用户名: 密码: 验证码:
抗逆、抗病转基因小麦的分子检测及抗性鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前期工作已克隆与抗逆、抗病相关的基因GmAREB(ABA应答元件结合蛋白基因),EdVP1(焦磷酸化酶基因),GmERF46(乙烯应答元件结合蛋白基因)。基因功能分析证明GmAREB可以提高转基因植物的抗旱性及耐盐性,EdVP1可以促进转基因植物对磷、钾等营养元素的吸收,GmERF46可以提高转基因植物的抗病性。为了提高我国小麦品种的抗逆性及抗病性,本研究利用以上基因分别构建载体转化我国主栽小麦品种,转基因小麦的分子鉴定及抗性鉴定结果如下:
     利用玉米的Ubiqutin启动子控制GmAREB基因表达,构建了用于小麦转化的载体pSK-GmAREB。采用基因枪共转化法转化受体小麦品种郑147和济麦22。通过PCR检测获得T0代的阳性植株70株,转化率为1.37%。其中,郑147阳性植株共31株,转化率为2.14%,济麦22阳性植株39株,转化率为1.08%。通过PCR跟踪鉴定获得T1代转基因株系18个,其中,以郑147为受体的株系4个;以济麦22为受体的株系14个。对部分株系进行Southern blotting分析,证实GmAREB基因已经整合到小麦基因组中。抗逆性鉴定证明在低温胁迫条件下,3个以济麦22为受体的转基因株系的脯氨酸含量与受体小麦相比有显著增加,证明在小麦中过表达GmAREB基因,可以促进渗透调节物质脯氨酸的积累,脯氨酸的积累可能有助于转基因小麦抗逆性的提高。
     利用从披碱草中克隆的焦磷酸化酶基因(EdVP1基因)构建载体转化小麦受体郑147、济麦20和杨12。通过PCR检测共获得T0代的阳性植株75株,转化率为2.12%。其中,以郑147为转化受体的阳性植株64株,转化率为3.28%;以济麦20为转化受体的阳性植株3株,转化率为0.29%;以杨12为转化受体的阳性转基因植株11株,转化率为2.02%。通过T1代转基因株系PCR鉴定,获得13个转基因株系。其中,来自郑州147的转基因株系8个,来自杨12的转基因株系5个。T2代转基因小麦阳性植株抗性鉴定证明:在高盐条件下,转基因小麦和受体根系随NaCl浓度的增大,根的总长、总表面积、总体积以及总根尖数下降,在同浓度下转基因小麦根系比受体根系发达,根的总长、总表面积、总体积以及总根尖数比受体明显增加。受体及转基因小麦根的平均直径随NaCl浓度的增加而增大,受体根的平均直径比转基因小麦增加明显;在低钾条件下,转基因小麦根系K+浓度高于受体根系。在低钾和正常钾处理条件下,转基因小麦相对于受体根系总长度、根系总表面积显著增加,而根系平均直径、根系总体积增加不明显,转基因小麦相对于受体在细根和粗根的根长、根系总表面积及体积比方面增加显著;在转EdVP1基因小麦抗寒性鉴定中,分别检测郑147(抗寒性差)、杨12两个受体的转基因材料,在低温条件下,受体为郑147的转基因小麦脯氨酸含量比对照提高58.2%,受体为杨12转基因小麦脯氨酸含量提高9.9%,证明相同基因在不同受体品种中脯氨酸提高量不同,抗寒性差的品种脯氨酸含量提高幅度较大;在干旱条件下,转基因小麦比受体的成活率高。同时,RT-PCR检测证明EdVP1基因在转基因小麦中已表达。
     利用玉米的Ubiqutin启动子控制GmERF46基因表达构建载体,采用基因枪共转化法将载体转化到小麦品种郑147、杨12和杨15。经PCR鉴定获得T0代阳性植株18株,转化率为0.76%。其中,以郑147为转化受体的阳性植株6株,转化率为0.44%;以杨12为转化受体的阳性植株6株,转化率为1.13%;以杨15为转化受体的阳性植株6株,转化率为1.12%。对T1代转基因株系进行检测,获得4个PCR阳性株系。其中,来自郑147的转基因株系1个,来自杨12的转基因株系3个。白粉病抗性鉴定证明转基因小麦对白粉病具有一定抗性。
     综上所述,本研究通过基因枪法成功将抗逆、抗病相关的3个基因转化我国主栽小麦品种,通过PCR及Southern blot鉴定证明这些基因已经整合到小麦基因组中,并且可以稳定遗传到下一代。抗逆性鉴定证明转基因小麦株系的抗逆性或抗病性相对于受体对照得到不同程度提高。本研究为进一步筛选遗传稳定的抗逆、抗病转基因小麦新材料奠定了基础。
Previously, we had isolated three stress-related or pathogen-resistent genes, namely: GmAREB (ABA responsive element binding protein), EdVP1 (H + pyrophosphorylase) and GmERF46 (ethylene responsive element binding protein). Functional analysis indicated that overexpression of GmAREB can enhance tolerance of transgenic plants to drought or high salt streeses, and expression of EdVP1 can improve uptake of phosphorus or passium mineral in transgenic plants, expression of GmERF46 improves pathogen resistant in transgenic plants. In order to improve biotic or abiotic stresses resistant of Chinese wheat varieties, we plan to transform those three genes into wheat in this research. The moleculer and resistant analysis results were following:
     In this study, GmAREB was inserted in downstream of maize Ubiqutin promoter to construct vector, pSK-GmAREB, which was transformed into wheat varieties, Zheng 147 and Jimai 22 using biolistic. After transformation, 70 T0 transgenic plants were identified using PCR and the transformational efficiency was 1.37%. Among transgenic plants, 31 plants came from host Zheng 147 and the transformational efficiency was 2.14%, and 39 plants came from host Jimai 22 and the transformational efficiency was 1.08%. So far, 18 of T1 transgenic lines were identificated. Among those transgenic plants, 4 plants came from host Zheng 147 and 14 plants came from host Jimai 22. The southern blot proved that GmAREB was inserted into wheat genome. The functional analysis showed that under low temperature stress condition, proline accumulation in three transgenic plants hosted by Jimai 22 were higher than that in wild type plants, which suggested that overexpression of GmAREB increased accumulation of proline in transgenic wheat, which might be contributed for stress-tolerance of transgenic wheat plants.
