SCN1A基因突变的致痫机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     癫痫是脑部神经元高度同步化异常放电所致,以发作性、短暂性、重复性及刻板性为特征的一组中枢神经系统功能失常的综合征。神经元细胞膜兴奋性增高,易于形成痫性放电,是癫痫发生的病理生理基础。研究发现了越来越多的单基因突变导致癫痫,这些基因大多数编码离子通道或受体,包括电压门控钠、钾、钙、氯离子通道和乙酰胆碱受体及γ-氨基丁酸受体(GABA)。电压门控钠通道主要负责控制细胞兴奋性,其结构和功能异常可引起细胞膜兴奋性改变,在癫痫发病机制中具有重要作用。
     哺乳动物的电压门控钠通道由α亚基和β亚基组成。α亚基由同一家族的9个基因编码(SCN1A-SCN11A),SCN1A基因编码的蛋白命名为Nav1.1,Nav1.1主要表达在抑制性中间神经元。α亚基是钠通道的功能性单位,由四个高度同源性的结构域(Ⅰ~Ⅳ)通过胞内连接环相连而成,每个结构域含有6个跨膜片段(S1~S6)。4个辅助性β亚基(β1-β4)由基因SCN1B-SCN4B基因编码,在成人中枢神经系统α亚基一般连有β1和β2亚基。SCN1A基因突变主要导致三种癫痫综合症:全面性癫痫伴热性惊厥附加症(generalized epilepsy with febrile seizures plus, GEFS+),婴儿重症肌阵挛癫痫(severe myoclonic epilepsy of infancy, SMEI)和部分性癫痫伴热性惊厥附加症(partial epilepsy with febrile seizures plus, PEFS+)。SCN1B基因的突变主要导致GEFS+。我们在对SMEI患者相关基因筛查中,发现了一个新的SCN1A基因错义突变:c.4868A>C,导致Nav1.1第1623位氨基酸由谷氨酸变为丙氨酸(E1623A),位于Nav1.1第4个结构域S3片断上,而且高度保守。目前,在SMEI患者Nav1.1 S3跨膜片共发现10个突变,但这些突变对钠通道功能的影响还未见报道,Nav1.1E1623A导致癫痫的发病机制值得进一步研究。
     研究目的
     通过在HEK 293T细胞异质表达Nav1.1 E1623A和β1和β2亚基,采用全细胞膜片钳记录钠通道的电生理动力学参数,将其与Nav1.1野生型进行比较,探讨SCN1A基因c.4868A>C突变导致癫痫的发病机制。
     研究方法
     1. pCMV-SCN1A质粒酶切、测序及Nav1.1表达的鉴定
     采用内切酶消化pCMV-SCN1A质粒初步鉴定,酶切正确的质粒测序确认SCN1A基因编码区。HEK 293T细胞转染pCMV-SCN1A质粒48h后提取总蛋白,采用蛋白印迹检测Nav1.1的表达。
     2. pDsred-IRES-SCN1B质粒构建和鉴定
     采用引入酶切位点的PCR方法从pCMV-Dsred质粒扩增红色荧光蛋白Dsred DNA片段。将Dsred PCR产物克隆到TA载体,测序确认。在pCD8-IRES-SCN1B质粒的基础上内切酶消化去除pCD8标记,回收IRES-SCN1B载体;pDsred-TA质粒内切酶消化回收Dsred DNA片段,采用DNA连接酶连接Dsred DNA片段与IRES-SCN1B载体,即得pDsred-IRES-SCN1B质粒,测序确认SCN1B基因编码区。
     3. pGFP-IRES-SCN2B质粒酶切、测序
     采用内切酶消化pGFP-IRES-SCN2B质粒初步鉴定,酶切正确的质粒测序确认SCN2B基因编码区。
     4. pCMV-SCN1A-E1623A突变体质粒的构建
     定点诱变试剂盒对pCMV-SCN1A质粒进行定点诱变构建pCMV-SCN1A- E123A质粒,测序确认。
     5.膜片钳检测
     HEK 293T细胞共转染pDsred-IRES-SCN1B质粒、pGFP-IRES-SCN2B质粒和pCMV-SCN1A质粒或pCMV-SCN1A-E1623A质粒48h后,在荧光显微镜下可观察到红色荧光和绿色荧光。选择同时表达了红色荧光和绿色荧光的HEK293T细胞进行电生理功能研究。在全细胞电压钳模式下给予标准刺激方案,根据所得钠电流数据建立钠通道的电流密度曲线、电压依赖激活曲线、稳态失活曲线和失活后恢复曲线,计算钠通道的电流密度、半数激活电压、半数失活电压和失活后恢复时间常数等进行比较。
     6.统计学分析
     计量资料以均数±标准差( X±S)表示,采用SPSS l6.0软件包进行统计分析,组间比较采用两样本t检验。P<0.05为差异具有统计学意义。
     研究结果
     1. pCMV-SCN1A质粒酶切、测序及Nav1.1表达的检测
     pCMV-SCN1A质粒测序SCN1A基因编码区未发现突变。Western blot检测结果显示:HEK 293T细胞转染pCMV-SCN1A质粒48h后在蛋白水平得到明显表达。
     2. pDsred-IRES-SCN1B质粒构建和鉴定
     成功将红色荧光蛋白Dsred DNA片段连接到IRES-SCN1B载体。pDsred-IRES-SCN1B质粒测序SCN1B基因编码区未发现突变。
     3. pGFP-IRES-SCN2B质粒酶切、测序
     测序确认pGFP-IRES-SCN2B质粒SCN2B基因编码区未发现突变。
     4. pCMV-SCN1A-E1623A突变体质粒的构建
     测序证实:SCN1A基因第1623位谷氨酸密码子(GAG)突变为丙氨酸密码子(GCG),而该质粒上SCN1A基因其它区段均未出现意外突变。
     5.膜片钳检测
     Nav1.1野生型和E1623A突变体在去极化电压为-10mv时,钠通道的电流最大。Nav1.1野生型峰电流密度约为-232.1±19.1pA/pF,激活曲线半数激活电位(V1/2)为-24.8±0.4mv(n=10),斜率因子K为5.2±0.3;稳态失活曲线半数失活电位(V1/2)为-53.0±0.5mv(n=10),斜率因子K为-8.6±0.4;失活后恢复时间常数τfast和τslow分别为1.4±0.1ms(n=9)和39.9±6.0ms。
     与Nav1.1野生型相比,E1623A突变体峰电流密度约为-100.7±16.2pA/pF,明显降低(p<0.05)。激活曲线半数激活电位(V1/2)为-24.6±0.5mv(n=7),斜率因子K为8.4±0.4(p<0.05),激活速度减慢;稳态失活曲线向超极化方向移动,半数失活电位(V1/2)为-60.9±0.5mv(n=7)(p<0.05),斜率因子K为-11.5±0.5(p<0.05),失活加快;失活后恢复时间常数τfast和τslow分别为2.1±0.2m(sn=6)(p<0.05)和42.5±6.9ms,失活后恢复时间延长。
     结论
     1. Nav1.1 E1623A突变体的电流密度降低,激活速度减慢,失活加快,失活后恢复时间延长,Nav1.1 E1623A突变体功能减弱,表现为“partial loss of function”。
     2. Nav1.1 E1623A突变体可能导致抑制性中间神经元Nav1.1功能减弱,对兴奋性神经元抑制作用降低,从而引起兴奋性神经元兴奋性增高,这可能是该患者癫痫发病的主要机制,可为该患者选择抗癫痫药物提供参考。
Background
