重金属胁迫诱导水稻发生可遗传的表观遗传变异及其可能作用于水稻提高抗重金属能力的机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属胁迫作为非生物胁迫的一种可引起植物的胁迫应答。这里我发现重金属胁迫后水稻表现出明显的生长抑制,并且呈现一个剂量依赖的抑制效应,即浓度越高,抑制作用越大。由于表观遗传修饰具有可应答于生物体内在胁迫和外部胁迫的特点,我相信重金属胁迫可诱导表观遗传修饰如DNA甲基化变异和基因表达变异的发生。在研究中我发现重金属胁迫可诱导水稻在一些特定的序列上发生DNA甲基化的变异和基因表达的变异。这些变异具有以下的特点:(1)变异主要为CNG位点的去甲基化变异;(2)改变的甲基化类型在自交的一代中发生新的去甲基化变异,在自交二代中基本可遗传一代的甲基化类型;(3)那些负责建立和维持胞嘧啶的甲基化类型和/或染色质结构的基因如DNA甲基转移酶基因,5-甲基胞嘧啶糖基化酶基因和染色质重构因子(DDM1)可被重金属胁迫诱导发生表达的变异,在一定程度上可能是导致DNA甲基化变异的原因之一;(4)特定序列(转座子和基因)的表达改变主要为表达的上调,偶尔的表达下调也存在,改变的基因表达可不同程度的遗传给自交一代和二代植株。基因表达的改变和自身序列的甲基化改变不存在一一对应的关系,但是大体上序列的去甲基化变异对应着基因表达的上调。此外,重金属胁迫后的植株表现出一定程度的剂量依赖的重金属抗性应答,这可能与水稻重金属转运蛋白OsHMAs基因的表达增强有关。根据以上几方面的研究我认为重金属胁迫诱导的表观遗传变异可为研究植物抗重金属胁迫的机制和培育抗重金属水稻新品种提供一定的理论依据和参考。
As a kind of abiotic stress, heavy metal stress may provoke stress response. In this thesis I found that heavy metal stress induced significant growth inhibition in rice, which showed a dose-dependent response, the extent of inhibition increased with increased metal concentrations. Given the inherent property of epigenetic modifications to response to intrinsic as well as external stress, it is conceivable that epigenetic markers like DNA methylation and gene expression may undergo alterations in response to heavy metal stress. In deed I found here that heavy metal stress could induce extensive alteration in both DNA methylation and gene expression in rice plants, revealed by a set of characterized sequences including transposons and cellular genes. I found that several features characterize the alteration: (1) Alterations are predominant CNG hypomethylation events; (2) Progeny analysis indicated demethylated patterns could be inherited to next generation in most plants, leading to more intensive hypomethylation, and subsequent generation could inherit the altered methylation patterns in most progeny plants; (3) Heavy metal stress induced the perturbation of the expression state of these genes encoding for the enzymatic machinery responsible for establishing and maintaining cytosine methylation patterns and/or chromatin structure such as DNA methytransferases, 5-methylcytosine glycosylase and SWI/SNF chromatin remodeller (DDM1), which may be a major cause for the high-incidence of DNA methylation alterations; (4) Alterations in expression occurred in transposons and cellular genes are predominant up-regulations and occasional down-regulations events, and the alteration state could inherit to progenies at variable frequencies. Alteration in expression did not show a general correlation with alterations in methylation, but I found that hypomethylation specifically occurred, and most elements exhibited up-regulated expression upon heavy metal stress, so the changes in DNA methylation may influence the expression level of a number of genes to some extent. Furthermore, I found that progenies of treated plants showed enhanced resistance in a dose-dependent manner, and OsHMAs showed significant up-regulated expression might help to metal efflux and contribute to enhanced resistance to heavy metal in progenies of treated rice plants. I discuss implications of heavy metal stress-induced epigenetic variations with regard to the resistance mechanism to heavy metal of plants and potentiality for mutagenesis in rice breeding.
引文
[1] Wu C T, Morris J R. Genes,genetics,and epigenetics: a correspondence[J]. Science,2001,293:1103-1105.
    [2] Razin A, Cedar H. DNA methylation-Biochemistry and Biological Significance[J]. Chromatogr. 1992,581:31-40.
    [3] Adams R L P, Burdon R H. Molecular Biology of DNA methylation[M]. New York,Berlin,Herddberg,Tokyo:SpringerVerlag,1985.1.
    [4] Bird A P. CpG-rich islands and the function of DNA methylation[J]. Nature,1986,321: 209-212.
    [5] Santi D V, Garrett C E, Barr P J. On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs[J]. Cell,1983,33:9-10.
    [6] Chen T, Li E. Structure and Function of Eukaryotic DNA Methyltransferases[J]. Journal, 2004,60:55-89.
