位山灌区农田氮淋溶过程与地下水污染研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着农业生产中化肥使用量的增加,化肥流失所造成的水环境污染也越来越严重。为了研究农业活动对地下水体带来的面源污染状况,本论文以铵态氮与硝态氮为研究对象,结合山东位山引黄灌区的田间水文气象及地下水水质等观测数据,建立了基于LEACHM与MODFLOW数值模拟软件的灌区非饱和带与饱和带水氮联合运移模拟模型,对农田生态系统中氮素的运移转化和地下水污染进行了模拟研究,可为指导农业生产、控制水环境污染提供参考。
     位山灌区是黄河下游最大的引黄灌区,其气候条件、作物种植和农业管理等各方面都具有典型华北农业特色和良好的代表性。研究中采用田间试验与数值模拟相结合的方法。田间试验包括水文气象数据的测量、土壤不同深度含水率与养分含量的测量以及地下水水位和水质的观测。数值模拟中,通过对灌区模拟范围进行合理的划分,并用非饱和带与饱和带之间的水分和氮素的淋溶量,将描述非饱和带水分与氮素运移的LEACHM模型与地下水模拟模型MODFLOW相结合,建立了灌区水分与氮素在非饱和带与饱和带运移的联合模拟模型,实现水分与氮素在非饱和带和饱和带运动的联合模拟。
     论文中模拟期为2006年6月至2009年12月,采用2007年至2009年实测数据,对模型进行率定和验证,模拟结果的平均相关系数和Nash效率系数分别达到0.95与0.75,证明该联合模型可用于当地的水分与氮素联合运移模拟。为了分析农业生产对地下水水质的长期影响,选取具有代表性的20年长降雨系列,设置不同的农业施肥灌溉措施,利用率定验证后的模型,对灌区地下水中的氮素长期运移累积规律进行研究。结果表明,长期农田施肥和灌溉将导致灌区浅层地下水面临着严峻的氮素污染。通过情景模拟还发现,灌溉量是控制氮素淋溶的重要因子。在实际生产生活中,灌区应当发挥自身优势,严格控制灌溉水量。论文还对较深层潜水进行了定性模拟,发现水分与氮素垂向运移较为缓慢,在短时期内整个潜水层水质不会发生剧烈的恶化,但是随着地下水抽水量增大,其污染状况依然不容乐观。
The increasing of fertilizer utilization and leaching in farmland have led to serious problem of groundwater pollution in China. In order to investigate the non-point source pollution of groundwater caused by agricultural activities, the leaching of ammonium nitrogen and nitrate nitrogen and groundwater pollution caused by them are studied in this master thesis. Based on the field experiment and hydrological and meteorological observation in the Weishan Irrigated District of Shandong province, with the LEACHM model and MODFLOW model an integrated model of water and nitrogen transportation in unsaturated and saturated zone is established. This integrated model is applied to the whole study area to analyze the groundwater pollution caused by nitrogen leaching. The result can be used for decision supporting of the groundwater pollution control and guide agricultural production.
     The Weishan Irrigated District, which is the largest irrigated area in the downstream of Yellow River basin, is typical for its features of climate condition, crop type and agricultural management in the North China Plain. Field experiments include observation of hydrological data, observation of soil moisture and nutrient content in different depth and observation of groundwater table elevation and qualities. In the numerical simulation, divide the whole district to different sub-district reasonably and the movements of water and nitrogen in unsaturated zone and saturated zone are linked by the leaching of water and nitrogen. Based on LEACHM model and MODFLOW model, an integrated simulation model of water and nitrogen in unsaturated and saturated zone is established. This model can simulate water and nutrient transportation in both unsaturated and saturated zone.