     Epilepsy is a group of central nervous system dysfunction syndrome with the alteration of neuronal excitability, a high degree of synchronization of abnormal brain neurons discharging, and characterized as episodic, transient, repetitive and stereotyped. Epileptic discharge is easily formed in the case of increasing membrane excitability of neurons, which is the basis of the pathophysiology of epilepsy. Research has uncovered a growing number of single-gene mutations that cause epilepsy. The majority of these genes encode ion channels or receptors, including voltage-gated sodium, potassium, calcium, chloride channels and acetylcholine receptors andγ-aminobutyric acid (GABA) receptor. The voltage-gated sodium channels are in part responsible for controlling cell electrical excitability, and its abnormal structure and function can cause changes in membrane excitability, which play an important role in the pathogenesis of epilepsy.
     The mammalian voltage-gated sodium channel consists ofαsubunit and twoβsubunits. Theαsubunits are encoded by nine genes of the same family (SCN1A-SCN11A), SCN1A encode one isoform, termed Nav1.1. Theαsubunit comprises four homologous domains termed I–IV. Within each domain, there are six transmembrane segments called S1–S6. The Nav1.1 is predominantly expressed in inhibitory interneurons. Four accessoryβ1,β2,β3, orβ4 subunits are encoded by SCN1B-SCN4B respectively. In the adult CNS, theαsubunits are associated withβ1 andβ2. SCN1A mutations mainly can cause the three epilepsy syndrome, generalized epilepsy with febrile seizures plus (GEFS+), severe myoclonic epilepsy of infancy (SMEI), and partial epilepsy with febrile seizures plus (PEFS+). Mutations in SCN1B lead to GEFS+. We found a novel missense mutation c.4868A>C in SCN1A genetic screening of patients with SMEI. The mutation lead to the 1623 amino acid glutamate into alanine (E1623A), it was located at S3 segments of the fourth domain where highly conserved. Up to now, there are 10 mutations located in S3 of Nav1.1 in patients with SMEI, but the effect of these mutations on the function of Nav1.1 has not been reported. The mechanism of Nav1.1 E1623A leading to epilepsy is worthy of further study.
     Purpose
     To explore the pathogenesis of epilepsy caused by the mutation of SCN1A c.4868 A>C. by comparing the electrophysiological changes using whole cell patch clamp in HEK 293T cells with expression of Nav1.1 E1623A andβ1 andβ2 subunits.
     Methods
     1. Sequencing the pCMV-SCN1A plasmid and identificating the expression of Nav1.1
     pCMV-SCN1A plasmid was identified first by endonuclease, and then the SCN1A coding region was confirmed by sequencing. Total protein of HEK 293T cells transfected with pCMV-SCN1A plasmid was extracted after 48h, and the expression of Nav1.1 was detected by using western blot.
     2. Constructing the pDsred-IRES-SCN1B plasmid
     Red fluorescent DNA fragment was amplified from pCMV-Dsred plasmid using PCR methods with disigned restriction enzyme cutting site, and it was cloned to TA vector. pDsred-TA plasmid which was confirmed by sequencing was digested with endonuclease, and Dsred DNA fragment was gotten. pCD8 marks was removed from pCD8-IRES-SCN1B plasmid by endonuclease and IRES-SCN1B vector was gotten. pDsred-IRES-SCN1B plasmid was constructed by ligating Dsred DNA fragment with IRES-SCN1B vector with DNA ligase. SCN1B coding region in pDsred-IRES- SCN1B plasmid was confirmed by sequencing.
