波涌灌间歇入渗氮素运移及对地下水NO_3~--N分布特性影响试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在查阅国内外大量相关文献资料的基础上,结合我国农田灌溉和施肥特点,采用室内试验和理论分析相结合,以试验为主的技术路线,主要研究了施肥条件下波涌灌间歇入渗土壤水、氮运移和水肥耦合特性及其对地下水硝态氮浓度的影响,为提高水肥利用率、减缓地下水的NO_3~--N污染提供理论依据,研究具有重要的理论价值和生产实际意义。主要研究成果为:
     (1)研究了不同地下水位条件下均质土壤上升毛管水运动特性。随着土壤初始含水率的增大,毛管水上升速度增大;毛管水上升高度随时间的延长而增加,但毛管水上升速度随时间的延长而减小;初始含水率越大,达到相同高度所用的时间越短;建立了均质土壤毛管水上升高度与上渗时间之间的幂函数关系;土壤初始含水率越小,土壤水分达到平衡时所需的地下水补给量越大,且达到稳定所需的时间越长;揭示了地下水补给量与上渗时间之间的幂函数关系,毛管水上升高度与地下水补给量之间呈明显的线性函数关系。
     (2)研究了肥液连续入渗和波涌灌间歇入渗能力、湿润锋运移、土壤含水率分布、土壤NO_3~--N运移特性及地下水NO_3~--N浓度的分布特性。与连续入渗相比,肥液间歇入渗可以降低土壤的入渗能力,并且减渗效果主要体现在入渗的第二周期;肥液间歇入渗湿润锋运移较连续入渗速度慢,并随着周期数的增加而减小;提出了由连续入渗湿润锋运移资料计算间歇入渗湿润锋运移距离的模型;肥液间歇入渗土壤含水率较连续入渗的分布均匀;间歇入渗较连续入渗土壤NO_3~--N锋面运移速度慢,更有利于将NO_3~--N保持在浅层土壤中;在有地下水影响的条件下,连续入渗和间歇入渗在不同时间土壤NO_3~--N浓度与土壤含水率关系均近似于“倒L”型曲线,由高含水率段和过度段组成。与连续入渗相比,间歇入渗土壤NO_3~--N浓度与土壤含水率关系曲线更陡;连续入渗时,进入地下水中的硝态氮较多。
     (3)研究了波涌灌溉间歇入渗技术要素对肥液间歇入渗能力、湿润锋运移和土壤含水率分布、土壤NO_3~--N运移及其对地下水NO_3~--N分布的影响,分别建立了不同影响因素的肥液间歇入渗量和湿润锋运移模型。循环率为1/3时,间歇入渗减渗作用最大,有利于将NO_3~--N保持在浅层土壤中,进入地下水中的硝态氮最少,对地下水的污染最小;周期数为3时,间歇入渗减渗率最大,土壤硝态氮浓度锋迁移距离最小,间歇入渗进入地下水中的硝态氮最少;灌水定额越大,湿润锋运移深度越大,土壤硝态氮迁移的距离越大,随入渗水分进入地下水中的硝态氮越多。不同影响因素的肥液间歇入渗地下水中硝态氮浓度增加量与地下水深度之间呈幂数函数关系。
     (4)研究了不同浓度肥液间歇入渗情况下水肥耦合特性及地下水中NO_3~--N运移特性。入渗能力随肥液浓度的增大而增大;肥液浓度越大,间歇入渗NO_3~--N浓度锋运移距离越大,土壤剖面NO_3~--N浓度峰值越大;不同浓度肥液在间歇入渗结束时,土壤硝态氮浓度和土壤含水率的关系曲线近似一个横放的“V”字型,在地表以下0~72cm范围内,土壤硝态氮浓度和土壤含水率均比较大,且从上到下硝态氮浓度随含水率的减小而减小,肥液浓度越大,土壤含水率对土壤硝态氮浓度的影响越大,在72cm~150cm范围内,土壤硝态氮浓度接近初始状态,几乎不受土壤含水率的影响;随再分布时间的延长,不同浓度肥液间歇入渗土壤含水率和NO_3~--N浓度关系曲线更光滑,分布越均匀,在地表以下0~76cm范围内,土壤NO_3~--N浓度随土壤含水率的增加而减小,在地表以下76cm~150cm范围内,土壤硝态氮浓度较入渗结束时有所增加,肥液浓度越大,土壤含水率对土壤硝态氮浓度的影响越大;随水分入渗进入地下水的NO_3~--N主要集中分布在浅层地下水中,肥液浓度越大,进入地下水的NO_3~--N越多,对地下水的污染越严重,对于不同浓度肥液的间歇入渗,在入渗结束时进入地下水中的硝态氮最多,随再分布时间的延长,进入地下水中的硝态氮逐步减少。不同浓度肥液对应的地下水中NO_3~--N浓度增量与地下水深度呈指数函数降低关系。
     (5)研究了施肥方式对间歇入渗土壤水分、氮素运移特性及地下水NO_3~--N的影响。
     对于不同施肥方式的间歇入渗,表施肥的土壤入渗能力较灌施和深施的大;在相同入渗时间,湿润深度大小顺序为表施>深施>灌施>不施肥;建立了不同施肥方式的土壤间歇入渗量模型;再分布1天后,相同湿润深度处,土壤含水率大小顺序分别为表施>灌施>深施;施肥方式对间歇入渗NO_3~--N运移和分布影响很大,相对而言,灌施间歇入渗土壤湿润范围内NO_3~--N分布相对较均匀,而表施与深施在某一深度土层内NO_3~--N分布较集中,而且随时间不断向深层土壤迁移;表施情况下土壤中的NO_3~--N随水分迁移的速度最快,相对表施与深施而言,灌施间歇入渗NO_3~--N更有利于保持在浅层土壤中,能够有效地降低水分和NO_3~--N深层渗漏损失;不同施肥方式的间歇入渗地下水硝态氮浓度随地下水深度的增加而增加,地下水硝态氮浓度随入渗时间的延长而增大;地下水硝态氮浓度的增加比率(不同入渗时间内地下水硝态氮浓度增量的绝对值占总入渗时间内地下水硝态氮浓度增加总量的百分比)随入渗时间的延长而减小,入渗结束时地下水硝态氮浓度的增加比率最大,再分布5天的增加比率最小;建立了不同施肥方式条件下地下水中硝态氮浓度的增量与地下水深度之间的指数函数模型;灌施的地下水硝态氮增量较表施和深施的小,灌施肥有利于提高氮肥利用效率,减轻氮肥对地下水的污染。
On the basis of literature review on surge irrigation,nitrogen fertilizer transport and transformation in soils worldwides,considering irrigation and fertilization practice in China, this research involves laboratory studies and theoretical analyses.This dissertation covers researches on soil water and nitrogen transport characteristics,water and fertilizer coupling characteristics,the concentration of NO_3~--N in the ground water under surge infiltration with fertilization.Such research should provide the theoretical backgrounds for NO_3~--N pollution control of groundwater and improvement of nitrogen use efficiency.The main findings are as follows:
     (1)The capillary water ascending characteristics under in the uniform soil with different groundwater table are researched.The ascending rate of capillary water augments with the initial soil moisture;the height of the capillary water rise increases with time,the capillary water rise velocity decreases with time increasing;the more the initial soil moisture is,the less the time that capillary water reach to the same height is;the relationship between the height of the capillary and the time needed can be simulated by power functions.The little the initial soil moisture is,the more the underwater supply volume when soil water reach balance is and the longer the balance time is;there are power function relationship between the capillary water supply and time,and linear power function relationship between the capillary water rise velocity and the height of the capillary water rise.
     (2)The infiltration capacity,wetting front transport,soil water content distribution, NO_3~--N transport characteristics and the NO_3~--N concentration distribution of round water under intermittent and continuous infiltration with fertilizer solution are researched.Comparing with continuous infiltration,intermittent infiltration can decrease infiltration capacity and the reduction effects were more significant in the second cycle.Wetting front of the under intermittent infiltration with fertilizer solution moves slower than under continuous infiltration and the speed decreases with cycle number.Model for calculating transport distance of the wetting front under intermittent infiltration based on continuous infiltration data is proposed.The soil water content is more evenly distributed under intermittent infiltration than continuous infiltration.Soil NO_3~--N front under intermittent infiltration moves slowly than under continuous infiltration,which favors NO_3~--N conservation in shallow soil layer.The relationship curve between concentration NO_3~--N and soil water content is a "L" shape under intermittent and continuous infiltration effected by underwater.Comparing with continuous infiltration,the relationship curve is steeper under intermittent infiltration,and the NO_3~--N increment in the ground water is more under continuous infiltration.
     (3)The influences of technique factors on the infiltration capacity,wetting front transport, soil water content distribution,NO_3~--N transport characteristics and the NO_3~--N concentration under intermittent infiltration are researched.The infiltration quantity and wetting front transport models containing different affecting factors under intermittent infiltration with solution are established.In this experiment,the optimal cycle rate is 1/3,which leads to NO_3~--N being more easily stored in shallow soil layer and weakens the trend of NO_3~--N leaching and lightens groundwater NO_3~--N pollution;The infiltration rate,the concentration front transport distance of NO_3~--N and the increment of concentration of NO_3~--N in groundwater are least when the cycle number is 3.The wetting front and the concentration front transport distance and the NO_3~--N concentration increment in the groundwater increase with the irrigation water quota increasing.There is power function relationship between the increment of NO_3~--N concentration in the groundwater and the groundwater depth.