     Similarly, the EdVP1 gene was inserted in downstream of maize Ubiqutin promoter to construct vector and was transformed into wheat varieties, Zheng 147, Jimai 20 and Yang 12 using biolistic. 75 transgenic plants were identificated by PCR in T0 generation plants and totally transformational efficiency was 2.12%. Among those transgenic plants, 64 plants came from host Zheng 147 and the transformational efficiency was 3.28%, and 3 plants came from host Jimai 20 and the transformational efficiency was 0.29%, and 11 plants came from host Yang 12 and the transformational efficiency was 2.02%. In T1 transgenic plants, totally 13 plants were obtained. Among those T1 transgenic plants, 8 transgenic plants came from Zheng 147 and 5 plants came from host Yang 12. Founctional analysis for T2 transgenic plants proven that under high salt stress codition, the total length and face area of root system, and total root tip number in both transgenic and wild type wheat plants increased following with increasing of salt concentration. Under same concentration salt treatment, root of transgenic wheat grew more healthly than that in wild type, and total length, total face area, total volume of root system and total root tip number increased remarkly comparing with wild type. Average diameter of roots increased fowllowing with increasing of salt concentration in both transgenic plant and wild type, whereas average diameter of wild type increased more remarkly than that in transgenic plants. Under starvation of passium condition, K+ content in transgenic plants root were higher than that in wild type. Under starvation or nomal of passium condition, total length and total face area increased more remarkly comparing with wild type, whereas average diameter of roots and total volume of root system were same between transgenic plants and wild type. Root length, total root erea and ratio of root volume in transgenic plants increased more remarkly than that in wild type. Two type of EdVP1 transgenic wheat plants hosted by Zheng 147 (sensitive to low temperature stress) and Yang 12, separately were used to test low temperature resistance. Results indicated that under cold stress, accumulated proline content in transgenic plants hosed by Zheng 147 was 58.2% higher than that in wild type, and accumulated proline content in Yang 12 transgenic plants was 9.9% higher than that in wild type, which suggesting that different host wheat varieties transformed with same gene accumulated different content of proline and cold sensitive host wheat variety accumulated higher level of proline comparing with cold un-sensitive host wheat variety. Under drought condition, survive rate of transgenic plants was higher than that of wild type. Morever, results of RT-PCR proven that EdVP1 can be transcripted in transgenic plants.
