SurKex诱导survivin基因沉默的分子机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Survivin是凋亡抑制蛋白家族成员,具有调控有丝分裂和抑制细胞凋亡的作用。Survivin在大多数结束分化的正常组织中均未被检测到,但在几乎所有的肿瘤组织中均过量表达,并为肿瘤细胞生存所必须。因此,survivin被公认为是癌症治疗的一个重要靶点。
     研究发现,用一正义的短链甲基化寡核苷酸与某一基因启动子区序列互补,可以诱导该基因启动子区甲基化而抑制基因转录。利用这一机制来抑制致病基因的表达,应能起到治疗疾病的作用。据此,我们设计了一个与survivin基因启动子区域互补的22个碱基的甲基化脱氧寡核苷酸SurKex,在早期的工作中,我们通过体内外的药效学实验已经证明,SurKex能抑制survivin mRNA和蛋白的表达,并对荷瘤鼠肿瘤生长有抑制作用,且能延长荷瘤鼠的存活时间。同时,对SurKex作用机理也进行了初步研究,结果表明,它是通过诱导survivin启动子区域发生甲基化而导致基因沉默的。
     在前期工作的基础上,本文首先对SurKex诱导survivin启动子部位甲基化的作用方式进行了更深入的研究,通过亚硫酸氢钠测序法,确证了SurKex诱导survivin启动子部位发生甲基化的方式是靶向、定点诱导。i
     基因沉默时,与之结合的组蛋白往往会发生一些共价修饰的改变,所以接下来的研究,我们主要考察了SurKex诱导survivin沉默后,与survivin启动子区结合的组蛋白H3、H4上特定的赖氨酸残基的甲基化水平及H3、H4的乙酰化/去乙酰化水平是否发生相应的改变。我们采用染色质免疫沉淀技术,通过特异性抗体进行分析,结果表明,SurKex作用后,与survivin启动子区结合的组蛋白H3-K9二甲基化、H3-K27三甲基化水平升高;H4乙酰化、H4-K16乙酰化水平降低,也即去乙酰化水平升高。组蛋白的这些改变,与基因沉默是呈正相关的。
     DNA甲基化和组蛋白的共价修饰,都是调控基因表达的重要表观遗传学生化事件。关于二者之间的因果关系,进行调控的先后顺序,一直是表观遗传学领域研究的热点。在我们的实验中,SurKex作用后,既引起DNA甲基化,又引起组蛋白尾部修饰的改变。它们之间是如何彼此协作、控制survivin的开或关,更确切地说,是DNA甲基化指导组蛋白共价修饰的改变,还是组蛋白共价修饰的改变指导DNA甲基化,是我们接下来的研究要解决的关键问题。我们选用DNA甲基化酶抑制剂5-氮脱氧胞嘧啶核苷(5-Aza-CdR)、组蛋白去乙酰化酶抑制剂曲古抑菌素A(TSA)和组蛋白甲基化酶抑制剂BIX-01294,分别考察DNA甲基化或组蛋白去乙酰化或甲基化作用被相应抑制剂阻断后,对SurKex效应的影响,以此阐明DNA甲基化和组蛋白共价修饰(去乙酰化和甲基化)在survivin沉默中的因果关系和调控顺序。具体方法是通过RT-PCR考察survivin mRNA表达情况、Bisulfite sequencing分析survivin启动子区特定CpG甲基化情况及染色质免疫沉淀(ChIP)实验考察与survivin结合的组蛋白共价修饰情况。实验结果表明,DNA甲基化是survivin沉默中最关键的一步,但组蛋白去乙酰化和甲基化指导DNA甲基化,它们的作用途径可能与DNA甲基化转移酶1(DNMT1)有关。
     最后,我们想初步验证对上述实验结果的推论是否正确。我们用TSA和BIX-01294分别阻断组蛋白去乙酰化和甲基化后,用RT-PCR考察对DNMT1 mRNA表达的影响。结果表明,组蛋白去乙酰化和组蛋白甲基化被相应的抑制剂阻断后,都出现了DNMT1 mRNA表达的降低。由此可见,组蛋白去乙酰化和甲基化都可能通过上调DNMT1 mRNA表达而影响DNA甲基化。当然,这可能只是它们作用途径中的一个环节。
     本课题的研究首先确证了SurKex为一种新型的靶向、定点甲基化诱导剂,它通过诱导survivin基因启动子区特定CpG位点甲基化而引起survivin沉默;其次阐明了SurKex在诱导survivin沉默的过程中,除了DNA甲基化之外,组蛋白H3-K9二甲基化、H3-K27三甲基化水平升高,组蛋白H4、H4-K16乙酰化水平降低;接着,以SurKex为工具药,初步阐明了在survivin沉默过程中,DNA甲基化是最关键的一步,但组蛋白共价修饰的改变(组蛋白去乙酰化和甲基化)是更优势的事件,它指导DNA的甲基化;最后,初步证明组蛋白共价修饰的改变(组蛋白去乙酰化和甲基化)是通过影响DNMT1 mRNA的表达,来指导DNA甲基化。
     本课题的研究不但为抗肿瘤药物的设计提供了新的思路,提供了从表观遗传学角度靶向治疗癌症的一种新方法,而且为解决表观遗传学领域的重大理论问题提供了实验证据。
Survivin is an inhibitor of apoptosis protein (IAP) family member, it is the apoptosis inhibitor as well as the mitotic regulator. Survivin is absolutely undetectable in normal tissues, but over-expressed in all the most common human cancers. Also, it is required for maintaining cancer-cell viability. Thus, Survivin is considered as a therapeutic target in cancer.