     (4)Coupled movement characteristics of soil water and nitrogen under intermittent infiltration with different fertilization concentration are researched.The infiltration capacity,the transport distance of NO_3~--N concentration front and the value of NO_3~--N front increases with the fertilizer solution concentration.After intermittent infiltration with fertilizer solution,the relationship curve between concentration NO_3~--N and soil water content is a "V" shape,in 0~72cm soil layer,NO_3~--N concentration and the soil water content are large.The NO_3~--N concentration decreases with soil water content decreasing.The more fertilization solution concentration is,the little the influence of soil water content on NO_3~--N concentration.The NO_3~--N concentration is close to initial value in 72cm~150cm,the "V" curve becomes more slipperier and the distribution of NO_3~--N concentration and soil water content are uniform. The NO_3~--N concentration decreases with soil water content increasing.In 0~76cm, NO_3~--N concentration increases more than after infiltration,the more solution concentration is,the more soil water content effect NO_3~--N concentration;NO_3~--N in underwater from irrigation water mainly distribute in the shallow groundwater,the more solution concentration is,the more NO_3~--N enters groundwater and the more seriously NO_3~--N pollutes,NO_3~--N entering groundwater is most after irrigation with different fertilization concentration and decreases gradually with redistribution time.The exponent function exists between the NO_3~--N increment of different concentration solution and groundwater depth.
     (5)The effect of fertilization applying manner on soil water content,nitrogen transport characteristic and NO_3~--N concentration in the groundwater are researched.The infiltration capacity of surface applying fertilization is more than chemigation and deep applying fertilization; in the same infiltration time,the order of wetting depth is surface applying fertilization>deep applying fertilization>chemigation>no applying fertilization;the infiltration volume under intermittent infiltration with different fertilization applying manner is developed;in the same wetting depth,the order of soil water content is surface applying fertilization>chemigation>deep applying fertilization after redistribution for 1 day;the fertilization applying manner has great influence on NO_3~--N transport and distribution under intermittent infiltration.NO_3~--N in the wetting scope under chemigation infiltration distributes uniformly,while the NO_3~--N under surface applying fertilization and deep applying fertilization mainly distributes in the some depth and transports gradually to deeper soil with time;the NO_3~--N transports most fast with water under surface applying fertilization,comparing with surface applying fertilization and deep applying fertilization,intermittent infiltration with fertilizer solution favors the NO_3~--N conservation in shallow soil,and decreases effectively soil water and deep seepage of NO_3~--N; NO_3~--N concentration in the groundwater under intermittent infiltration with different fertilization applying manner increases with the underwater depth and infiltration time;the increase ration(the present of NO_3~--N concentration increase absolute value under different infiltration time to NO_3~--N increase gross under total infiltration time)of NO_3~--N concentration groundwater decreases with infiltration time,the increase ratio of NO_3~--N concentration is most after infiltration and least after redistribution for 5 days,the exponent function exists between the NO_3~--N concentration increment and groundwater depth under different fertilization applying manner,chemigation favors the improvement of the nitrogen use efficiency and mitigate the nitrogen pollution in groundwater.
引文
[1]李宗植.干旱地区摆脱缺水困境须综合治理[N].光明日报,1999,02-01.
    [2]沈振荣,苏人琼主编.中国农业水危机对策研究[M].北京:中国农业科技出版社,1998,185-204.
    [3]孙景生,康绍忠.我国水资源利用现状与节水灌溉发展对策[J].农业工程学报,2000(2):1-5.
    [4]刘群昌,许迪,程辉等.基于井灌区管道输水系统的波涌灌技术[J].节水灌溉,2004(4):41-44.
    [5]李久生,李蓓.地面灌溉技术参数对氮素运移分布影响的研究进展[J].农业工程学报,2004,20(6):51-55.
    [6]李冬光,许秀成.灌溉施肥技术[J].郑州大学学报,2002(1):78-81.
    [7]王少平,俞立中.上海青紫泥土壤氮素淋溶及其对水环境影响研究[J].长江流域资源与环境,2002(6):554-558.
    [8]巨晓棠,张福锁.中国北方土壤硝态氮的累积及其对环境的影响[J].生态环境,2003,12(1):24-28.
    [9]葛鑫.农田氮素流失对环境的污染现状及防止对策[J].耕作与栽培,2003(1):45-47.
    [10]曹红霞,康绍忠[J].田间管理措施对土壤硝态氮迁移影响研究进展[J].灌溉排水学报,2005,24(1):72-76.
    [11]刘培斌,郭亚洁.土壤中氮素反硝化作用及其动力学规律的实验研究[J].华北水利水电学院学报,1994,(4):15-19.
    [12]张国梁,章申.农田氮素淋失研究进展[J].土壤,1998,(6):291-297.