     According to the observation of water content and nitrogen concentration in soil and groundwater during 2007-2009, the integrated model is calibrated and validated, with correlation coefficient and Nash efficiency coefficient are 0.95 and 0.75 respectively. It means that this model can simulate the transportation of water and nutrient in unsaturated and saturated zone without much difference. Based on this model, we choose typical long series of rainfall data and carry out scenario study to understanding the potential nitrogen accumulation in the groundwater under present agricultural management. Results show that irrigation and fertilization would result in nitrogen pollution in shallow groundwater. It is also known that irrigation is an important factor of nitrogen leaching in farmland, which suggests irrigation can used as a method to reducing nitrogen pollution. For the slow movement in the vertical direction, deeper shallow groundwater could maintain good quality in a longer time. However, if a large quantity of groundwater is pumped to meet the rapid increasing of water consumption in the future, it would accelerate the groundwater deteriorations and threaten drinking water safety.
引文
[1]胡俊鹏,孙平阳,黄天柱。陕西旱作节水农业制约因素及对策研究。中国农学通报。2005,(2):342~344.
    [2] Comly H R. JAMA. 1945,129:112-116.
    [3]张国梁,章申.农田氮素淋失研究进展.土壤. 1998. (06). 291-297.
    [4] J.N.GALLOWAY, F.J.DENTENER, D.G.CAPONE. Nitrogen cycles: past, present, and future. Biogeochemistry,2004,70:153–226.
    [5]樊向阳,齐学斌,黄仲冬,李平,乔冬梅.土壤氮素运移转化机理研究现状与展望.中国农学通报. 2006. (03). 254-258.
    [6]魏新平,王文焰,等.溶质运移理论的研究现状和发展趋势.灌溉排水,1998,17(4):58~63.
    [7]徐晓荣,李恒辉,陈良.利用15N研究氮肥对土壤及植物内硝酸盐的影响.核农学报,2000,14(5):301~304.
    [8]武晓峰,谢森传.冬小麦田间根层中氮素迁移转化规律研究.灌溉排水,1996,15(4):10~15.
    [9]冯绍元,郑耀泉.农田氮素的转化与损失及其对水环境的影响.农业环境保护,1996,15(6):277~279.
    [10]赵竟英,宝德俊,张鸿程,皇甫湘荣.潮土硝态氮移动规律及对环境的影响.农业环境保护. 1996. (04). 166-169.
    [11]刘微,赵同科.冬小麦土壤无机氮淋失规律及灌水施氮量的推荐.农业环境科学学报. 2006. (06). 1541-1546.
    [12]樊军,郝明德,党廷辉.旱地长期定位施肥对土壤剖面硝态氮分布与累积的影响.土壤与环境. 2000. (01). 23-26.
    [13]郝高建.氮素化肥淋溶污染与控制方法的研究[学位论文].陕西师范大学. 2005.
    [14] Donald R, Nielsen J, Macdonald G. Nitrogen in the environment. New York, Sanfrancisco Landon,1978,1:223~250.
    [15]张新明,李华兴,吴文良.氮素肥料对环境与蔬菜的污染及其合理调控途径.土壤通报,2002,33(6):471~475.
    [16]余贵芬,毛知耘,等.氮素在紫色土中的移动和淋失研究.西南农业大学学报,1999,21(3):228~232.
    [17]王荣萍,余炜敏,黄建国,袁玲,李淑仪.田间条件下氮的矿化及硝态氮淋溶研究.水土保持学报. 2006. (01). 80-82.
    [18]李世清,李生秀.半干旱地区农田生态系统中硝态氮的淋失.应用生态学报,2000,11(2):240~242.
    [19]赵允格,邵明安.不同施肥条件下农田硝态氮迁移的试验研究.农业工程学报,2002,18(4):37~40.
    [20]张云贵,刘宏斌,李志宏,林葆,张夫道.长期施肥条件下华北平原农田硝态氮淋失风险的研究.植物营养与肥料学报. 2005. (06). 5-10.
    [21]曹巧红,龚元石.应用Hydrus-1D模型模拟分析冬小麦农田水分氮素运移特征.植物营养与肥料学报,2003,9(2):139~145.