     According to previous research, in mammalian cells, a short methylated sense oligonucleotide that is complementary to the sequence of the promoter region of a given gene can induce hypermethylation of the promoter region of that gene and thus inhibit that gene transcription. This mechanism might be used to cure diseases by inhibiting the expression of a certain gene harmful to health. By virtue of this, we designed a methylated oligodeoxynucleotide (SurKex, 22 bases) complementary to a region of part promoter of survivin. Our early experiments showed that SurKex can inhibit not only survivin mRNA and protein expression, but also tumor growth of tumor-bearing mice, and prolong survival of animal model of nude mice by pharmacodynamics in vivo and in vitro. At the same time, we had a preliminary study on the mechanism of SurKex. The results showed that SurKex could lead survivin gene silencing by inducing DNA methylation of survivin promoter region.
     In this article, at the basis of our previous research, we first had a further study on methylation mode of survivin promoter inducing by SurKex through bisulfite-sequencing and confirmed that SurKex can lead to methylate survivin promoter in CpG-site specific way, that is targeting induction.
     When gene silencing, some changes of covalent modifications of histone combined with a certain gene will accordingly happen. Next, we used chromatin immunoprecipitation (ChIP) to investigate the modifications of acetylation/deacetylation or methylation on the specific lysine residue of histone H3, H4 combined with survivin promoter sequence after survivin promoter site-specific methylation was induced by SurKex. The results showed that SurKex increased histone H3-K9 dimethylation、H3-K27 trimethylation and decreased H4、H4-K16 acetylation levels. These changes of histone modifications positively related with gene silencing.
     Although DNA methylation and histone covalent modifications are both important biochemical events of epigenetics in regulating gene expression, there is a hot debate in epigenetics about the order and the causal relationship between them when they regulate gene expression. In our experiment, SurKex not only induced methylation of survivin promoter but also changes of histone tail modifications. Now that how did they collaborate with each other on survivin expression and control survivin“on or off”precisely? Whether DNA methylation guides histone covalent modifications or histone covalent modifications guide DNA methylation would be a key issue to be solved in our next study.
     Then we studied the effects on the efficacy of SurKex in blocking DNA methylation, histone deacetylation or histone methylation by DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-Aza-CdR), histone deacetylase inhibitor trichostatin A (TSA) and histone methyltransferase inhibibor BIX-01294 respectively. We determined the expression of survivin mRNA by RT-PCR, analyzed the site-specific CpG methylation of survivin promoter region by bisulfite sequencing and detected the covalent modifications of histone tails combined with survivin promoter by chromatin immunoprecipitation (ChIP). These results showed that DNA methylation was the crucial step in survivin silencing, but histone deacetylation and methylation guided DNA methylation, which could play a role through DNMT1.
     Finally, we would be in an attempt to verify whether our inference was correct or not. We investigated the expression of DNMT1 mRNA by RT-PCR in blocking histone deacetylation and methylation by TSA and BIX-01294 respectively. The results showed that the expression of DNMT1 mRNA was decreased greatly after histone deacetylation or histone methylation being blocked, which revealed that both of them could affect DNA methylation by upregulating the expression of DNMT1 mRNA. Of course, this is only a possible means of their roles.