     3. Sequencing the pGFP-IRES-SCN2B plasmid
     pGFP-IRES-SCN2B plasmid was identified first by endonuclease, and then the SCN2B coding region was confirmed by sequencing.
     4. Constructing the pCMV-SCN1A-E1623A plasmid
     pCMV-SCN1A-E123A plasmid was constructed with site-directed mutagenesis kit and confirmed by sequencing.
     5. Patch clamp detection
     pCMV-SCN1A plasmid or pCMV-SCN1A-E1623A plasmid, pDsred-IRES- SCN1B plasmid and pGFP-IRES-SCN2B plasmid were co-transfected in HEK 293T cells, the red and green fluorescence were observed under fluorescent microscope after 48h. Only cell with the red and green fluorescence can be used for next patch clamp detection. During patch clamp detection, the standard stimulus was given in the whole-cell voltage clamp mode. According to current data, the current density curves of sodium current, voltage dependent activation curve, steady-state inactivation curve and recovery curve after inactivation were established, and the current density of sodium current, half activation voltage, half inactivation voltage and resurrection time constant were calculated and compared.
     6. Statistical analysis
     Data were shown as mean±standard deviation ( X±S). SPSS l6.0 software package was used for the statistical methods. Statistical comparisons were done with the two-sample t-test. P <0.05 was statistically significant difference.
     Results
     1. Sequencing the pCMV-SCN1A plasmid and identificating the expression of Nav1.1
     No mutation was found in coding sequence of SCN1A in pCMV-SCN1A plasmid. Western blot results showed that: the level of Nav1.1 has been markedly expressed in HEK 293T cells transfected with pCMV-SCN1A plasmids 48h later.
     2. Constructing the pDsred-IRES-SCN1B plasmid
     Dsred PCR products were successfully ligated to the IRES-SCN1B vector. pDsred-IRES-SCN1B plasmid was sequenced and no mutation was found in its coding region.
     3. Sequencing the pGFP-IRES-SCN2B plasmid
     No mutation was found in coding sequence of SCN2B in pGFP-IRES-SCN2B plasmid.
     4. Constructing the pCMV-SCN1A-E1623A plasmid
     The mutation of 1623 glutamic acid codon (GAG) to alanine codon (GCG) in SCN1A was confirmed by sequencing, while other mutations in SCN1A in the plasmid were not found.
     5. Patch clamp detection
     At -10mv, the level of sodium channel current was maximal in wild type Nav1.1 and E1623A mutant. Peak current density of wild type Nav1.1 is about -232.1±19.1pA/pF (n=10), half activation potential (V1/2) of activation curve was -24.8±0.4mv (n=10), slope factor K was 5.2±0.3; half inactivation potential (V1/2) of steady-state inactivation curve was -53.0±0.5mv (n=10), slope factor K was -8.6±0.4; Recovery time constantτfast andτslow were 1.4±0.1ms (n=9) and 39.9±6.0ms .
     Compared with that of wild type Nav1.1, peak current density of E1623A mutant was about -100.7±16.2pA/pF (n=7) (p <0.05); half activation potential (V1/2) of activation curve was -24.6±0.5mv (n=7), slope factor K is 8.4±0.4 (p<0.05); steady-state inactivation curve shifted in the negative direction, half inactivation potential (V1/2) was -60.9±0.5mv (n=7) (p <0.05), slope factor K was -11.5±0.5 (p <0.05); Recovery time constantτfast andτslow were 2.1±0.2ms (n=6) ( p <0.05) and 42.5±6.9ms.
     Conclusions
     1. Nav1.1 E1623A displayed a decreased current density, a slower activation, a negative shift in the steady-state inactivation and a significantly delayed recovery from inactivation. These data indicates that Nav1.1 E1623A results in partial loss of function.
     2. The E1623A missense mutation may decrease the availability of the Nav1.1 channel in inhibitory interneurons, resulting in the partial dysfunction of network inhibition. The resulting dysfunction of network inhibition can hyperactivate excitatory neurons leading to epilepsy.
引文
[1] Steinlein OK. Channelopathies can cause epilepsy in man [J]. Eur J Pain, 2002, 6 (Suppl. A): 27–34.
    [2] Scheffer IE, Berkovic SF. Generalized epilepsy with febrile seizures plus. A genetic disorder with heterogeneous clinical phenotypes [J]. Brain, 1997, 120: 479-490.
    [3] Abou-Khalil B, Ge Q, Desai R, et al. Partial and generalized epilepsy with febrile seizures plus and a novel SCN1A mutation [J]. Neurology, 2001, 57: 2265-2272.
    [4] Singh R, Scheffer IE, Crossland K, et al. Generalized epilepsy with febrile seizures plus: a common childhood-onset genetic epilepsy syndrome [J]. Ann Neurol, 1999, 45: 75-81.
    [5] Fujiwara T, Sugawara T, Mazaki-Miyazaki E, et al. Mutations of sodium channel alpha subunit type 1 (SCN1A) in intractable childhood epilepsies with frequent generalized tonic clonic seizures [J]. Brain, 2003, 126: 531-546.
    [6] Singh R, Andermann E, Whitehouse WP, et al. Severe myoclonic epilepsy of infancy: extended spectrum of GEFS+ ? [J]. Epilepsia, 2001, 42: 837-844.