    [13]石岩,位东斌,于振文等.施肥深度对旱地小麦氮素利用及产量的影响[J].核农学报,2001,15(3):180-183.
    [14]周凌云.土壤供水量对氮肥吸收的影响[J].土壤通报,1997,28(3):103-104.
    [15]张瑜芳,张蔚榛.农作物对氮肥吸收速率的研究现状[J].灌溉排水,1996,15(3):1-8.
    [16]朱兆良.肥料与农业和环境大[J].自然探索,1998(4):25-28.
    [17]刘小兰,李世清.土壤中的氮素与环境[J].干旱地区农业研究,1998,16(4):36-43.
    [18]朱兆良.肥料与农业和环境[J].院士讲坛,19999(6):2-4.
    [19]高效江,胡雪峰.减少稻田氮素损失的水肥管理措施研究[J].土壤,2002(4):215-217.
    [20]巨晓棠,张福锁.氮肥利用率的要义及其提高的技术措施[J].科技导报(农业),2003(4):51-54.
    [21]王光火,张奇春.提高水稻氮肥利用率、控制氮肥污染的新途径—SSNM[J].浙江大学学报(农业与生命科学版),2003,29(1):67-70.
    [22]谢红梅,朱波.农田非点源氮污染研究进展[J].生态环境,2003,12(3):349-352.
    [23]王康,沈荣开.节水条件下土壤氮素的环境影响效应研究[J].水科学进展,2003,14(4):437-441.
    [24]Pier J W and Doerge T A.Nitrogen and water interaction in trickle irrigation watermelon[J].Soil Sci.Soc.AM.,1995,59(1):145-150.
    [25]张建君.滴灌施肥灌溉土壤水氮分布规律的试验研究及数学模拟[D].中国农业科学院硕士学位论文,2002.
    [26]吴军虎.波涌灌溉间歇入渗水氮运移特性试验及数值模拟[D].西安:西安理工大学博士学位论文,2004,1.
    [27]贾辉.波涌灌溉间歇入渗氮素运移特性与地下水环境效应实验研究[D].西安:西安理工大学硕士学位论文,2004,2.
    [28]费良军,贾辉.波涌灌肥液间歇入渗土壤和地下水中NO_3~-运移特性试验研究[J].沈阳农业大学学报,2004,35(5-6):411-413.
    [29]Stringham.G.E.and Keller,J.Surge flow for Automatic Irrigation.Proceedings of Asce Irri.and Drain.Div.Specialty Conf.1979,132-143.
    [30]汪志荣,王文焰.波涌灌溉入渗特性研究进展[J].土壤学进展 1993(2).
    [31]汪志荣,王文焰.波涌畦灌入渗规律及数值模拟[J].水利学报 1995(1):75-80.
    [32]彭立新,周和平.地面节水灌溉新技术—波涌灌综述[J].节水灌溉,2000(6):13-14.
    [33]王文焰.波涌沟灌试验研究报告.陕西机械学院水资源研究所,1992年10月.
    [34]王文焰,张建丰,高岩.波涌灌溉在灌水方向的入渗时间分布特征[J].西北水资源与水工程,1995,6(2):27-33.
    [35]王文焰,张建丰,汪志荣等.波涌灌溉条件下土壤致密层的形成及其对入渗特性的影响水利学报[J],1996(7):75-81.
    [36]By Poliptro Martinez-Austria and Alvaro A.Aldama.Fluidic Device For Surge Flow irrigation[J].Journal of Irrigation and Drainage Engineering,1998,124(5):262-264.
    [37]USDA-SCS.Surge Irrigation Handbook[M].1986,Washington D.C.:USDA.
    [38]水利部国际合作司水利部农村水利司等编译.美国国家灌溉工程手册[M].北京:中国水利水电出版社,1998,611-664.
    [39]Zohrab A.Samani and Muluneh Yitayew.changes in soil properties under intermittent water application[J].Irrogation Science.1989,1093):177-182.
    [40]T.Y.Oweis and W.R.Walker.Zero-inertia model for surge flow furrow irrigation[J].Irrigation science.1990,11(3):131-136.
    [41]S.A mali,D.E.Rolston,A.E.Fulton.soil water variability under subsurface drip and furrow irrigation[J].irrigation science.1997,17(4):151-155.
    [42]Tarek Gamal El-Dine and Maggdy Mohamed Hosny.Field Evaluation of surge and Continous Flows in Furrow irrigation systems[J].Water Resources Management,2000,14(2):77-87.
    [43]B.Lbenham,D.1.Reddell,T.H.Marek.Performance of three infiltration models under surge irrigation[J].Irrigation Science 2000,20(1):37-43.
    [44]N.Hoydari,A.Das Gupta,R.Loof.salinity and sodicity influences on infiltration during surge flow irrigation[J].Irrigation Science,2001,(20):165-173.
