P, Marsh SG: IMGT/HLA and IMGT/MHC; Sequence databases for the study of major histocompatibility complexes. Nucleic Acid Res , 2003, 31(1):311.
    [55] Mnukova-Fajdelova F, Satta Y, O'hUigin C, Mayer W, Figueroa F, Klein J. Alu elements of the primate major histocompatibility complex. Mamm Genome , 1994 , 5(1):405.
    
    [56] Klein J, O'hUigin C. Class 11 motifs in an evolutionary perspective. Immunol Rev , 1995, 143:89,.
    [57] Gongora R, Figueroa F, Klein J. The HLA-DRB9 gene and origin of HLA-DR haplotypes. Hum Immunol, 1996, 51(4):23.
    [58] Gyllensten U, Bergstr(o|¨)m T, Joseffson A, Sundvall M,Savage M, Blumer ES, Giraldo LH, Soto LH, Watkins DI. The cotton top revistied: Mhc class I polymorphisms of wild tamarins and allelic diversity of the class II DQA1, DQB1, and DRB loci. Immunogenetics , 1994, 40(4): 167.
    [59] Middelton SA, Anzeberger G, Knapp LA: Identification of New World monkey Mhc-DRB alleles using PCR,DGGE and direct sequencing. Immunogenetics, 2004, 55(6):785.
    [60] Nino-Vasquez JJ, Vogel D, Rodriguez R, Moreno R, Pattaroyo ME, Pluschke G, Daubenberger CA. Sequence and diversity of DRB genes of Aotus nancymaae, a primate model for human malaria parasites. Immunogenetics , 2000, 51 (6):219.
    [61] Bontrop RE, Elferink DG, Otting N, Jonker M, de Vries RR. Major histocompatibility complex class II restricted antigen presentation across a species barrier: conservation of restriction determinants in evolution. Exp Med, 1990, 172(12):53.
    [62] Geluk A, Elferink DG, Sliendregt BL, van Meijgaarden KE, de Vries RRP, Ottenhoff THM, Bontrop RE: Evolutionary conservation of major histocompatibility complex DR/peptide/Tcell interactions .Exp Med, 1993, 177(17):979.
    [63] Balner H, van Vreeswijk W, Roger JH. The major histocompatibility complex of rhesus monkeys. XIV. A family study of DR and other RhLA-linked cell membrane antigens. Tissue Antigens, 1981, 17(2): 530-9.
    [64] Slierendregt BL, van Noort JT, Bakas RM, al et. Evolutionary stability of transspecies major histocompatibility complex class II DRB lineages in humans and rhesus monkeys. Hum Immunol, 1992, 35(3): 29-39.
    [65] Leslie A, Otting N, Jonker M . Identification new MHC DRB alelle using PCR-DGGE in Macaca mulatta. Tissue Antigens , 1997, 18(1): 498-521.
    [66] N. Otting,N.G. de Groot,M.C. Noort, R E Bontrop. Allelic diversity of Mhc-DRB alleles in rhesus macaques. Tissue Antigens , 2000, 56(4): 58-68.
    [67] Fischer, S. G., and L. S. Lerman. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci U S A, 1983, 80(7): 79-83.
    [68] Lerman, L. S., S. G. Fischer, I. Hurley, et al. Sequence-determined DNA separations. Annu Rev Biophys Bioeng, 1984, 13(2):399-423.
    [69] Myers, R. M., S. G. Fischer, L S Lerman, T Maniatis. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res , 1985, 13(2): 31-45.
    [70]Muyzer G.,De Waal,A.G.Uitterlinden.Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA.Appl Environ Microbiol,1993,59(4):695-700.
    [71]Muyzer G.DGGE/TGGE a method for identifying genes from natural ecosystems.Curt Opin Microbio,1999,12(1):317-22.
    [72]Muyzer G.,and K Smalla.Application of denaturing gradient gel electrophoresis(DGGE) and temperature gradient gel electrophoresis(TGGE) in microbial ecology.Antonie Van Leeuwenhoek,1998,73(3):127-41.
    [73]Sekiguchi H,N Tomioka,T Nakahara,H Uchiyama.A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis.Biotechnology Letters,2001,23(3):1205-1208.
    [74]JohnT,Loffredo,JohnSidney,Shart Piaskowski,et al,The High Frequency Indian Rhesus Macaque MHC Class Ⅱ Molecule,Mamu-DRB1*01,Does Appear to Be Involved in CD8 T Lymphocyte Responses to SIV mac239.The Journal of Immunology,2005,175(20):5986-5997.
    [75]Doote N,Groody,et al.The differental MHC DRB alleles shows the diffrental districtions.Immunology,2007,165(18):3490-5523.
    [76]Peters B,Bulik R,Tampe P M,et al.Identifying MHC class Ⅱ epitopes by predicting the TAP transport efficiency of epitope precursors.Immunol,2003,171(19):1741-1749.
    [77]Tenzer,B Peters,S Bulik,O Schoor,C Lemmel.Modeling the MHC class Ⅰ pathway by combining predictions of proteasomal cleavage,TAP transport and MHC class Ⅰ binding.Cell Mol.Life Sci,2005,62(13):1025-1037.
    [78]Bodmer JG,Marsh SG,Albert ED et al.Nomenclature for priamates MHC cluster.Immungenetics,1992,53(6):407-413.
    [79]Colm O'hUigin,Ronald Bontrop,Jan Klein.Nonhuman primate Mhc.DRB sequences:a compilation.Immunogene,1993,38(3):165-183.
    [80]Juan P,Giraldo-Vela,Richard,Rudersdorf,et al.The Major Histocompatibility Complex Class ⅡAlleles Mamu-DRB1*1003 and DRB1*0306 are Enriched in a Cohort of Simian Immunodeficiency Virus-Infected Rhesus Macaque Elite Controllers.Journal of virology,2008,19(2):859-870.
    [81]Kenter M,Otting N,Anholts J,et al.The Mhc-DRB diversity of the chimpanzee(Pan troglodytes).Immunogenetics,1992,37(3):1-11.
    [82]A Lobashevsky,J P Smith,J Kasten-Jolly,et al.Identification of DRB alleles in rhesus monkeys using polymerase chain reaction-sequence-specific primers(PCR-SSP).Tissue Antigens,1999,54(5):254-263.
    [83]Austad,S N Small nonhuman primates as potential models of human aging.Ilar J,1997,38(4):142-147.
    [84]Bontrop,R E.Non-human primates:Essential partners in biomedical research..Immunol Rev,2001,183(14):5-9.
    [85]Carlos F,Suarez,Manuel E.Patarroyo et al.Owl monkey MHC-DRB exon 2 reveals high similarity with several HLA-DRB lineages,Immunogenetics,2006,58(12):542-558.
    [86]Ronald E,Bontrop.Comparative Genetics of MHC Polymorphisms in Different Primate Species:Duplications and Deletions.Human Immunology,2006,67(7):388-397.
    [87]De Groot N,Doxiadis GM,de Groot NG,et al.Genetic make up of the DR region in rhesus macaques:gene content,transcripts,and pseudogenes.Immunol,2004,172(12):6152.
    [88]黄晓峰.基于微卫星DNA的猕猴川西亚种遗传多样性研究.四川农业大学2005级硕士毕业论文,2008,34-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700