    [7] Gruenbaum Y, Naveh-Many T, Cedar H, et al. Sequence specificity of methylation in higher plant DNA[J]. Nature,1981,292:860-862.
    [8] Bezdek M, Koukalova B, Kuhrova V,et al. Differential sensitivity of CG and CCG DNA sequences to ethionine-induced hypomethylation of the Nicotiana tabacum genome[J]. FEBS Lett,1992,300:268-270.
    [9] Jeddeloh J A, Richards E J. mCCG methylation in angiosperms[J] Plant J. 1996,9:579-586.
    [10] Bird A. DNA methylation patterns and epigenetic memory[J]. Genes and Development,2002,16:6-21.
    [11] Luo S, Preuss D. Strand-biased DNA methylation associated with centromeric regions in Arabidopsis[J]. Proc Natl Acad Sci. U.S.A. 2003,100:11133-11138.
    [12] Wagner I, Capesius I. Determination of 5-methylcytosine from plant DNA by high-performance liquid chromatography[J]. Biochim Biophys Acta,1981,654:52-56.
    [13] Montero L M, Filipski J, Gil P,et al. The distribution of 5-methylcytosine in the nuclear genome of plants[J]. Nucleic Acids Res,1992,20:3207-3210.
    [14] Leutwiler L S, Hough-Evans B R, Meyerowitz E M. The DNA of Arabidopsis thaliana[J]. Mol Gen Genet,1984,19:415-23.
    [15] Zilberman D, Gehring M, Tran R K,et al. Genomewide analysis of Arabidopsis DNA methylation uncovers an interdependence between methylation and transcription[J]. Nat Genet,2007,39:61-69.
    [16] Zhang X, Yazaki J, Sundaresan A,et al. Genomewide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis[J]. Cell,2006,126:1189-1201.
    [17] Gehring M, Henikoff S. DNA methylation dynamics in plant genomes. Biochimicaet Biophysica Acta - Gene Structure and Expression[J]. 2007,1769:276-286.
    [18] Chan S W, Zilberman D, Xie Z,et al. RNA silencing genes control de novo DNA methylation[J]. Science,2004,303:1336.
    [19] Xie Z, Johansen L, Gustafson A, et al. Genetic and functional diversification of small RNA pathways in plants[J]. PLoS Biol,2004,2:642-652.
    [20] Zilberman D, Henikoff S. Epigenetic inheritance in Arabidopsis:selective silence[J]. Curr Opi GenetDev,2005,15:557-562.
    [21] Kankel M W, Ramsey D E, Stokes T L,et al. Arabidopsis MET1 cytosine methyltransferase mutants[J]. Genetics,2003,163:1109-1122.
    [22] Saze H, Mittelsten S, Paszkowski J. Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis[J]. Nat Genet,2003,34:65-69.
    [23] Bender J. DNA methylation and epigenetics[J]. Annu Rev Plant Biol,2004,55:41?68.
    [24] Cao X F, Jacobsen S E. Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes[J]. Proc Natl Acad Sc. USA,2002,99:16491 -16498.
    [25] Bartee L, Malagnac F, Bender J. Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene[J]. Genes Dev,2001,15:1753?1758.
    [26] Malagnac F, Bartee L, Bender J. An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation[J]. EMBO J,2002,21:6842?6852.
    [27] Lindroth A M, Cao X, Jackson J P,et al. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation[J]. Science,2001,292:2077-2080.
    [28] Brzeski J, Jerzmanowski A. Deficient in DNA methylation1 (DDM1) defines a novel family of chromatin remodling factors[J]. J Biol Chem,2003,278:823?828.
    [29] Zemach A, Li Y, Wayburn B,et al. DDM1 binds Arabidopsis Methyl-CpG binding domain proteins and affects their subnuclear localization[J]. Plant Cell,2005,17:1549?1558.
    [30] Kakutani T, Munakata K, Richards E J,et al. Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddm1 mutation of Arabidopsis thaliana[J]. Genetics,1999,151:831-838.
    [31] Choi Y, Gehring M, Johnson L,et al. DEMETER,a DNA glycosylase domain protein,is required for endosperm gene imprinting and seed viability in Arabidopsis[J]. Cell,2002,110:33-42.
    [32] Gong Z, Morales-Ruiz T, Ariza R R,et al. ROS1,a repressor of transcriptional gene silencing in Arabidopsis,encodes a DNA glycosylase/lyase[J]. Cell,2002,111: 803-814.
    [33] Morales-Ruiz T, Ortega-Galisteo A P, Ponferrada-Marin M I,et al. DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases[J]. Proc Natl Acad Sci. USA, 2006,103:6853-6858.