    [7] George AL Jr. Inherited disorders of voltage-gated sodium channels [J]. J Clin Invest, 2005, 115(8): 1990-1999.
    [8] Isom LL, De Jongh KS, Patton DE, et al. Primary structure and functional expression of theβ1 subunit of the rat brain sodium channel [J]. Science, 1992, 256: 839-842.
    [9] Isom LL, Ragsdale DS, De Jongh KS, et al. Structure and function of theβ2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM-motif [J]. Cell, 1995, 83: 433-442.
    [10] Mulley JC, Schefer IE, Petrou S, et a1. SCN1A Mutations and Epilepsy [J]. Human Mutation, 2005, 25(6): 535-542.
    [11] Dichgans M, Freilinger T, Eckstein G, et a1. Mutation in the neuronalvoltage-gated sodium channel SCN1A in familial hemiplegic migraine [J]. The Lancet, 2005, 366(9483): 371-377.
    [12] Weiss LA, Escayg A, Kearney JA, et a1. Sodium channels SCN1A, SCN2A and SCN3A in familial autism [J]. Mol Psychiatry, 2003, 8(2): 186-194.
    [13] Claes L, Del Favero J, Ceulemans B, et al. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy [J]. Am J Hum Genet, 2001, 68(6): 1327-1332.
    [14] Escayg A, MacDonald BT, Meisler MH, et a1. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2 [J]. Nat Genet, 2000, 24(4): 343-345.
    [15] Liao WP, Shi YW, Long YS, et al. Partial epilepsy with antecedent febrile seizures and seizure aggravation by antiepileptic drugs: Associated with loss of function of Nav1.1 [J]. Epilepsia, 2010, 51(9): 1669-1678.
    [16] Meisler MH, Kearney JA. Sodium channel mutations in epilepsy and other neurological disorders [J]. J Clin Invest, 2005, 115: 2010 -2017.
    [17] Mulley JC, Scheffer IE, Petrou S, et al. SCN1A mutations and epilepsy [J]. Hum Mutat, 2005, 25: 535-542.
    [18] Lossin CA. Catalog of SCN1A variants [J]. Brain Dev, 2009, 31: 114 -130.
    [19] Reid CA, Berkovic SF, Petrou S. Mechanisms of human inherited epilepsies [J]. Prog Neurobiol, 2009, 87(1): 41-57.
    [20] Audenaert D, Claes L, Ceulemans B, et al. A deletion in SCN1B is associated with febrile seizures and early-onset absence epilepsy [J]. Neurology, 2003, 61: 854-856.
    [21] Beckh S, Noda M, Lbbert H, et al. Differential regulation of three sodium channel messenger RNAs in the rat central nervous system during development [J]. EMBO J, 1989, 8: 3611-3636.
    [22] Gordon D, Merrick D, Auld V, et al. Tissue-specific expression of the RI and RII sodium channel subtypes [J]. Proc Natl Acad Sci USA, 1987, 84:8682-8686.
    [23] Ogiwara I, Miyamoto H, Morita N, et al. Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epilepticseizures in mice carrying an Scn1a gene mutation [J]. J Neurosci, 2007, 27: 5903-5914.
    [24] Gong B, Rhodes KJ, Bekele-Arcuri Z, et al. Type I and type II Na+ channel a-subunit polypeptides exhibit distinct spatial and temporal patterning, and association with auxiliary subunits in rat brain [J]. J Comp Neurol, 1999, 412: 342-352.
    [25] Caldwell JH, Schaller KL, Lasher RS, et al. Sodium channel Nav1.6 is localized at nodes of Ranvier, dendrites, and synapses [J]. Proc Natl Acad Sci USA, 97: 5616-5620.
    [26] Hu W, Tian C, Li T, et al. Distinct contributions of Nav1.6 and Nav1.2 in action potential initiation and backpropagation [J]. Nat Neurosci, 2009, 12: 996-1002.
    [27] Misra SN, Kahlig KM, George AL Jr. Impaired Nav1.2 function and reduced cell surface expression in benign familial neonatal-infantile seizures [J]. Epilepsia, 2008, 49: 1535-1545.
    [28] Holland KD, Kearney JA, Glauser TA, et al. Mutation of sodium channel SCN3A in a patient with cryptogenic pediatric partial epilepsy [J]. Neurosci Lett, 2008, 433: 65-70.
    [29] Berten, Ceulemans, Lieve RF, et al. Clinical correlations of mutations in the SCN1A gene: from febrile seizures to severe myoclonic epilepsy in infancy [J]. Ped Neuro, 2003, 30(4): 236-243
    [30] Zuberi SM, Brunklaus A, Birch R, et al. Genotype-phenotype associations in SCN1A-related epilepsies [J]. Neurology, 2011, 76(7): 594-600.
    [31] Martin MS, Tang B, Papale LA, et al. The voltage-gated sodium channel Scn8a is a genetic modifier of severe myoclonic epilepsy of infancy [J]. Hum Molec Genet, 2007, 16: 2892-2899.
    [32] Ohmori I, Ouchida M, Miki T, et al. A CACNB4 mutation shows that altered Cav2.1 function may be a genetic modifier of severe myoclonic epilepsy in infancy [J]. Neurobiol Dis, 2008, 32: 349-354.
    [33] Singh NA, Pappas C, Dahle EJ, et al. A role of SCN9A in human epilepsies, as a cause of febrile seizures and as a potential modifier of Dravet syndrome [J].PLoS Genet, 2009, 5: e1000649.