     In summary, we first confirmed that SurKex is a new type of targeted, site-directed CpG DNA methylation drug candidate, and it could result in survivin silencing by inducing site-specific CpG methylation of survivin promoter region; Next we revealed that SurKex could increase histone H3-K9 dimethylation and H3-K27 trimethylation levels and decrease histone H4 and H4-K16 acetylation levels besides DNA methylation; Then we verified that DNA methylation is a vital step in survivn silencing, but the change of histone covalent modifications (including histone deacetylation and methylation) is more advantage event, and it guide DNA methylation; Finally, we initially proved that histone deacetylation and methylation guide DNA methylation by affecting the expression of DNMT1 mRNA.
     This research provides not only new ideas for the design of antineoplastic drugs and a new method for cancer targeted therapy from cancer epigenetics, but also the experimental evidence for solving the major theoretical problem in the field of Epigenetics.
引文
1.薛京伦主编《表观遗传学-原理、技术与实践》上海科学技术出版社2006年12月出版
    2. Boi L.Epigenetic phenomena, chromatin dynamics, and gene expression. New theoretical approaches in the study of living systems. Riv Biol. 2008, 101(3): 405-442
    3. Hirst M, Marra MA. Epigenetics and human disease. Int J Biochem Cell Biol. 2009, 41(1):136-146.
    4. Tremethick DJ. Higher-order structures of chromatin: the elusive 30 nm fiber. Cell. 2007, 128(4):651-654.
    5. Goldberg AD, Allis CD and Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007, 128(4): 635-638.
    6. Vaucheret H, Fagard M. Transcriptional gene silencing in plants: targets, inducers and regulators. Trends Genet. 2001, 17(1):29-35.
    7. Morel JB, Mourrain P, Béclin C, Vaucheret H. DNA methylation and chromatin structure affect transcriptional and post-transcriptional transgene silencing in Arabidopsis. Curr Biol. 2000, 10(24):1591-1594.
    8. Vaucheret H. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev. 2006, 20(7):759-771
    9. Wassenegger M. Gene silencing-based disease resistance. Transgenic Res. 2002, 11(6):639-653
    10. Vertino PM, Yen RW, Gao J, et al. De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransferase. Mol Cell Biol. 1996, 16(8): 4555-4565
    11. Nakao M. Epigenetics: interaction of DNA methylation and chromatin. Gene. 2001, 278(1-2):25-31
    12. Robertson KD. DNA methylation and chromatin - unraveling the tangled web. Oncogene. 2002, 21(35):5361-5379
    13. Bender J. DNA methylation and epigenetics. Annu Rev Plant Biol. 2004, 55:41-68
    14. Hsu DW, Lin MJ, Lee TL, et al. Two major forms of DNA (cytosine-5) methyltransferase in human somatic tissues. Proc Natl Acad Sci USA. 1999, 96(17):9751-9756
    15. Okano M, Bell DW, Haber DA, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999, 99(3):247-257
    16. Vertino PM, Sekowski JA, Coll JM, et al. DNMT1 is a component of a multiprotein DNA replication complex. Cell Cycle, 2002,1(6):416-423
    17. Jung Y, Park J, Kim TY, et al. Potential advantages of DNA methyltransferase 1 (DNMT1)-targeted inhibition for cancer therapy. J Mol Med. 2007, 85(10):1137-1148
    18. Cheng X, Blumenthal RM. Mammalian DNA methyltransferases: a structural perspective. Structure. 2008, 16(3):341-350
    19. Mishra MV, Bisht KS, Sun L, et al. DNMT1 as a molecular target in a multimodality-resistant phenotype in tumor cells. Mol Cancer Res. 2008, 6(2):243-249
    20. Comb M, Goodman HM. CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Res. 1990, 18(13):3975-3982
    21. Prendergast GC, Lawe D, Ziff EB. Association of Myn, the murine homolog of max, with c-Myc stimulates methylation-sensitive DNA binding and ras cotransformation. Cell. 1991 May 3;65(3):395-407