    [34] Agius F, Kapoor A, Zhu J K. Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation[J]. Proc Natl Acad Sci. USA,2006,103:11796-11180.
    [35] Xiao W, Gehring M, Choi Y,et al. Imprinting of the MEA polycomb gene is controlled by antagonism between MET1 methyltransferase and DME glycosylase[J]. Developmental Cell,2003,5:891-901.
    [36] Kapoor A, Agius F, Zhu J K. Preventing transcriptional gene silencing by active DNA demethylation[J]. FEBS Lett,2005,579:5889-5898.
    [37] Chan S W, Henderson I R, Jacobsen S E. Gardening the genome: DNA methylation in Arabidopsis thaliana[J]. Nature Publishing Group,2005,6:351-360.
    [38] Matzke M A,Mette M F,Mazke A J M. Transgene silencing by the host Genome defense: implification for the evolution of epigenetic control mechanisms in plants and vertebrates[J]. Plant Mol Biol,2000,43:401-415.
    [39] Singer T, Yordan C, Martienssen R A. Robertson's mutator transposons in A. thaliana are regulated by the chromatin-remodeling gene decrease in DNA methylation (DDM1)[J]. Genes Dev,2001,15:591-602.
    [40] Miura A, Yonebayashi S, Watanabe K,et al. Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis[J]. Nature,2001,411:212-214.
    [41] Kato M, Miura A, Bender J,et al. Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis[J]. Curr Biol,2003,13:421-426.
    [42] Lippman Z, May B, Yordan C,et al. Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification[J]. PLoS Biol,2003,1:E84.
    [43] Walbot V, Rudenko G N. MuDR/Mu transposable elements of maize, in: N.L. Craig, R. Craigie, M. Gellert, A.R. Lambowitz (Eds.),Mobile DNA II,ASM Press,Washington, DC[M],2002,pp:533-564.
    [44] Carpenter R, Martin C, Coen E S. Comparison of genetic behaviour of the transposable element Tam3 at two unlinked pigment loci in Antirrhinum majus[J]. Mol Gen Genet,1987, 207:82-89.
    [45] Hashida S N, Kitamura K, Mikami T,et al. Temperature shift coordinately changes the activity and the methylation state of transposon Tam3 in Antirrhinum majus[J]. Plant Physiol,2003,132:1207-1216.
    [46] Hashida S N, Uchiyama T, Martin C,et al. The temperature-dependent change in methylation of the Antirrhinum transposon Tam3 is controlled by the activity of its transposase[J]. Plant Cell,2006,18:104-118.
    [47] Banks J A, Masson P, Fedoroff N. Molecular mechanisms in the developmental regulation of the maize suppressor-mutator transposable element[J]. Genes Dev,1988, 2:1364-1380.
    [48] Schlappi M, Raina R, Fedoroff N. Epigenetic regulation of the maize Spm transposable element: novel activation of a methylated promoter by TnpA[J]. Cell,1994,77:427–437.
    [49] Liu B, Wendel J F. Retrotransposon activation followed by rapid repression in introgressed rice plants[J]. Genome,2000,43:874-880.
    [50] Chandler V L, Stam M. Chromatin conversations: Mechanisms and implications of paramutation[J]. Nature Reviews Genetics,2004,5:532-544.
    [51] Busslinger M, Hurst J, Flavell R A. DNA methylation and the regulation of globin gene expression[J]. Cell,1983,34:197-206.
    [52] Keshet I, Yisraeli J, Cedar H. Effect of regional DNA methylation on gene expression[J]. Proc Natl Acad Sci. USA,1985,82:2560-2564.
    [53] Kruczek I, Doerfler W. Expression of the chloramphenicol acetyltransferase gene in mammalian cells under the control of adenovirus type 12 promoters: effect of promoter methylation on gene expression[J]. Proc Nat Acad Sci. USA,1983,80:7586-7590.
    [54] Graessmann A, Sandberg ., Guhl E,et al. Methylation of single sites within the herpes simplex virus tk coding region and the simian virus 40 T-antigen intron causes gene inactivation[J]. Mol Cell Biol,1994,14:2004-2010.
    [55] Hsieh C L. Stability of patch methylation and its impact in regions of transcriptional initiation and elongation[J]. Mol Cell Biol,1997,17:5897-5904.
    [56] Kass S U, Landsberger N, Wolffe A P. DNA methylation directs a timedependent repression of transcription initiation[J]. Curr Biol,1997,7:57-165.
    [57] Siegfried Z, Eden S, Mendelsohn M,et al. DNA methylation represses transcription in vivo[J]. Nat Genet,1999,22:203-206.