    [45]夏俊山.涌流灌溉技术实验研究[D].西安:西安理工大学硕士学位论文,1988.
    [46]汪志荣.波涌畦灌入渗规律试验研究及水流运动的数值模拟分析[D].西安:西安理工大学硕士学位论文,1990.
    [47]汪志荣.波涌灌溉理论及应用研究[D].西安:西安理工大学博士学位论文,1995.
    [48]魏小抗.波涌畦灌田面水流运动的数值模拟及其应用研究[D].西安:西安理工大学硕士学位论文,1991.
    [49]樊贵盛[J].波涌畦灌大田土壤间歇入渗规律的试验研究[D].西安:西安理工大学硕士学位论文,1993.
    [50]孙喜欢.涌流沟灌入渗试验研究[D].西安:西安理工大学硕士学位论文,1993.
    [51]王文焰.波涌灌溉试验研究与应用[M].西安:西北工业大学出版社,1994.
    [52]王文焰,汪志荣,费良军等.波涌灌溉的灌水质量评价及计算[J].水利学报,2000,(3):53-58.
    [53]费良军.浑水波涌灌溉理论与技术要素试验研究[D].西安:西安理工大学博士学位论文,1997.
    [54]刘洪禄.波涌灌溉机理及其灌水技术的研究[D].北京:北京农业工程大学博士学位论文,1993.
    [55]刘洪禄,吕露,杨培岭等.波涌灌间歇供水表面密实层特性的实验研究[J].灌溉排水,1997,16(4):6-11.
    [56]谢崇宝,黄斌,刘群昌等.波涌灌控制阀及自控器的研制[J].水利水电技术,1999,30(10):31-33.
    [57]刘贤赵,康绍忠.连续与间歇积水入渗对比试验研究[J].水科学进展,1999,10(1):53-58.
    [58]刘群昌,许迪,李益农等.应用水量平衡法确定波涌灌溉下土壤入渗参数[J].灌溉排水,2001,20(2):8-12.
    [59]吴忠东,王全九.波涌灌溉的水流推进规律研究.灌溉排水学报,2006,25(1),42-44.
    [60]汪志荣,王文焰,张建丰.波涌畦灌入渗规律及数值模拟[J].水利学报,1995,(1):75-80.
    [61]刘洪禄,戴洪文,杨培岭等.波涌灌间歇供水土壤水分入渗机理的数值模拟[J].中国农业大学学报,1998,3(2):69-74.
    [62]Wallender W W,Rayej M.Zero-inertia surge model with wet-dry advance.Trans.of ASAE,1985,28(5):1530-1534.
    [63]Walker W R,Humpherys A S.Kinematic-wave furrow irrigation model[J].Journal of Irrigation and Drainage Engineering,1983,109(4):377-392.
    [64]Izuno F T,Podmore T H.Kinematic wave model for surge irrigation research in furrow [J].Transactions of the ASAE,1984,27(4):1145-1150.
    [65]Blair A W,Smerdon E T,Rutledge J.An infiltration model for surge flow rrigation[C].ASCE Irrigation and Drainage Specialty Conf.Proc.,Flagstaff,Ariz.,1984:691-700.
    [66]Blair A W,Smerdon E T.Modeling surge irrigation infiltration[J].Journal of Irrigation and Drainage Engineering,1987,113(4):497-515.
    [67]费良军,刘立明.间歇入渗模型探讨[J].陕西水利,1995年S1期(增刊):34-36.
    [68]Izuno P T,Podmore T H,Duke H R.Infiltration under surge irrigation[C].ASAE Paper 84-2088,1984,ASAE,Summer Meeting,Knoxville,Tenn.
    [69]Killen M A,Slack D C.Green-Ampt model to predict surge irrigation phenomena[J].Journal of Irrigation and Drainage Engineering,1987,113(4):575-584.
    [70]汪志荣,王文焰,王全九等.间歇供水条件下Green—Ampt模型[J].西北水资源与水工程,1998,9(3):7-10.
    [71]费良军,王文焰.浑水间歇入渗模型研究[J].水利学报,1999,(2):39-42.
    [72]Elliott R L,Walker W R.Field evaluation of furrow infiltration[J].Trans.ASAE,1982,25:396-400.
    [73]Shepard J S,Wallender W W.One point method for estimating furrow infiltration.[J].Trans.of ASAE,1993,36:395-404.
    [74]李伏生.灌溉施肥的研究初探[J].灌溉排水,1999,18(增):161-164.
    [75]张源沛,张益民,张建明.灌溉施肥原理及其应用[J].宁夏农林科技,2000,(3):10-12.
    [76]李伏生,陆申年.灌溉施肥的研究和应用植物营养[J].与肥料学报,2000,6(2):233-240.