    [22]张思聪,吕贤弼,黄永刚.灌溉施肥条件下氮素在土壤中迁移转化的研究.水利水电技术,1999,30(5):6~8.
    [23] Skaggs R W,M A Breve.Simulation of drainage water quality with DRAINMOD[C].Trasactions of Workshop on Subsurface DrainageSimulation Model.1993.
    [24]王风,张克强,黄治平,李军幸,于丹,李晓光. RZWQM模型介绍及其应用进展.农业系统科学与综合研究. 2008. (04). 501-504.
    [25]张瑜芳,刘培斌.不同渗漏强度条件下淹水稻田中氨态氮转化和运移的研究.水利学报,1994,(6):9~19.
    [26]冯绍元.排水条件下饱和土壤中氮肥转化与运移模拟.水利学报,1995,221(6):29~33.
    [27]刘培斌,丁跃元,张瑜芳.田间一维饱和—非饱和土壤中氮素运移与转化的动力学模式研究.土壤学报,2000,37(4):490~498.
    [28]杨威.基于FEFLOW的吉林西部地下水数值模拟研究[学位论文].吉林大学. 2007.
    [29] Ajdary Khalil, Singh D. K., Singh A. K., Khanna Manoj. Modelling of nitrogen leaching from experimental onion field under drip fertigation. Agricultural Water Management. 2007. 89(1-2). 15-28.
    [30]黄爱民,张二勋.位山灌区引黄效益分析.水利经济. 2008. (03). 23-25.
    [31]雷慧闽,杨大文,沈彦俊,宫崎真,鼎信次郎,冯宝清,刘新兵.黄河灌区水热通量的观测与分析.清华大学学报(自然科学版). 2007. (06). 801-804.
    [32]中华人民共和国水文地质图集,中国地质科学院水文地质工程地质研究所,1988.
    [33]中国水文地质图说明书,中国地质科学院水文地质工程地质研究所,1988.
    [34]聊城市土地利用报告,聊城市统计局,1985.
    [35]山东省聊城市2009年统计年报,聊城市统计局,2009.
    [36]张治昊,聂莉莉,戴清,李敬义,李延波.黄河下游典型引黄灌区节水改造综合效益评价.水利经济. 2008. (05). 27-29.
    [37]位山灌区信息网,http://www.wsgq.com.cn.
    [38]李庆朝.聊城市水资源开发利用与保护.聊城大学学报(自然科学版). 2003. (02). 83-86.
    [39]孙泽龙.聊城市水资源评价与供需平衡分析[学位论文].中国农业大学. 2005.
    [40] John L.Hutson, LEACHM MODEL DESCRIPTION AND USER’S GUIDE, 2003.
    [41]胡轶,谢水波,蒋明,陈泽昂,刘奇,杨晶. Visual Modflow及其在地下水模拟中的应用.南华大学学报(自然科学版). 2006. (02). 1-5.
    [42]王宏,娄华君,邹立芝.Modflow在华北平原区地下水库模拟中的应用[J].世界地质,2003,22(1):69-72..
    [43]陈泽昂,谢水波,何超兵,等.浅层地下水中污染物迁移模拟技术研究现状与发展趋势[J].南华大学学报(自然科学版),2005,19(1):6-10.
    [44]朱冬林,聂得新,葛修润.3d-modflow在模拟库岸滑坡工程地下水分布中的应用初探[J].岩土力学,2002,25(3):378-381.
    [45]束龙仓,Xunhong Chen.地下水开采对河流流量衰减的影响分析——以美国内布拉斯加州普拉特河谷为例[J].水利学报,2003,(2):112-116.
    [46]周念清,朱蓉,朱学愚.Modflow在宿迁市地下水资源评价中的应用[J].水文地质工程地质,2001,(6):9-13.
    [47]中华人民共和国国家标准(GB 14848-9):地下水质量标准.中国标准出版社,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700