    [58] Buschhausen G, Wittig B, Graessmann M,et al. Chromatin structure is required to blocktranscription of the methylated herpes simplex virus thymidine kinase gene[J]. Proc Natl Acad Sci. USA,1987,84:1177-1181.
    [59] Huang L H, Wang R, GamaSosa M A,et al. A protein from human placental nuclei binds preferentially to 5-methylcytosine-rich DNA[J]. Nature,1984,308:293-295.
    [60] Ohki I, Shimotake N, Fujita N,et al. Solution st ructure of the methyl-CpG binding domain of human MBD1 in complex with methylated DNA[J]. Cell,2001,105:487-497
    [61] Goren A, Simchen G, Fibach E,et al. Szabo. Fine tuning of globin gene exp ression by DNA methylation[J]. PLoS ONE,2006,1:e46.
    [62] Attwood J T, Yung R L, Richardson B C. DNA methylation and the regulation of gene transcription[J]. Cell Mol Life Sci, 2002,59:241-257.
    [63] Gilbert N, Thomson I,Boyle S, et al. DNA methylation affects nuclear organization histone modifications,and linker histone binding but not chromatin compaction[J]. J Cell Biol,2007,177:401-411.
    [64] Stam M, Viterbo A, Mol J N M,et al. Position-dependent methylation and transcriptional silencing of transgenes in inverted T-DNA repeats: Implications for posttranscriptional silencing of homologous host genes in plants[J]. Molecular and Cellular Biology,1998,18:6165-6177.
    [65] Soppe W J, Jacobsen S E , Alonso-Blanco C,et al. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene[J]. Mol Cell,2000,6:791-802.
    [66] Kankel M W, Ramsey D E, Stokes T L,et al. Arabidopsis MET1 cytosine methyltransferase mutants[J]. Genetics,2003,163:1109-1122.
    [67] Barry C, Faugeron G, Rossignol J L. Methylation induced premeiotically in Ascobolus: coextension with DNA repeat lengths and effect on transcript elongation[J]. Proc Natl Acad Sci. USA,1993 90:4557-4561.
    [68] Hohn T, Corsten S, Rieke S,et al. Methylation of coding region alone inhibits gene expression in plant protoplasts[J]. Proc Natl Acad Sci. USA,1996,93:8334-8339.
    [69] Lorincz M C, Dickerson D R, Schmitt M,et al. Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells[J]. Nat Struct Mol Biol,2004,11:068-1075.
    [70] Ito T, Sakai H, Meyerowitz E M. Whorl-specific expression of the SUPERMAN gene of Arabidopsis is mediated by cis elements in the transcribed region[J]. Current Biology, 2003,13:1524-1530.
    [71] Sieburth L E, Meyerowitz E M. Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically[J]. Plant Cell, 1997,9:355-365.
    [72] Tran R K, Henikoff J G, Zilberman D,et al. DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes[J]. Current Biology,2005,15: 154-159.
    [73] Arnholdt-Schmitt B. Stress-induced cell reprogramming. A role for global genome regulation[J]? Plant Physiol,2004,136:2579-2586.
    [74] Madlung A, Comai L. The effect of stress on genome regulation and structure[J]. Ann Botany,2004,94:481-495.
    [75] Doroszuk A, Wojewodzic M W, Kammenga J E. Rapid adaptive divergence of life-history traits in response to abiotic stress within a natural population of a parthenogenetic nematode[J]. Proc Biol Sci,2006,273:2611-2618.
    [76] Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in thedrought and cold stress responses[J]. Curr Opin Plant Biol,2003,6:410–417.
    [77] Sung S, Amasino R M. Vernalization and epigenetics: How plants remember winter[J]. Curr Opin Plant Biol,2004,7:4-10.
    [78] Whitelaw N C, Whitelaw E. How lifetimes shape epigenotype within and across generations[J]. Hum Mol Genet,2005,15 Spec No 2:R131-R137.
    [79] Wagner D. Chromatin regulation of plant development[J]. Curr Opin Plant Biol,2003, 6:20-28.
    [80] Vanyushin B F. DNA methylation in plants[J]. Curr Topics Microbiol Immunol,2006, 301:67-122.
    [81] Boyko A, Kovalchuk I. Epigenetic Control of Plant Stress Response[J]. Environmental and Molecular Mutagenesis,2007,49:61-72.
    [82] Mazzucotelli E, Mastrangelo A M, Crosatti C, et al. Abiotic stress response in plants: When post-transcriptional and post-translational regulations control transcription[J]. Plant Sci,2008,174:420-431
    [83] Rapp R A, Wendel J F. Epigenetics and plant evolution[J]. New Phytol,2005,168:81-91.
    [84] Lukens L N, Zhan S. The plant genome’s methylation status and response to stress: implications for plant improvement[J]. Curr Opin Plant Biol,2007,10:317-322.