    22. Mancini DN, Rodenhiser DI, Ainsworth PJ, et al. CpG methylation within the 5' regulatory region of the BRCA1 gene is tumor specific and includes a putative CREB binding site. Oncogene. 1998, 16(9):1161-1169
    23. Mancini DN, Singh SM, Archer TK, et al. Site-specific DNA methylation in theneurofibromatosis (NF1) promoter interferes with binding of CREB and SP1 transcription factors. Oncogene. 1999, 18(28):4108-4119
    24. Campanero MR, Armstrong MI, Flemington EK. CpG methylation as a mechanism for the regulation of E2F activity. Proc Natl Acad Sci USA. 2000, 97(12):6481-6486
    25. Robertson KD, Ait-Si-Ali S, Yokochi T, et al. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet. 2000, 25(3):338-342
    26. Prokhortchouk A, Hendrich B, J?rgensen H, et al. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev. 2001, 15(13):1613-1618
    27. Prokhortchouk E, Hendrich B. Methyl-CpG binding proteins and cancer: are MeCpGs more important than MBDs? Oncogene. 2002, 21(35):5394-5399
    28. Wolffe AP. Packaging principle: how DNA methylation and histone acetylation control the transcriptional activity of chromatin. J Exp Zool. 1998, 282(1-2):239-244
    29. Kundu TK, Rao MR. CpG islands in chromatin organization and gene expression. J Biochem. 1999, 125(2):217-222
    30. Nakao M. Epigenetics: interaction of DNA methylation and chromatin. Gene. 2001, 278(1-2):25-31
    31. Robertson KD. DNA methylation and human disease. Nat Rev Genet. 2005, 6(8):597-610
    32. Nephew KP, Huang TH. Epigenetic gene silencing in cancer initiation and progression. Cancer Lett. 2003, 190(2):125-133
    33. Das PM, Singal R. DNA methylation and cancer. J Clin Oncol. 2004, 22(22):4632-4642
    34. Kanai Y, Ushijima S, Nakanishi Y, et al. Mutation of the DNA methyltransferase (DNMT) 1 gene in human colorectal cancers. Cancer Lett, 2003,192(1):75-82.
    35. Kim KH, Choi JS, Kim IJ, et al. Promoter hypomethylation and reactivation ofMAGE-A1 and MAGE-A3 genes in colorectal cancer cell lines and cancer tissues. World J Gastroenterol. 2006, 12(35):5651-5657
    36. Picard V, Bergeron A, Larue H, et al. MAGE-A9 mRNA and protein expression in bladder cancer. Int J Cancer. 2007, 120(10):2170-2177
    37. Xiao J, Chen HS, Fei R, Cong X, Wang LP, Wang Y, Jiang D, Wei L, Wang Y. Expression of MAGE-A1 mRNA is associated with gene hypomethylation in hepatocarcinoma cell lines. J Gastroenterol. 2005, 40(7):716-721.
    38. Nakamura N, Takenaga K. Hypomethylation of the metastasis-associated S100A4 gene correlates with gene activation in human colon adenocarcinoma cell lines. Clin Exp Metastasis. 1998, 16(5):471-479
    39. Akiyama Y, Maesawa C, Ogasawara S, et al. Cell-type-specific repression of the maspin gene is disrupted frequently by demethylation at the promoter region in gastric intestinal metaplasia and cancer cells. Am J Pathol. 2003, 163(5):1911-1919
    40. Gupta A, Godwin AK, Vanderveer L, et al. Hypomethylation of the synuclein gamma gene CpG island promotes its aberrant expression in breast carcinoma and ovarian carcinoma. Cancer Res. 2003, 63(3):664-673
    41. Ye Q, Zheng MH, Cai Q, et al. Aberrant expression and demethylation of gamma-synuclein in colorectal cancer, correlated with progression of the disease. Cancer Sci. 2008, 99(10):1924-1932
    42. Gonzalez-Zulueta M, Bender CM, Yang AS, et al. Methylation of the 5' CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing[J]. Cancer Res, 1995, 55(20): 4531-4535.
    43. Virmani A, Rathi A, Sugio K, et al. Aberrant methylation of TMS1 in small cell, non small cell lung cancer and breast cancer. Int J Cancer. 2003, 106(2):198-204
    44. Chan AO, Lam SK, Wong BC, et al. Promoter methylation of E-cadherin gene in gastric mucosa associated with Helicobacter pylori infection and in gastric cancer. Gut. 2003, 52(4):502-506
    45. Momparler RL. Epigenetic therapy of cancer with 5-aza-2'-deoxycytidine (decitabine). Semin Oncol, 2005, 32(5): 443-451.