    [34] Spampanato J, Escayg A, Meisler MH, et al. Functional effects of two voltage-gated sodium channel mutations that cause generalized epilepsy with febrile seizures plus type 2 [J]. J Neurosci, 2001, 21: 7481-7490.
    [35] Spampanato J, Escayg A, Meisler MH, et al. The generalized epilepsy with febrile seizures plus type 2 mutation W1204R alters voltage-dependent gating of Nav1.1 sodium channels [J]. Neuroscience, 2003, 116: 37-48.
    [36] Barela AJ, Waddy SP, Lickfett JG, et al. An epilepsy mutation in the sodium channel SCN1A that decreases channel excitability [J]. J Neurosci, 2006, 26: 2714-2723.
    [37] Lossin C, Wang DW, Rhodes TH, et al. Molecular basis of an inherited epilepsy [J]. Neuron, 2002, 34: 877-884.
    [38] Kearney JA, Plummer NW, Smith MR, et al. A gain-of-function mutation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities [J]. Neuroscience, 2001, 102: 307-317.
    [39] Ragsdale DS. How do mutant Nav1.1 sodium channels cause epilepsy? [J]. Brain Res Rev, 2008, 58: 149-159.
    [40] Rush AM, Dib-Hajj SD, Liu S, et al. A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons [J]. Proc Natl Acad Sci USA, 2006, 103: 8245-8250.
    [41] Yu FH, Mantegazza M, Westenbroek RE, et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy [J]. Nat Neurosci, 2006, 9: 1142-1149.
    [42] Kalume F, Yu FH, Westenbroek RE, et al. Reduced sodium current in Purkinje neurons from Nav1.1 mutant mice: implications for ataxia in severe myoclonic epilepsy in infancy [J]. J Neurosci, 2007, 27: 11065-11074.
    [43] Oakley JC, Kalume F, Yu FH, et al. Temperature-and age-dependent seizures in a mouse model of severe myoclonic epilepsy in infancy [J]. Proc Natl Acad Sci USA, 2009, 106: 3994-3999.
    [44] Tang B, Dutt K, Papale L, et al. A BACtransgenic mouse model reveals neuronsubtype-specific effects of a Generalized Epilepsy with Febrile Seizures Plus (GEFS+) mutation [J]. Neurobiol Dis, 2009, 35: 91-102.
    [45] Martin MS, Dutt K, Papale LA, et al. Altered function of the SCN1A voltage-gated sodium channel leads to GABAergic interneuron abnormalities [J]. J Biol Chem, 2010, 285: 9823-9834.
    [46] Mashimo T, Ohmori I, Ouchida M, et al. A missense mutation of the gene encoding voltage-dependent sodium channel (Nav1.1) confers susceptibility to febrile seizures in rats [J]. J Neurosci, 2010, 30: 5744-5753.
    [1] Hauser WA, Annegers JF, Kurland LT. Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935–1984 [J]. Epilepsia, 1993, 34:453–468.
    [2] Steinlein OK. Channelopathies can cause epilepsy in man [J]. Eur J Pain, 2002, 6 (Suppl. A): 27–34.
    [3] Noebels JL. The biology of epilepsy genes [J]. Annu Rev Neurosci, 2002, 26: 599–625.
    [4] Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels [J]. Neuron, 2000, 26:13–25.
    [5] Isom LL, DeJongh KS, Catterall WA. Auxiliary subunits of voltagegated ion channels [J]. Neuron, 1994, 12:1183–1194.
    [6] Morgan K, Stevens EB, Shah B, et al.β3: an additional auxiliary subunit of the voltage-sensitive sodium channel that modulates channel gating with distinct kinetics [J]. Proc Natl Acad Sci USA, 2000, 97:2308–2313.
    [7] Yu FH, Westenbroek RE, Silos-Santiago I, et al. Sodium channel b4, a new disulfide-linked auxiliary subunit with similarity toβ2 [J]. J Neurosci, 2003, 23: 7577–7585.
    [8] Messner DJ, Catterall WA. The sodium channel from rat brain–separation and characterization of subunits [J]. J Biol Chem, 1985, 260:10597–10604.
    [9] Lossin C. A catalog of SCN1A variants [J]. Brain Dev, 2009, 31:114–130.
    [10] Claes LRF, Deprez L, Suls A, et al. The SCN1A variant database: a novel research and diagnostic tool [J]. Hum Mutat, 2009, 30: E904–E920.
    [11] Goldin AL, Barchi RL, Caldwell JH, et al. Nomenclature of voltage-gated sodium channels [J]. Neuron, 2000, 28:365–368.
    [12] Goldin AL. Evolution of voltage-gated Na+ channels [J]. J Exp Biol, 2002, 205: 575–584.
    [13] Trimmer JS, Rhodes KJ. Localization of voltage-gated ion channels inmammalian brain [J]. Annu Rev Physiol, 2004, 66: 477–519.
    [14] Beckh S, Noda M, Lbbert H, et al. Differential regulation of three sodium channel messenger RNAs in the rat central nervous system during development [J]. EMBO J, 1989, 8: 3611–3636.
    [15] Whitaker WRJ, Faull RLM, Waldvogel HJ, et al.Comparative distribution of voltage-gated sodium channel proteins in human brain [J]. Mol Brain Res, 2001, 88: 37–53.
    [16] Black JA, Cummins TR, Plumpton C, et al. Upregulation of a silent sodium channel after peripheral, but not central, nerve injury in DRG neurons [J]. J Neurophysiol, 1999, 82: 2776–2785.