    [85] Steward N,Ito M,Yamaguchi Y,et al. DNA methylation in maize nucleosomes and demethylation by environmental stress[J]. J Biol Chem,2002,277:37741-37746.
    [86] Long L K, Lin X Y, Zai J Z,et al. Heritable alteration in DNA methylation pattern occurred specifically at mobilelements in rice plants following hydrostatic pressurization[J]. Biochemical and Biophysical Reseach Communications,2006,340: 369-376.
    [87] Ou X F, Long L K, Zhang Y H,et al. Spaceflight induces both transit and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.)[J]. Mutat Res,2009,662:44-53.
    [88] Choi C S, Sano H. Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants[J]. Mol Genet Genomics,2007,277:589-600.
    [89] Kitamura K, Hashida S N, Mikami et al. Position effect of the excision frequency of the Antirrhinum transposon Tam3: implications for the degree of position-dependent methylation in the ends of the element[J]. Plant Mol Biol,2001,47:475-490.
    [90] Aina R, Sgorbati S, Santagostino A,et al. Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp[J]. Physiologia Plantarum,2004,121: 472-480.
    [91] Labra M, Grassi F, Imazio S, Fabio T D,et al. Genetic and DNA-methylation changes induced by potassium dichromate in Brassica napus L[J]. Chemosphere,2004,54: 1049-1058.
    [92] Sudo E, Itouga M, Yoshida-Hatanaka1 K,et al. Gene expression and sensitivity in response to copper stress in rice leaves[J]. Journal of Experimental Botany,2008, 12:3465-3474.
    [93]王宏镔,束文圣,蓝崇钰.重金属污染生态学研究现状与展望[J].生态学报,2005,25:596-605.
    [94] Chaney R L. Plant uptake of inorganic waste. In: Parr JE, Marsh PB, Kla JM(eds) Land treatment of hazardouswastes[M].Noyes Data,
    [95] Cheng S. Heavy metal pollution in China: origin, pattern and control[J].Environ Sci Pollut Res Int,2003,10:192-198.
    [96]陈怀满,郑春荣,涂从,等.中国土壤重金属污染现状与防治对策.人类环境杂志[J],1999,28:130-134.
    [97] Marschner H. Mineral nutrition of higher plants[M]. 2nd edn. London,1995.
    [98] Salt D E, Kato N, krmer U,et al. The role of root exudates in nickel hyperaccumulation and tolerance in accumulator and nonaccumulator species of Thlaspi[C] Terryn , Babuelos G.Phytoremediation of contaminated soil and water. CRC Press LLC,2000:189-200.
    [99] Jentschke G, Godbold D L. Metal toxicity and ectomycorrhizas[J]. Physiologia Plantarum,2000,109:107-116.
    [100]Colpaert J, Nanassch E J. Zinc toxicity in ectomycorrhizal Pinus sylvestris[J]. Plant and Soil,1992,143:201-211.
    [101]Tam P C F. Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithustinctorius[J].Mycorrhiza,1995,5:181-187.
    [102]Zhao F J, Hamon R E, Mclaughlin M J. Root exudates of the hyperaccumulatorThlaspi caerulescensdo not enhance metal mobilization[J]. New Phytologist,2001,151:613-620.
    [103]Van Assche F, C1ijsters H. Effects of metal on enzyme activity in plants[J]. Plant Cell Environ,1990,13:195-206.
    [104]Christoffers M M F, Führs H, Braun H P,et al. The role of hydrogen peroxide-producing and hydrogen peroxide-consuming peroxidases in the Leaf apoplast of cowpea in manganese tolerance[J].Plant Physiol,2006,140:1451-1463.
    [105]Tseng T S, Tzeng S S,Yen C H,et al. The hea-shock response in rice Seedlings-isolation and expression of cDNAs that encode class-I low-molecular-weight heat-shock proteins[J]. Plant and Cell Physiology,1993,34:165-168.
    [106]Neumann D, Nieden U Z, Lichtenberger O,et al. How does Armeria maritima tolerate high heavy metal concentrations[J]. Journal of Plant Physiology,1995,146:704-717.
    [107]Lewis S, Domkinm E, Depledgem H. Hsp70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors[J]. Aquatic Toxicology,2001,51:277- 291.
    [108]刘大丽,张欣欣1,程玉祥,等.逆境下水稻(Oryza sativa L.)rHsp90基因的克隆及功能分析[J]. Molecular Plant Breeding,2006,3:317-322.
    [109]Rauser W. E. Phytochelatins and related peptides[J]. Plant Physiology, 1995,109:1141-1149.
    [110]Zhu Y L, PilonSmiths E A H, Tarun A S ,et al. Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance[J]. Plant Physiol,1999,119:73-79.