    46. Murgo AJ. Innovative approaches to the clinical development of DNA methylation inhibitors as epigenetic remodeling drugs. Semin Oncol, 2005, 32(5): 458-464.
    47. Laird PW, Jackson-Grusby L, Fazeli A, et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell, 1995, 81(2): 197-205.
    48. Wassenegger M, Heimes S, Riedel L, et al. RNA-directed de novo methylation of genomic sequences in plants. Cell, 1994, 76(3):567-576.
    49. Sijen T, Vijn I, Rebocho A, et al. Transcriptional and posttranscriptional gene silencing are mechanistically related. Curr Biol, 2001, 11(6):436-440.
    50. Morris KV, Chan SW, Jacobsen SE, et al. Small interfering RNA-induced transcriptional gene silencing in human cells. Science, 2004, 305(5688):1289-1292.
    51. Kawasaki H, Taira K, Morris KV. siRNA induced transcriptional gene silencing in mammalian cells. Cell Cycle, 2005, 4(3): 442-448.
    52. Castanotto D, Tommasi S, Li M, et al. Short hairpin RNA-directed cytosine(CpG)methylation of the RASSF1A gene promoter in HeLa cells. Mol Ther, 2005, 2(1):179-183.
    53. Yao X, Hu JF, Daniels M, Shiran H, Zhou X, Yan H, Lu H, Zeng Z, Wang Q, Li T, Hoffman AR. A methylated oligonucleotide inhibits IGF2 expression and enhances survival in a model of hepatocellular carcinoma. J Clin Invest, 2003, 111(2):265-273.
    54. Ishii T, Fujishiro M, Masuda M, et al. A methylated oligonucleotide induced methylation of GSTP1 promoter and suppressed its expression in A549 lung adenocarcinoma cells. Cancer Lett. 2004, 212(2):211-223.
    55. Baylin SB, Herman JG. DNA methylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 2000, 16(4): 168-174.
    56. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006, 31(2): 89-97.
    57. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA. 1992 Mar 1;89(5):1827-31.
    58. Hayashi H, Nagae G, Tsutsumi S, Kaneshiro K, Kozaki T, Kaneda A, Sugisaki H, Aburatani H. High-resolution mapping of DNA methylation in human genome using oligonucleotide tiling array. Hum Genet. 2007, 120(5):701-711.
    59. Hake SB, Xiao A, Allis CD. Linking the epigenetic“language”of covalent histone modifications to cancer. Br J Cancer,2004, 90:761-769.
    60. Spotswood HT, Turner BM. An increasingly complex code. J Clin Invest, 2002,110:577-582.
    61. Jenuwein T, DavidAllis C. Translating the histone code. Science, 2001, 293:1074-1080.
    62. Lachner M, O'Sullivan RJ, Jenuwein T. An epigenetic road map for histone lysine methylation. J Cell Sci. 2003, 116(Pt 11):2117-2124
    63. Shi Y, Lan F, Matson C , et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 2004, 119(7): 941-953
    64. Lan F, Nottke AC, Shi Y. Mechanisms involved in the regulation of histone lysine demethylases. Curr Opin Cell Biol. 2008, 20(3):316-325
    65. Tsukada Y, Fang J, Erdjument-Bromage H, et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature. 2006, 439(7078):811-816.
    66. Klose RJ, Yamane K, Bae Y, et al. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature, 2006, 442(7100):312-316.
    67. Kondo Y, Shen L, Issa JP. Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer. Mol Cell Biol. 2003, 23(1):206-215.
    68. Heard E, Rougeulle C, Arnaud D, et al. Methylation of histone H3 at Lys-9 is an earlymark on the X chromosome during X inactivation. Cell. 2001, 107(6):727-738.
    69. Mermoud JE, Popova B, Peters AH, et al. Histone H3 lysine 9 methylation occurs rapidly at the onset of random X chromosome inactivation. Curr Biol. 2002, 12(3):247-251.
    70. Tamaru H, Selker EU. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature. 2001, 414(6861):277-283.
    71. Fahrner JA, Eguchi S, Herman JG, et al. Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer Res. 2002, 62(24):7213-7218.
    72. Fuks F, Hurd PJ, Wolf D, et al. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem. 2003, 278(6):4035-4040.
    73. Kim KC, Geng L, Huang S. Inactivation of a histone methyltransferase by mutations in human cancers. Cancer Res. 2003,63(22):7619-7623.