    [77]张建君,李久生,任理.滴灌施肥灌溉条件下土壤水氮运移的研究进展[J].灌溉排水,第21卷第2期,2002年6月.
    [78]Papadopoulos.Nitrogen fertigation of greenhouse-grown strawberries[J].Nutrient cycling in Agroecosystems,1987,13(3):269-276.
    [79]J.J.Martinez,B.Bar-Yosef,C.Kafkafi.Effect of surface and subsurface drip fertigation on sweet corn rooting,uptake,dry matter production and yield[J].Irrigation science,1991,12(3):153-159.
    [80]A.Hadas and R.Rosenberg.Cuano as a nitrogen source for fertigation in organic farming[J].Nutriont cycling in Agroecosystems,1992,31(2):209-214.
    [81]M.J.Mohammad,S.Zuraiqi等.Yield response and nitrogen utilization efficiency by drip-irrigated potato[J].Nutrient Cycling in Agroecosystems,1999,54(3)243-249.
    [82]Akimasa Nakano,Yoichi uehara等.Effect of organic and inorganic fertigation on yields,δ ~(15)N Values,and δ~(13)C Values of tomato[J].Plant and Soil,2003,255(1):343-349.
    [83]Asilber,GXu等.High fertigation freguency:the effects on uptake on uptake of nutrients,water and plant growth[J].plant and soil,2003,253(2):467-477.
    [84]Munir Jamil Mohammad.Utilization of applied fertiliner nitrogen and irrigation water by drip-fertigated squash as determined by nuclear and tradition techniques[J]. Nutlient Cycling in Agrooe Cosystems,2004,68(1):1-11.
    [85]Munir Jamil Mohammad.Squash yield,nutrient content and soil fertility parameters in response of methods of fertilizer application and rates if nitrogen fertigation[J].Nutrient Cycling in Agroe Cosystems,2004,68(2):99-108.
    [86]许迪,程先军.地下滴灌土壤水运动和和溶质运移数学模型的应用[J].农业工程学报,2002,18(1):27-30.
    [87]Li Jiu sheng,Zhang Jian Jun,Ren Li Nitrogen Distributions in soil under Fertigation From a point source农业工程学报,2002,18(5):61-66.
    [88]习金根,周建斌.不同灌溉施肥方式下尿素态氮在土壤中迁移转化特性的研究[J].植物营养与肥料学报,2003,9(3):271-275.
    [89]习金根,汤海军,周建斌.不同灌溉施氮方式夏玉米生长效应[J].干旱地区农业研究,2004,22(4):68-74.
    [90]刘宏斌,李志宏,张云贵等,北京市农田土壤硝态氮的分布与累积特征,中国农业科学,2004,37(5):692-698.
    [91]王荣萍,黄建国,袁玲等.重庆市主要土壤类型硝态氮淋失及其影响因素.水土保持学报.2004,18(5):35-38.
    [92]陈克亮,朱晓东,朱波等.川中小流域地下水硝态氮的时空变化特整[J].农业环境科学学报,2006,25(4):1060-1064.
    [93]K.G.Menzel.土壤科学:环境的挑战[J].土壤学进展,1993,21(1),4-7.
    [94]张国梁,章申.农田氮淋失研究进展[J].土壤,1998,(6):291-297.
    [95]Lars Bergstrom,Nils Brink.Effects of differentiated application of N on leaching losses and distribution of inorganic N in the Soil[J].Plant and Soil,1986,(93):333-345.
    [96]P J Chilton,Forster S S D.Control of groundwater nitrate pollution in Britain by land-use change,In "Nitrate contamination:Exposure,consequence,and control"NATO ASI Ser.G:Ecological Science 30.pp.333-347,Springer-Verlag,Berlin,1991.
    [97]P J Chilton.Groundwater quality studies for pollution risk assessment in Babados:Results of monitoring in the Belle and Hampton catchment,1987-1991,British Geol.Surv.TechRep.WD/91/40,British Geol.Surv.Keyworth,Nottinghamshire,U.K.,1991.
    [98]宋静、骆永明、赵其国.土壤溶液采样技术进展[J],土壤,2000(2).
    [99]JVrba[捷]和ERomijn[荷],朱西岭,仇祥华译.农业活动对地下水的影响[M].北京:地质出版社,19911Ⅺ-Ⅻ.
    [100]杨建锋,万书勤.美国水文地质调查发展历程及启示[J].资源与产业.2007,2,9(1):22-26.
    [101]姜建军.中国地下水污染现状与防止对策[J].环境保护.2007,33(10):16-17.
    [102]张维理,材葆,李家康.西欧发达国家提高化肥利用率的途径[J].土壤肥料,1998(5):3-9.
    [103]朱北良.在农业发展中切实贯彻“可持续发展战略”的建议[J].前进论坛,1998,5.
    [104]罗阳,张增阁,霍家明等.灌溉施肥条件下田间氮素在土壤中迁移情况的研究[J].水资源保护,2000,62:7-11.