    [111]Gisbert C, Ros R, DeHaro A,et al. A plant genetically modified that accumulates Pb is especially promising for phytoremediation[J]. Biochem Biophys Res Commun 2003,303:440-45.
    [112]Sanita di Toppi L, Gabbrielli R. Response to cadmium in higher plants[J]. Environmental and Experimental Botany,1999,41:105-130.
    [113]Maitani T , Kubota H , Sato K , et al. The compositon of metals bount to class metallothionein(phytochelatin and its desglycyl peptide)induced by various metal in rootcultures of Rubia tinctorum[J].Plant Physiol,1996,1145-1150.
    [114]Loscos J, Naya L, Ramos J,et al. A Reassessment of Substrate Specificity and Activation of Phytochelatin Synthases from Model Plants by Physiologically Relevant Metals[J].Plant Physiol,2006,140:1213-1221.
    [115]Howden R, Goldsbrough P B, Andersen C R,et al. Cadmium-sensitive,cad1 mutants of Arabidopsis thaliana are phytochelatin deficient[J].Plant Physiol,1995,107: 1059-1066.
    [116]Clemens S, Kim E J, Neumann D,et al. Tolerance to toxic metals by a gene family of phytochelatin synthase fromplants and yeast[J].EMBO J,1999,18:3325-3333.
    [117]Nathalie A L M, Hassinen V H, Hakvoort H W J. Enhanced copper tolerance in Silenevulgaris(Moench)garcke populations from copper mines is associated with increased transcript levels of a 2b-type metal-lothionein gene[J]. Plant Physiol,2001,126:1519-1526.
    [118]Farzana H, Meghan M, James K. Signaling events for metallothionein induction[J]. Mutation Research,2003,533:211-226.
    [119]Zhou G K, Xu Y F, Liu J Y. Characterization of a rice class II metallothionein gene: Tissue expression patterns and induction in response to abiotic factors[J]. Journal of Plant Physiology,2005,162:686-696
    [120] Zhou G K, Xu Y F, Li J,et al. Molecular Analyses of the Metallothionein Gene Family in Rice (Oryza sativa L.)[J]. Journal of Biochemistry and Molecular Biology,2006, 39:595-606.
    [121]Xu Y F, Zhou G K, Zhou L,et al. Expression patterns of the rice class I metallothionein gene family in response to lead stress in rice seedlings and functional complementation of its members in lead-sensitive yeast cells[J]. Chinese Science Bulletin,2007,52:2203-2209.
    [122]Freisinger E. Plant MTs—long neglected members of the metallothionein superfamily[J]. Dalton Trans,2008,47:6663-6675.
    [123]Yuan J, Chen D, Ren Y J,et al. Characteristic and Expression Analysis of a Metallothionein Gene, OsMT2b, Down-Regulated by Cytokinin Suggests Functions in Root Development and Seed Embryo Germination of Rice[OA][J]. Plant Physiology, 2008,146:1637-1650.
    [124]Kampfenkel K, Kushnir S, Babiychuk E,et al. Molecular characterization of a putative Arabidopsis thaliana copper transporter and its yeast homologue[J]. Journal of Biological Chemistry, 1995,270:28479-28486.
    [125]Sancenon V, Puig S, Mira H,et al. Identification of a copper transporter family in Arabidopsis thaliana[J]. Plant Molecular Biology,2003,51:577-587.
    [126]Sancenon V, Puig S, MateuAndres I,et al. The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development[J]. J Biol Chem,2004,279:15348-15355.
    [127]Maser P, Thomine S, Schroeder J I,et al. Phylogenetic relationships within cation transporter families of Arabidopsis[J]. Plant Physiology,2001,126:1646-1667.
    [128]Williams L E , Pittman J K, Hall J L. Emerging mechanisms for heavy metal transport in plants[J]. Biochimica et Biophysica Acta,2000,1465:104-126.
    [129]Belouchi A, Kwan T, Gros P. Cloning and characterization of the OsNramp family from Oryza sativa, a new family of membrane proteins possibly implicated in the transport of metal ions[J]. Plant Molecular Biology,1997,33:1085-1092.
    [130]Zhou X J, Yang Y N. Differential expression of rice Nramp genes in response to pathogen infection, defense signal molecules and metal ions[J]. Physiological and Molecular Plant Pathology,2004,65:235-243.
    [131]Guernot M L. The ZIP family of metal transporters[J]. Biochimica et Biophysica Acta,2000,1465 190-198.
    [132]Yang X,Huang J,Jiang Y,et al. Cloning and functional identification of two members of the ZIP (Zrt, Irt-like protein) gene family in rice (Oryza sativa L.)[J]. Mol Biol Rep,2009,36:281-287.