    74. He H, Lehming N. Global effects of histone modifications. Brief Funct Genomic Proteomic. 2003, 2(3):234-243.
    75. Nan X, Ng HH, Johnson CA, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998, 393(6683):386-389
    76. Jones PL, Veenstra GJ, Wade PA, Methylated DNA and MeCP2 recrμit histone deacetylase to repress transcription. Nat Genet. 1998, 19(2):187-191
    77. Selker EM. Trichostatin A causes selective loss of DNA methylation in Neurospora. Proc Natl Acad Sci USA. 1998, 95(16):9430-9435.
    78. Januchowski R, Dabrowski M, Ofori H, et al. Trichostatin A down-regulate DNA methyltransferase 1 in Jurkat T cells. Cancer Lett. 2007 , 246(1-2):313-317.
    79. Ou JN, Torrisani J,Μnterberger A, et al. Histone deacetylase inhibitor Trichostatin A induces global and gene-specific DNA demethylation in human cancer cell lines. Biochem Pharmacol. 2007, 73(9):1297-1307
    80. Fuks F, Burgers WA, Brehm A, et al. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet. 2000, 24(1):88-91.
    81. Bakin AV, Curran T. Role of DNA 5-methylcytosine transferase in cell transformation by fos. Science. 1999, 283(5400):387-390.
    82. Miao F, Natarajan R. Mapping global histone methylation patterns in the coding regions of human genes. Mol Cell Biol. 2005 ,25(11):4650-4661.
    83. Sterner DE, Berger SL. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev. 2000 ,64(2):435-59.
    84. Cress WD, Seto E. Histone deacetylases, transcriptional control, and cancer. J Cell Physiol. 2000, 184(1):1-16.
    85. Carrozza MJ, Mtley RT, Workman JL, et al. The diverse functions of histone acetyltransferase complexes. Trends Genet. 2003, 19(6):321-329.
    86. Altieri DC. Validating survivin as a cancer therapeutic target. Nat Rev Cancer. 2003, 3(1): 46-54.
    87. Verdecia MA, Huang H, Dutil E, Kaiser DA, Hunter T, Noel JP. Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement. Nat Struct Biol. 2000, 7(7): 602-608.
    88. Suzuki A, Ito T, Kawano H, Hayashida M, Hayasaki Y, Tsutomi Y, Akahane K, Nakano T, Miura M, Shiraki K. Survivin initiates procaspase 3/p21 complex formation as a result of interaction with Cdk4 to resist Fas-mediated cell death. Oncogene. 2000, 19(10): 1346-1353.
    89. Tran J, Master Z, Yu JL, Rak J, Dumont DJ, Kerbel RS. A role for survivin in chemoresistance of endothelial cells mediated by VEGF. Proc Natl Acad Sci USA. 2002, 99(7): 4349-4354.
    90. Grossman D, McNiff JM, Li F, Altieri DC. Expression and targeting of the apoptosis inhibitor, survivin, in human melanoma. J Invest Dermatol. 1999, 113(6):1076-1081.
    91. Lu B, Mu Y, Cao C, Zeng F, Schneider S, Tan J, Price J, Chen J, Freeman M, HallahanDE. Survivin as a therapeutic target for radiation sensitization in lung cancer. Cancer Res. 2004, 64(8): 2840-2845.
    92. Yang JH, Zhang YC, Qian HQ. Survivin antisense oligodeoxynucleotide inhibits growth of gastric cancer cells. World J Gastroenterol. 2004, 10(8):1121-1124.
    93. Carvalho A, Carmena M, Sambade C, Earnshaw WC, Wheatley SP. Survivin is required for stable checkpoint activation in taxol-treated HeLa cells. J Cell Sci. 2003, 116(Pt 14):2987-2998.
    94. Yonesaka K, Tamura K, Kurata T, Satoh T, Ikeda M, Fukuoka M, Nakagawa K. Small interfering RNA targeting survivin sensitizes lung cancer cell with mutant p53 to adriamycin. Int J Cancer. 2006, 118(4): 812-820.
    95. Zeis M, Siegel S, Wagner A, Schmitz M, Marget M, Kühl-Burmeister R, Adamzik I, Kabelitz D, Dreger P, Schmitz N, Heiser A. Generation of cytotoxic responses in mice and human individuals against hematological malignancies using survivin-RNA-transfected dendritic cells. J Immunol. 2003, 170(11):5391-5397.