    [17] Yu FH, Mantegazza M, Westenbroek RE, et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy [J]. Nat Neurosci, 2006, 9: 1142–1149.
    [18] Guo F, Yu N, Cai JQ, et al. Voltage-gated sodium channel Nav1.1, Nav1.3 andβ1 subunit were upregulated in the hippocampus of spontaneously epileptic rat [J]. Brain Res Bull, 2008, 75: 179–187.
    [19] Felts PA, Yokoyama S, Dib-Hajj S, et al. Sodium channel a-subunit mRNAs I, II, III, NaG, Na6 and hNE (PN1): different expression patterns in developing rat nervous system [J]. Mol Brain Res, 1997, 45: 71–82.
    [20] Schaller KL, Caldwell JH. Developmental and regional expression of sodium channel isoform NaCh6 in the rat central nervous system [J]. J Comp Neurol, 2000, 420: 84–97.
    [21] Schaller KL, Krzemien DM, Yarowsky PJ, et al. A novel, abundant sodium channel expressed in neurons and glia [J]. J Neurosci, 1995, 15: 3231–3242.
    [22] Gordon D, Merrick D, Auld V, et al. Tissue-specific expression of the RI and RII sodium channel subtypes [J]. Proc Natl Acad Sci USA, 1987, 84: 8682–8686.
    [23] Westenbroek RE, Merrick DK, Catterall WA. Differential subcellular localization of the RI and RII Na+ channel subtypes in central neurons [J]. Neuron, 1989, 3: 695–704.
    [24] Gong B, Rhodes KJ, Bekele-Arcuri Z, et al. Type I and type II Na+ channela-subunit polypeptides exhibit distinct spatial and temporal patterning, and association with auxiliary subunits in rat brain [J]. J Comp Neurol, 1999, 412: 342–352.
    [25] Ogiwara I, Miyamoto H, Morita N, et al. Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation [J]. J Neurosci, 2007, 27: 5903–5914.
    [26] Whitaker W, Faull R, Waldvogel H, et al. Localization of the type VI voltage-gated sodium channel protein in human CNS [J]. NeuroReport, 1999, 10: 3703–3709.
    [27] Caldwell JH, Schaller KL, Lasher RS, et al. Sodium channel Nav1.6 is localized at nodes of Ranvier, dendrites, and synapses [J]. Proc Natl Acad Sci USA, 2000, 97:5616–5620.
    [28] Tzoumaka E, Tischler AC, Sangameswaran L, et al. Differential distribution of the tetrodotoxinsensitive rPN4/NaCh6/Scn8a sodium channel in the nervous system [J]. J Neurosci Res, 2000, 60:37–44.
    [29] Krzemien DM, Schaller KL, Levinson SR, et al. Immunolocalization of sodium channel isoform NaCh6 in the nervous system [J]. J Comp Neurol, 2000, 420: 70–83.
    [30] Hu W, Tian C, Li T, et al. Distinct contributions of Nav1.6 and Nav1.2 in action potential initiation and backpropagation [J]. Nat Neurosci, 2009, 12: 996–1002.
    [31] Escayg A, MacDonald BT, Meisler MH, et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2 [J]. Nat Genet, 2000, 24: 343–345.
    [32] Escayg A, Heils A, MacDonald BT, et al. A novel SCN1A mutation associated with generalized epilepsy with febrile seizures plus and prevalence of variants in patients with epilepsy [J]. Am J Hum Genet, 2001, 68: 866–873.
    [33] Sugawara T, Tsurubuchi Y, Agarwala KL, et al. A missense mutation of the Na+ channel aII subunit gene Nav1.2 in a patient with febrile and afebrile seizures causes channel dysfunction [J]. Proc Natl Acad Sci USA, 2001, 98: 6384–6389.
    [34] Wallace RH, Scheffer IE, Barnett S, et al. Neuronal sodium-channel a1-subunit mutations in generalized epilepsy with febrile seizures plus [J]. Am J Hum Genet, 2001b, 68: 859–865.
    [35] Wallace RH, Wang DW, Singh R, et al. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channelβ1 subunit gene SCN1B [J]. Nat Genet, 1998, 19: 366–370.
    [36] Wallace RH, Scheffer IE, Parasivam G, et al. Generalized epilepsy with febrile seizures plus: mutation of the sodium channel subunit SCN1B [J]. Neurology, 2002, 58: 1426–1429.
    [37] Baulac S, Huberfeld G, Gourfinkel-An I, et al. First genetic evidence of GABAA receptor dysfunction in epilepsy: a mutation in theγ2-subunit gene [J]. Nat Genet, 2001, 28: 46–48.
    [38] Wallace RH, Marini C, Petrou S, et al. Mutant GABAA receptor c2-subunit in childhood absence epilepsy and febrile seizures [J]. Nat Genet, 2001a, 28: 49–52
    [39] Harkin LA, Bowser DN, Dibbens LM, et al. Truncation of the GABAA-receptorγ2 subunit in a family with generalized epilepsy with febrile seizures plus [J]. Am J Hum Genet, 2002, 70: 530–536.
    [40] Dibbens LM, Feng H-J, Richards MC, et al. GABRD encoding a protein for extra- orperi-synaptic GABAA receptors is a susceptibility locus for generalized Epilepsies [J]. Hum Molec Genet, 2004, 13: 1315–1319.