    [133]Chen W R, Feng Y, Chao Y E. Genomic Analysis and Expression Pattern of OsZIP1,OsZIP3,and OsZIP4in Two Rice (Oryza sativaL.) Genotypes withDifferent Zinc Efficiency[J]. Russian Journal of Plant Physiology,2008,55:400-409.
    [134]Agalou A, Purwantomo S, vernas E,et al. A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members[J]. Plant Mol Biol,2008, 66:87-103.
    [135]Itoh J I, Hibara K I, Sato Y,et al. Developmental Role and Auxin Responsiveness of Class III Homeodomain Leucine Zipper Gene Family Members in Rice1[C][W][OA][J]. Plant Physiology, 2008,147:1960–1975.
    [136]Axelse K B, Palmgren M G. Inventory of the superfamily of P-type ion pumps in Arabidopsis[J]. Plant Physiol,2001,126:696–706.
    [137]Palmgren M G, Axelsen K B. Evolution of P-type ATPases[J]. Biochimica et Biophysica Acta,1998,1365:37-45.
    [138]Baxter I, Tchieu ., Sussman M R,et al. Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice[J]. Plant Physiol,2003,132:618–628.
    [139]Williams L E, Mills R F. P1B-ATPases—an ancient family of transition metal pumps with diverse functions in plants[J]. Trends Plant Sci,2005,10:491–502.
    [140]Lee S, Kim Y Y, Lee Y,et al. Rice P1B-Type Heavy-Metal ATPase, OsHMA9, Is a Metal Efflux Protein[J]. Plant Physiology,2007,145:831–842.
    [141]Martinoia E, Klein M, Geisler M,et al. Multifunctionality of plant ABC transporters2more than just detoxifiers[J]. Planta,2002,214:345-355.
    [142]Theodoulou F L. Plant ABC transporters[J]. Biochimica et Biophysica Acta,2000,1465:79-103.
    [143]Klein M, Burla B, Martinoia E. The multidrug resistance-associated protein (MRP/ABCC) subfamily of ATP-binding cassette transporters in plants[J]. FEBS Letters,2006, 580:1112-1122.
    [144]Philip A R. Plant ATP-Binding Cassette Transporters[J]. Annu Rev Plant Biol,2007,58:347-375.
    [145]Moons A. Transcriptional profiling of the PDR gene family in rice roots in response to plant growth regulators, redox perturbations and weak organic acid stresses[J]. Planta,2008,229:53-71.
    [146]Hirschi K. Vacuolar H+/Ca2+ transport : whops directing the traffic[J]. Trends in Plant Science,2001,6:100-104.
    [147]Maeshima M. Tonoplast transporters: organization and function[J]. Annual Review of Plant Physiology and Plant Molecular Biology,2001,52:469-497.
    [148]Salt D E , Wagner G J. Cadmium transport across tonoplast of vesicles from oat roots, Evidence for a Cd2+/H+ antiport activity[J]. Journal of Biological Chemistry,1993,268:12297-12302.
    [149]Hirschi K D, Korenkov V D, Wilgaowski N L,et al. Expression of A rabi dopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance[J]. Plant Physiolog ,2000,124:125-134.
    [150]Kamiya T, Maeshima M. Residues in Internal Repeats of the Rice Cation/H_ Exchanger are Involved in the Transport and Selection of Cations[J]. The Plant of Biological Chemistry,2004,279:812-819.
    [151]Kamiya T, Akahori T, Maeshima M. Expression Profile of the Genes for Rice Cation/H+ Exchanger Family and Functional Analysis in Yeast[J]. Plant Cell Physiol,2005,46:1735-1740.
    [152]Kamiya T, Akahori T, Ashikari M,et al. Expression of the Vacuolar Ca2+/H+ Exchanger OsCAX1a, in Rice: Cell andAge Specificity of Expression, and Enhancement by Ca2+[J]. Plant Cell Physiol,2006,47:96-106.
    [153]Kidwell K K, Osborn T C. Simple plant DNA isolation procedures, In Plant genomes: Methods for Genetic and Physical Mapping, J. S. Beckman and T.C. Osborn, eds[M] (Dordrecht, The Netherlands: Kluwer Academic Publishers),1992,1-13.
    [154]Arnon D I. Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris[J]. Plant Physiol,1949,24:1-15.
    [155]Jiang N, Bao Z, Zhang X,et al. An active DNA transposon family in rice[J]. Nature, 2003,421:163-167.
    [156]Kikuchi K, Terauchi K, Wada M,et al. The plant MITE mPing is mobilized in anther culture[J]. Nature,2003,421:167-170.