    [105]张明泉.兰州马滩地NO_3~--N污染环境条件分析[J].环境科学,1990,11(5):79-82.
    [106]张维理.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养学与肥料学报,1995,1(2):80-87.
    [107]张思聪,沈子寅.唐山平原区地下水硝酸盐污染变化趋势的研究[J].水力发电学报,2002,(1):68-74.
    [108]吕忠贵.浅析氮磷化肥的使用及对农业生态环境污染[J].农业环境与发展,1997,(3):30-34.
    [109]吕殿青.氮肥施用对环境污污染的问题[J].植物营养与肥料学报,1998,4(1):8-15.
    [110]R.W.Skaggs,M.A.Breve等.Simulation of drainage water quality with DRAINMOD[J].Irigatim and Drainge Systems.1995,9(3):259-277.
    [111]SarwarT,kanwar R S.NO_3~--N and metolachlor Concentrations in the soil water as affected by water table depth[J].Transactions of fhe ASAE,1996,39:2119-2129.
    [112]Drury C F,Tan C S,Gaynor J D等.Optimizing Corn production and reducing nitrate losses with water table control—subirrigation[J].Soil Sci.Am.J,1997,61:889-895.
    [113]Andivashid AElmi,Cmadramootoo等.water and Fertililer Nitrogen Management To minimize Nitrate Pollution from a cropped soil in Southwestern Quebec,Canada[J].Water,Air,Soil Pollution.2004,151(1-4):117-134.
    [114]刘培斌,程伦国,陈瑞忠等.排水条件下稻田中氮素运移转化规律的试验研究[J].农田水利与小水电,1994,(4):15-19.
    [115]冯绍元,张瑜芳,沈荣开.排水条件下饱和土壤中氮肥转化与运移模拟[J].水利学报,1995(6):16-22.
    [116]张瑜芳,张蔚榛,沈荣开.排水农田氮素运移、转化及流失的研究[J].水动力学研究与进展,1996,11(3):251-259.
    [117]张蔚榛,张瑜芳,沈荣开.排水条件下化肥流失的研究——现状与展望[J].水科学进展,1997,8(2):197-203).
    [118]程伦国,刘德福,郭显平.四湖地区稻田水肥管理对策研究[J].湖北农学院学报,2002,22(1):4-7.
    [119]曹红霞.不同灌水条件下氮素在土壤中运移规律的研究(D).杨陵:西北农业大学博士学位论文,2002.
    [120]张翠云,张胜,李政红等.利用氮同位素技术识别石家庄市地下水硝酸盐污染源[J].地球科学进展,2004,19(2):183-191.
    [121]王少丽,SOPsher,YANG CHun—Chieh等.排水氮运移模型对地表和地下排水量和硝态、氮损失的模拟评价[J].水利学报,2004,(9):111-117.
    [122]Addiscott T M,Wagenet R J.Concepts of solute leaching in soils:a review of modeling approaches[J].J.of Soil Sci,1985,36:411-424.
    [123]李韵珠,李保国.土壤溶质运移[M].北京:科学出版社,1998.
    [124]黄康乐.原状土等温吸附特性的研究[J].灌溉排水,1987,6(3):26-29.
    [125]Barnes A C.Solute and water movement in unsaturated soils[J].Water Resources 1990,Research,26(6):1219-1234.
    [126]Ramos C,Carbonell E A.Nitrate leaching and soil moisture prediction with the LFACHM model[J].Fertilizer Research,1991,27:171-180.
    [127]Bergstrom L,Jonsson H and Torstensson G.Simulation of nitrogen dynamics using the SOILN model[J].Fert.Res.,1991,27:181-188.
    [128]Rijtema P E,Krose J G.Some results of nitrogen simulations with the model ANIMO[J].Fertilizer Research,1991,27:189-198.
    [129]张瑜芳,刘培斌.不同渗漏强度条件下淹水稻田中氨态氮转化和运移的研究[J].水利学报,1994,(6):10-19.
    [130]冯绍元,张瑜芳,沈荣开非饱和土壤中氮素运移与转化试验及其数值模拟水利学报,1996,(8):8-15.
    [131]黄元仿,李韵珠,陆锦文.田间条件下土壤氮素运移的模拟模型Ⅰ[J].水利学报,1996,(6):9-14.
    [132]黄元仿,李韵珠,陆锦文.田间条件下土壤氮素运移的模拟模型Ⅱ田间检验与应用[J].水利学报,1996,(6):15-23.
    [133]高新科,张富仓,刘俊杰..非饱和土壤溶质运移数值模拟的初步研究[J].西北农业大学学报,1996,24(2):66-70.
    [134]张思聪,吕贤弼,黄永刚.灌溉施肥条件下氮素在土壤中迁移转化的研究[J].水利水电技术,1999,30(5):6-8.