    [41] Mulley JC, Scheffer IE, Petrou S, et al. SCN1A mutations and epilepsy [J]. Hum Mutat, 2005, 25: 535–542
    [42] Fujiwara T. Clinical spectrum of mutations in SCN1A gene: severe myoclonic epilepsy in infancy and related epilepsies [J]. Epilepsy Res, 2006, 70: S223–S230.
    [43] Kamiya K,Kaneda M, Sugawara T, et al. A nonsense mutation of the sodium channel gene SCN2A in a patient with intractable epilepsy and mental decline [J]. J Neurosci, 2004, 24 :2690–2698.
    [44] Ogiwara I, Ito K, Sawaishi Y, et al. De novo mutations of voltage-gated sodium channel aII gene SCN2A in intractable epilepsies [J]. Neurology,2009, 73:1046–1053
    [45] Shi X, Yasumoto S, Nakagawa E, et al. Missense mutation of the sodium channel gene SCN2A causes Dravet syndrome [J]. Brain Dev, 2009, 31: 758–762.
    [46] Patino GA, Claes LRF, Lopez-Santiago LF, et al. A functional null mutation of SCN1B in a patient with Dravet syndrome [J]. J Neurosci, 2009, 29: 10764– 10778.
    [47] Holland KD, Kearney JA, Glauser TA, et al. Mutation of sodium channel SCN3A in a patient with cryptogenic pediatric partial epilepsy [J]. Neurosci Lett, 2008, 433: 65–70
    [48] Singh NA, Pappas C, Dahle EJ, et al. A role of SCN9A in human epilepsies, as a cause of febrile seizures and as a potential modifier of Dravet syndrome [J]. PloS Genet, 2009, 5: e1000649.
    [49] Scheffer IE, Berkovic SF. Generalized epilepsy with febrile seizures plus. A genetic disorder with heterogeneous clinical phenotypes [J]. Brain, 1997, 120: 479–490.
    [50] Singh R, Scheffer IE, Crossland K, et al. Generalized epilepsy with febrile seizures plus: a common childhood-onset genetic epilepsy syndrome [J]. Ann Neurol, 1999, 45: 75–81
    [51] Ito M, Nagafuji H, Okazawa H, et al. Autosomal dominant epilepsy with febrile seizures plus with missense mutations of the (Na+)-channel a1 subunit gene, SCN1A [J]. Epilepsy Res, 2002, 48: 15–23.
    [52] Scheffer IE, Zhang Y-H, Jansen FE, et al. Dravet syndrome or genetic (generalized) epilepsy with febrile seizures plus? [J]. Brain Dev, 2009, 31: 394– 400.
    [53] Ottman R, Hirose S, Jain S, et al. Genetic testing in the epilepsies– report of the ILAE genetics commission [J]. Epilepsia, 2010, 51: 655–670.
    [54] Nelson KB, Ellenberg JH. Predictors of epilepsy in children who hav experienced febrile seizures [J]. New Engl J Med, 1976, 295: 1029–1033.
    [55] Commission on Classification Terminology of the International League AgainstEpilepsy. Proposal for revised classification of epilepsies and epileptic syndromes [J]. Epilepsia, 1989, 30: 389–399.
    [56] Scheffer IE, Berkovic SF. The genetics of human epilepsy [J]. Trends Pharmacol Sci, 2003, 24: 428–433.
    [57] Meisler MH, Kearney JA. Sodium channel mutations in epilepsy and other neurological disorders [J]. J Clin Invest, 2005, 115: 2010–2017.
    [58] Catterall WA, Dib-Hajj S, Meisler MH, et al. Inherited neuronal ion channelopathies: new windows on complex neurological diseases [J]. J Neurosci, 2008, 28: 11768–11777.
    [59] Heron SE, Scheffer IE, Iona X, et al. De novo SCN1A mutations in Dravet syndrome and related epileptic encephalopathies are largely of paternal origin [J]. J Med Genet, 2009, 47: 137–141.
    [60] Suls A, Claeys KG, Goossens D, et al. Microdeletions involving the SCN1A gene may be common in SCN1A-mutation-negative SMEI patients [J]. Hum Mutat, 2006, 27: 914–920.
    [61] Davidsson J, Collin A, Olsson ME, et al. Deletion of the SCN gene cluster on 2q24.4 is associated with severe epilepsy: an array-based genotype-phenotype correlation and a comprehensive review of previously published cases [J]. Epilepsy Res, 2008, 81: 69–79.
    [62] Wang J, Kurahashi H, Ishii A, et al. Microchromosomal deletions involving SCN1A and adjacent genes in severe myoclonic epilepsy in infancy [J]. Epilepsia, 2008, 49: 1528–1534.
    [63] Marini C, Scheffer IE, Nabbout R, et al. SCN1A duplications and deletions detected in Dravet syndrome: implications for molecular diagnosis [J]. Epilepsia, 2009, 50: 1670–1678.
    [64] Marini C, Mei D, Cross JH, et al. Mosaic SCN1A mutation in familial Severe Myoclonic Epilepsy of Infancy [J]. Epilepsia, 2006, 47: 1737–1740.
    [65] Depienne C, Arzimanoglou A, Trouillard O, et al. Parental mosaicism can cause recurrent transmission of SCN1A mutations associated with Severe Myoclonic Epilepsyof Infancy [J]. Hum Mutat, 2006, 27: 389.
    [66] Gennaro E, Santorelli FM, Bertini E, et al. Somatic and germline mosaicisms in Severe Myoclonic Epilepsy of Infancy [J]. Biochem Biophys Res Commun, 2006, 341: 489–493.