    [157]Nakazaki T, Okumoto Y, Horibata A,et al. Mobilization of a transposon in the rice genome[J]. Nature,2003,421:170-172.
    [158]Shan X H, Liu Z L, Dong Z Y,et al. Mobilization of the active mite transposons mPing and Pong in rice by introgression from wild rice (Zizania latifolia Griseb.)[J]. Molecular Biology and Evolution,2005,22:976-990.
    [159]Liu Z L, Han F P, Tan M,et al. Activation of a rice endogenous retrotransposon Tos17 in tissue culture is accompanied by cytosine demethylation and causes heritable alteration in methylation pattern of flanking genomic regions[J]. Theor Appl Genet,2004,109:200-209.
    [160]Hirochika H, Sugimoto K, Otsuki Y,et al. Retrotransposons of rice involved in mutations induced by tissue culture [J]. Proceedings of the National Academy of Sciences,USA,1996,93:7783-7788.
    [161]Gao L, McCarthy E M, Ganko E W,et al. Evolutionary history of Oryza sativa LTR retrotransposons: A preliminary survey of the rice genome sequences [J]. BMC Genomics,2004,5:1-18.
    [162]Lin X Y, Long L K, Shan X H,et al. In planta Mobilization of the mPing/Pong MITE Transposons in Rice by Hydrostatic Pressurization[J]. Journal of Experimental Botany,2006,57:2313-2323.
    [163]Ding Y, Wang X, Su L,et al. SDG714, a Histone H3K9 Methyltransferase, Is Involved in Tos17 DNA Methylation and Transposition in Rice[J]. Plant cell,2007,19:9-22.
    [164]Dyachenko O V, Zakharchenko N S, Shevchuk T V,et al. Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress[J]. Biochemistry,2006,71:461-465.
    [165]Wada Y, Miyamoto K, Kusano T,et al. Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants[J]. Mol Genet Genom,2004,271:658-666.
    [166]Liu B, Piao H M,et al. Production and molecular characterization of rice lines derived from a distant cross between rice and Zizania latifolia (Griseb.)[J]. J Genent & Breed,1999,53:279-284.
    [167]Finnegan E J. Epialleles—a source of random variation in times of stress[J]. Curr Opin Plant Biol 2002,5:101-106.
    [168]Polle A, Rennenberg H. Significant of antioxidants in plant adaptation to environmental stress[M]. (London: Chapman and Hall).1993.
    [169]Wilson V, Jones P A. Inhibition of DNA methylation by chemical carcinogens in vitro[J]. Cell,1983,32:239-246.
    [170]Cerda S, Weitzman A S. Influence of oxygen radical injured on DNA methylation[J]. Mut Res 1997,386:141-152.
    [171]Chawla R, Nicholson S J, Folta K M,et al. Transgene-induced silencing of Arabidopsis phytochrome A gene via exonic methylation[J]. Plant Journal,2007,52:1105-1118.
    [172]Suzuki M M, Bird A. DNA methylation landscapes: Provocative insights from epigenomics[J]. Nature Reviews Genetics,2008,9:465-476.
    [173]Vaughn M W, TanurdzIc M, Lippman Z,et al. Epigenetic natural variation in Arabidopsisthaliana[J]. PLoS Biology,2007,5:1617-1629.
    [174]Molinier J, Ries G, Zipfel C,et al. Transgeneration memory of stress in plants[J]. Nature,2006,442:1046-1049.
    [175]Boyko A, Kathiria P, Zemp F Z, et al. Transgenerational changes in the genome stability and methylation in pathogen-infected plants: (virus-induced plant genome instability)[J]. Nucleic Acids Res,2007,35:1714-1725.
    [176]Bond D M, Finnegan E J. Passing the message on: inheritance of epigenetic traits[J]. Trends Plant Sci,2007,12:211-216.
    [177]Mathieu O, Reinders J, Caikovski M,et al. Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation[J]. Cell,2007,130:851-862.
    [178]Cao X, Aufsatz W, Zilberman D,et al. Role of the DRM and CMT3 Methyltransferases in RNA-Directed DNA Methylation[J]. Current Biology,2003,13:2212-2217.
    [179]Huettel B, Kanno T, Daxinger L,et al. RNA-directed DNA methylation mediated by DRD1 and Pol IVb: A versatile pathway for transcriptional gene silencing in plants[J]. Biochimica et Biophysica Acta - Gene Structure and Expression,2007,1769: 358-374.
    [180] Phillipsa J R, Dalmayb T, Bartelsa D. The role of small RNAs in abiotic stress[J]. FEBS Letters,2007,581:5813592-583597.
    [181]Sunkar R, Chinnusamy V, Zhu J H,et al. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation[J].Trends in Plant Science,2007,12:1360-1385.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700