    96. Tsuruma T, Hata F, Torigoe T, Furuhata T, Idenoue S, Kurotaki T, et al. Phase I clinical study of anti-apoptosis protein, survivin-derived peptide vaccine therapy for patients with advanced or recurrent colorectal cancer. J Transl Med. 2004, 2(1):19.
    97. Vaissière T, Sawan C, Herceg Z. Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res. 2008 , 659(1-2):40-48.
    98. Wozniak RJ, Klimecki WT, Lau SS,et al. 5-Aza-2'-deoxycytidine-mediated reductions in G9A histone methyltransferase and histone H3 K9 di-methylation levels are linked to tumor suppressor gene reactivation. Oncogene. 2007, 26(1):77-90.
    99. Locke SM, Martienssen RA. Slicing and spreading of heterochromatic silencing by RNA interference. Cold Spring Harb Symp Quant Biol. 2006;71:497-503.
    100. Huettel B, Kanno T, Daxinger L, et al. RNA-directed DNA methylation mediated by DRD1 and Pol IVb: a versatile pathway for transcriptional gene silencing in plants. Biochim Biophys Acta. 2007, 1769(5-6):358-374.
    101. Wu LP, Wang X, Li L, et al. Histone deacetylase inhibitor depsipeptide activates silenced genes through decreasing both CpG and H3K9 methylation on the promoter. Mol Cell Biol. 2008, 28(10):3219-3235.
    102. Smallwood A, Estève PO, Pradhan S, Carey M. Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev. 2007, 21(10):1169-1178.
    103. Macaluso M, Cinti C, Russo G, et al. pRb2/p130-E2F4/5-HDAC1-SUV39H1-p300 and pRb2/p130-E2F4/5-HDAC1-SUV39H1-DNMT1 multimolecular complexes mediate the transcription of estrogen receptor-alpha in breast cancer. Oncogene. 2003, 22(23):3511-3517.
    104. Espada J, Ballestar E, Fraga MF, et al. Human DNA methyltransferase 1 is required for maintenance of the histone H3 modification pattern. J Biol Chem. 2004, 279(35):37175-37184.
    105. Fuks F, Hurd PJ, Deplus R, et al. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res. 2003, 31(9):2305-2312.
    106. Patra SK, Patra A, Dahiya R. Histone deacetylase and DNA methyltransferase in human prostate cancer. Biochem Biophys Res Commun. 2001, 287(3):705-713.
    107. Zhou Q, Agoston AT, Atadja P, et al. Inhibition of histone deacetylases promotes ubiquitin-dependent proteasomal degradation of DNA methyltransferase 1 in human breast cancer cells. Mol Cancer Res. 2008, 6(5):873-883.
    108. Kang MY, Lee BB, Kim YH, et al. Association of the SUV39H1 histone methyltransferase with the DNA methyltransferase 1 at mRNA expression level in primary colorectal cancer. Int J Cancer. 2007, 121(10):2192-2197.
    109. Wozniak RJ, Klimecki WT, Lau SS, et al. 5-Aza-2'-deoxycytidine-mediated reductions in G9A histone methyltransferase and histone H3 K9 di-methylation levels are linked to tumor suppressor gene reactivation. Oncogene. 2007, 26(1):77-90.
    110. Kim JK, Estève PO, Jacobsen SE, et al. UHRF1 binds G9a and participates inp21 transcriptional regulation in mammalian cells. Nucleic Acids Res. 2009, 37(2):493-505.
    111. Fuks F, Burgers WA, Brehm A, et al. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet. 2000, 24(1):88-91.
    112. Estève PO, Chin HG, Smallwood A, et al. Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev. 2006, 20(22):3089-3103.
    113. Xin Z, Tachibana M, Guggiari M, et al. Role of histone methyltransferase G9a in CpG methylation of the Prader-Willi syndrome imprinting center. J Biol Chem. 2003, 278(17):14996-15000.
    114. Kubicek S, O'Sullivan RJ, August EM, et al. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell. 2007, 25(3):473-481
    115. Chang Y, Zhang X, Horton JR, et al. Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294. Nat Struct Mol Biol. 2009, 16(3):312-317
    116. Jackson JP, Lindroth AM, Cao X, et al. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature, 2002, 416:556-560.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700