     In this study, GmERF46 under control of maize ubiqutin promoter was used to constructe vector and were transformed into wheat varieties Zheng 147, Yang 12 and Yang 15. 18 T0 transgenic plants were identificated using PCR and the transformational efficiency was 0.76%. Among those transgenic plants, 6 plants came from host Zheng 147 and the transformational efficiency was 0.44%; 6 plants came from Young 12 and the transformational efficiency was 1.13%; 6 plants came from Young 15 and the transformational efficiency was 1.12%. Total 4 T1 transgenic plants were identificated using PCR. Among those transgenic plants, 1 plant came from host Zheng 147 and 3 plants came from the Yang 12. Pathogen resistant analysis indicated that GmERF46 transgenic wheat showed resistant to wheat powdery mildew.
     In short, three stress-resistent and pathogen-resistant genes were transformed in Chinese wheat varieties and those genes were identificated to insert wheat genome and inherited to next generation using PCR or Southern blot analysis. Founctional analysis indicated that overexpression of those genes in host wheat imropved stress-tolerance or pathogen-resistant of transgenic wheat plants. This study was nice beginning of further screening of the steady and reliable abiotic or biotic resistant transgenic wheat lines in the further.
引文
包爱科2009.拟南芥液泡膜H<'+>-焦磷酸酶基因AVP1改良紫花苜蓿(Medicago sativa L.)抗逆性的研究. [博士学位论文]兰州:兰州大学
    包爱科张金林,郭正刚,等.2006,液泡膜H+-PPase与植物耐盐性.植物生讯, 42(04): 777~781
    陈吉宝,景蕊莲,毛新国,王述民. 2008,转PvP5CS2基因烟草对干旱胁迫的反应.植物遗传资源学报,9(2): 186~189
    陈俊,王宗阳. 2002,植物MYB类转录因子研究进展.植物生理与分子生物学学报,28(2): 81~88
    成卓敏,夏光敏. 2000.应用基因枪法获得抗大麦黄矮病毒转基因小麦.植物病理学报, 30(2):116~121
    董娜,张增艳,辛志勇. 2008.病原诱导的小麦转录因子TaERF1b基因的分离和表达.中国农业科学. 41(4): 946~953
    董建辉,陈明,徐兆师,张晓科,李连城,马有志2008,披碱草(Elymus dahuricus)焦磷酸化酶基因EdHPl的克隆及功能鉴定.麦类作物学报, 28(3): 364~371
    董槿,何震天,韩成贵,陈秀兰,张凌娣,刘伟华,韩月澎,王锦荣,翟亚锋,于嘉林,肖悦岩,带作物学报, 19(2): 27~31
    刘仪. 2002,抗小麦黄花叶病毒转基因小麦的获得及病毒诱导的基因沉默.科学通报, 47(10):763~767
    付永彩,吴茂森,成卓敏. 2002.小麦不同品种外植体的农杆菌转化方法的研究. 10(1): 25~28
    高东尧,夏兰琴,马有志,徐兆师,徐惠君,杜丽璞,聂丽娜,李彦舫,原亚萍,李连城,陈明,
    孙金海. 2009.小麦Vp-1基因RNA干扰表达载体的构建及遗传转化.植物遗传资源学报, 10 (1):9~15
    高世庆. 2007,大豆、小麦抗逆相关Gm/TaAREB转录因子基因、启动子克隆及功能鉴定.中国农业科学院学位论文
    高翔,佘茂云,殷桂香,于洋,别晓敏,杜丽璞,徐惠君,叶兴国.2009,小麦果聚糖合成酶基因6-SFT克隆和功能验证.科技导报, 27(23): 70~75