    [67] Morimoto M, Mazaki E, Nishimura A, et al. SCN1A mutation mosaicism in a family with severe myoclonic epilepsy in infancy [J]. Epilepsia, 2006, 47: 1732–1736.
    [68] Martin MS, Tang B, Papale LA, et al. The voltage-gated sodium channel Scn8a is a genetic modifier of severe myoclonic epilepsy of infancy [J]. Hum Molec Genet, 2007, 16:2892–2899.
    [69] Ohmori I, Ouchida M, Miki T, et al. A CACNB4 mutation shows that altered Cav2.1 function may be a genetic modifier of severe myoclonic epilepsy in infancy [J]. Neurobiol Dis, 2008, 32:349–354.
    [70] Kearney JA, Yang Y, Beyer B, et al. Severe epilepsy resulting from genetic interaction between Scn2a and Kcnq2 [J]. Hum Mol Genet, 2006b, 15: 1043–1048.
    [71] Spampanato J, Escayg A, Meisler MH, et al. Functional effects of two voltage-gated sodium channel mutations that cause generalized epilepsy with febrile seizures plus type 2 [J]. J Neurosci, 2001, 21: 7481–7490.
    [72] Spampanato J, Escayg A, Meisler MH, et al. The generalized epilepsy with febrile seizures plus type 2 mutation W1204R alters voltage-dependent gating of Nav1.1 sodium channels [J]. Neuroscience, 2003, 116: 37–48.
    [73] Spampanato J, Kearney JA, de Haan G, et al. A novel epilepsy mutation in the sodium channel SCN1A identifies a cytoplasmic domain forβsubunit interaction [J]. J Neurosci, 2004, 24: 10022–10034.
    [74] Barela AJ, Waddy SP, Lickfett JG, et al. An epilepsy mutation in the sodium channel SCN1A that decreases channel excitability [J]. J Neurosci, 2006, 26: 2714–2723.
    [75] Alekov AK, Rahman MM, Mitrovic N, et al. A sodium channel mutation causing epilepsy in man exhibits defects in fast inactivation and activation in vitro [J]. J Physiol (Lond), 2000, 529: 533–539
    [76] Alekov AK, Rahman M, Mitrovic N, et al. Enhanced inactivation and acceleration of activation of the sodium channel associated with epilepsy in man [J]. Eur J Neurosci, 2001, 13: 2171–2176.
    [77] Lossin C, Wang DW, Rhodes TH, et al. Molecular basis of an inherited epilepsy [J]. Neuron, 2002, 34: 877–884.
    [78] Lossin C, Rhodes TH, Desai RR, et al. Epilepsy-associated dysfunction in the voltagegated neuronal sodium channel SCN1A [J]. J Neurosci, 2003, 23: 11289–11295.
    [79] Cossette P, Loukas A, Lafrenire RG, rt al. Functional characterization of the D188V mutation in neuronal voltage-gated sodium channel causing generalized epilepsy with febrile seizures plus (GEFS) [J]. Epilepsy Res, 2003, 53:107–117.
    [80] Vanoye CG, Lossin C, Rhodes TH, et al. Single-channel properties of human Nav1.1 and mechanism of channel dysfunction in SCN1A-associated epilepsy [J]. J Gen Physiol, 2006, 127: 1–14.
    [81] Kearney JA, Plummer NW, Smith MR, et al. A gain-of-function mutation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities [J]. Neuroscience, 2001, 102: 307–317.
    [82] Cannon SC. Sodium channel gating: no margin for error [J]. Neuron, 2002, 34: 853–854.
    [83] Ragsdale DS. How do mutant Nav1.1 sodium channels cause epilepsy? [J]. Brain Res Rev, 2008, 58:149–159.
    [84] Rush AM, Dib-Hajj SD, Liu S, et al. A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons [J]. Proc Natl Acad Sci USA, 103: 8245–8250.
    [85] Oakley JC, Kalume F, Yu FH, et al. Temperature- and age-dependent seizures in a mouse model of severe myoclonic epilepsy in infancy [J]. Proc Natl Acad Sci USA, 2009, 106: 3994–3999.
    [86] Kalume F, Yu FH, Westenbroek RE, et al. Reduced sodium current in Purkinje neurons from Nav1.1 mutant mice: implications for ataxia in severe myoclonic epilepsy in infancy [J]. J Neurosci, 2007, 27: 11065–11074.
    [87] Tang B, Dutt K, Papale L, et al. A BAC transgenic mouse model reveals neuron subtype-specific effects of a generalized epilepsy with febrile seizures plus (GEFS+) mutation [J]. Neurobiol Dis, 2009, 35: 91–102.
    [88] Kontis KJ, Goldin AL. Site-directed mutagenesis of the putative pore region of the rat IIA sodium channel [J]. Mol Pharmacol, 1993, 43: 635–644.
    [89] Martin MS, Dutt K, Papale LA, et al. Altered function of the SCN1A voltage-gated sodium channel leads to GABAergic interneuron abnormalities [J]. J Biol Chem, 2010, 285: 9823–9834.
    [90] Kang JQ, Macdonald RL. Making sense of nonsense GABAA receptor mutations associated with genetic epilepsies [J]. Trends Mol Med, 2009, 15: 430–438.
    [91] Mashimo T, Ohmori I, Ouchida M, et al. A missense mutation of the gene encoding voltage-dependent sodium channel (Nav1.1) confers susceptibility to febrile seizures in rats [J]. J Neurosci, 2010, 30: 5744-5753.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700