    [135]魏新平.灌溉对作物根区硝酸钾运移影响的研究[D].西安:西安理工大学博士学位论文,2000.
    [136]程先军,许迪.地下滴灌土壤水运动和溶质运移的数学模型及验证[J].农业工程学报,2001,17(6):1-4.
    [137]杜恩昊,张佳宝,唐立松.一种溶质运移数学模型的应用研究[J].干旱区研究,2001,18(1):29-34.
    [138]Coats K H and Smith K D.Dead-end pore volume and dispersion in porous media[J].Soc.Pet.Eng.J.,1964,4:73-84.
    [139]Bear J.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983.
    [140]杨金忠.一维饱和与非饱和水动力弥散系数的实验研究[J].水利学报,1986,(3):10-21.
    [141]Bresler E,et al.Sodium and sodic principles dynamics modeling[J].New York:Springer-Verlay,1980.
    [142]Bond W J and Wierenge R J.Immobile water during solute transport in unsaturated sand columns[J].Water Resources Research,1990,26(10):2475-2481.
    [143]Terkeltoub R W,Babcock K L.A Simple method for predicting salt movement through soil[J].Soil Sci.,1971,111(3):182-187.
    [144]Neuman S.Enlerian.Lagrangian theory of transport in space-time nonstationary velocity fields:exact nonlocal formalism by conditional moments and weak approximation[J].Water Resources Research,1993,29(3):633-645.
    [145]Jury W A.Simulation of solute transfer using a transfer function model[J].Water Resources Research,1982,18(2):363-368.
    [146]Jury W A,Sposito G,White R E.A transfer function model of solute transport through soil 1.Fundamental concepts[J].Water Resources Research,1986,22(2):243-247.
    [147]White R E A transfer function model for the predication of nitrate leaching under field condition[J].Journal of Hydrology.1987,92:207-222.
    [148]叶自桐.利用盐分迁移函数模型研究入渗条件下土层的水盐动态[J].水利学报,1990,(2):1-8.
    [149]Heng L K,White R E,Scotter D R,Bolan N S A transfer function approach to modeling the leaching of solutes to subsurface drainsl Reactive solutes[J].Aust.J.Soil Res.,1994,32:85-94.
    [150]Heng L K,White R E A simple analytical transfer function to modeling the leaching of reactive solutes through field soil[J].European Journal of Soil Science.March 1996,47:33-42.
    [151]任理,刘兆光,李保国.非稳定流条件下非饱和均质土壤溶质运移的传递函数解[J].水利学报,2000,(2):7-15.
    [152]任理,马军花.考虑土壤中硝态氮转化作用的传递函数模型[J].水利学报,2001,(5):38-44.
    [153]任理,袁福生,张福锁.土壤中硝态氮淋洗的传递函数模拟和预报[J].水利学报,2001,(4):21-27.
    [154]Jury W A,Roth K Transfer functions and solute movement through soil:Theory and applications Birkhanser Verlag Base[J]1,Boston Berlin,1990,53-54;40;56;58-59.
    [155]任理,袁福生,张福锁.土壤剖面硝态氮浓度分布的随机—对流传递函数模拟[J].水利学报,2002,(2):54-60.
    [156]Addiscott T M.Simulation modeling and soil behavior[J].Geoderma,1993,60:15-40.
    [157]李酉开,易小琳.吸光量的原理、技术和应用[J].土壤学报,1995,32(4):383-387.
    [158]中华人民共和国国家标准GB 7480-87,水质硝酸盐氮的测定酚二磺酸分光光度法[S].
    [159]陈明昌,张强,杨晋玲.土壤硝态氮含量测定方法的选择和验证[J].山西农业科学,1995,23(1):31-36.
    [160]中华人民共和国国家标准GB 7479-87,水质铵的测定纳氏试剂比色法[S].
    [161]邵孝侯,胡霭堂.0.01 molL~(-)CaCl_2,作为土壤不同N素形态浸提剂的研究[J].土壤学报,1991,28(1):32-38.
    [162]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988:224-230.
    [163]刘贤赵,康绍忠,连续与间歇积水入渗对比试验研究,水科学进展,1999,10(1).
    [164]高阳俊,张乃明.滇池流域地下水硝酸盐污染现状分析[J],云南地理环境研究,2003,15(4):39-42.
    [165]周学志.地下水开发利用的环境问题及防治措施研究[J].环境科学丛刊,1992,13(3):1-3.
    [166]梁涛,张秀梅,章申等.西苕溪流域不同土地类型下氮元素输移过程[J].地理学报,2002,57(4):389-396.
    [167]于兴修,杨桂山,梁涛.西苕溪流域土地利用对氮素径流流失过程的影响[J].农业环境保护,2002,21(5):424-427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700