    郭北海,张艳敏,李洪杰,杜立群,李银心,张劲松,陈受宜,朱至清, 2000.甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达.植物学报,42(3): 279~283
    郝晓燕,陈明,徐惠君,高世庆,程宪国,李连成,杜丽璞,叶兴国,马有志.2005, GH-DREB基因转化小麦及转基因植株后代的抗旱生理指标鉴定.西南农业学报, 18(5): 616~620
    胡慧芳,马有会. 2007.外源海藻糖提高黄瓜抗盐性的初步研究.长治学院学报, 24(5): 16~19
    冀俊丽,盛长忠,石明,安春菊,吴学锋,李德森,柱荣骞. 2002.通过负压花粉管法将耐盐基因HVA1转人小麦的研究.麦类作物学报, 22 (2):10~13
    康乐,叶兴国,徐惠君,杜丽璞. 2005.葡萄糖氧化酶基因转化小麦的研究.作物学报,3l(6):686~691
    李慧娟,尹海英,张学成,杨爱芳. 2007.转蔗糖:蔗糖-l-果糖基转移酶基因提高烟草的耐旱性.山东大学学报,理学版, 42(1): 89~94
    李银心,常凤启,杜立群,郭北海,李洪杰,张劲松,陈受宜,朱至清. 2000.转甜菜碱醛脱氢酶基因豆瓣菜的耐盐性.植物学报, 42(5): 480~484
    李永春,王潇,陈焕丽,孟凡荣,陈雷,尹钧. 2009.转TPSP融合基因小麦植株的获得及抗旱性初步鉴定.麦类作物学报, 29 (2) :195~198
    梁辉,郑近,段霞瑜,盛宝钦,贾双娥,李义文,唐顺学,欧阳俊闻,李家洋,李良材,田文忠,贾旭. 1999.用基因枪法获得抗白粉病转芪合酶基因小麦.科学通报, 44(24):2644~2648
    刘录祥,赵林姝,梁欣欣,郑企成,刘强,王晶,郭会君,赵世荣,陈文华. 2003.基因枪法获得逆境诱导转录因子DREB1A转基因小麦的研究.中国生物工程杂志,23(11):53~56
    刘文奇,陈旭君,徐晓晖,凌建群,郭泽建. 2002. ERF类转录因子OPBP1基因的超表达提高烟草的耐盐能力.植物生理与分子生物学学报, 28 (6): 473~478
    刘永伟,徐兆师,杜丽璞,徐惠君,李连城,马有志,陈明. 2007.病毒复制酶基因Nib8和ERF转录因子W17基因枪法共转化小麦.作物学报, 33(9): 1548~1552
    娄成后,王学臣. 2000.植物渗透胁迫调节基因表达的调控.《作物产量形成的生理学基础》.中国农业出版社, 87~94
    孟宪鹏李付广刘传亮张朝军武芝侠2008. ERF转录因子对生物胁迫的反应及对棉花抗性改良的意义.分子植物育种, 6(1): 111~116
    闵东红. 2006.小麦抗逆相关的ERF转录因子基因及功能基因的克隆及表达特性研究. [博士学位论文].陕西:西北农林科技大学
    荣红颖,张立全,杨凤萍,陈绪清,张晓东, 2009. DREB1B基因在转基因小麦后代的稳定表达.分子植物育种, 7(3)437~443
    山仑. 2005.加速发展我国节水农业.求是杂志, 22: 42~43
    苏金, J Targolli,吴乃虎,吴瑞. 1999.在转基因植物中实现外源基因最佳表达的途径.生物工程进展, 19(4): 3~6
    隋新霞,楚秀生,李根英,吴祥云,黄承彦. 2002.外源DNA导入技术及其在小麦育种中的应用.山东农业科学, 6: 48~50
    汤章诚. 1984.逆境条件下植物Pro积累及其可能的意义.植物生理学通讯, 10(1): 15~21
    王磊,赵军,范云六. 2002.玉米Cat1基因顺式元件ABRE2结合蛋白ABP9的基因克隆及功能分析.科学通报, 15: 1167~1171
    王巧燕,陈明,邱志刚,程宪国,徐兆师,李连城,马有志. 2005.一个新的编码大豆DREB转录因子基因的克隆及鉴定.西南农业学报, 18(5): 625~628
    王万军,王文芳,曹建军,白守信. 1999.转基因烟草的大田抗病性分析.西北植物学报,19(2): 200~203
    吴华玲,倪中福,姚颖垠,郭刚刚,孙其信. 2008. 15个普通小麦WRKY基因的克隆与表达分析.自然科学进展, 18(4): 378~388
    武丽敏,郑有良,魏育明,吴卫,颜泽洪,张志清. 2003.小麦转基因研究进展.四川农业大学学报, 21(2): 176~181
    邢全华,王广金,石金锋,王岳光,李忠杰,梁凤山,金德敏,王斌. 2003.β-1,3-葡聚糖酶基因高效表达载体的构建及对小麦的转化.遗传学报, 30(8): 717~722
    徐惠君,庞俊兰,叶兴国,杜丽璞,李连城,辛志勇,马有志,陈剑平,陈炯,程顺和,吴宏亚. 2001.基因枪介导法向小麦导入黄花叶病毒复制酶基因的研究.作物学报, 27(6): 688~693
    徐琼芳,李晓兵,马有志,叶兴国,李晓兵,杜丽璞. 2001b.用天花粉蛋白基因转化小麦获得转基因植株.遗传,23(2):135~137
    徐琼芳,李连城,陈孝,马有志,叶兴国,张增艳,徐惠君,辛志勇. 2001a.基因枪法获得GNA转基因小麦植株的研究.中国农业科学, 34(1): 5~8
    徐晓峰,朱才. 1997.小麦叶中脯氨酸测定方法的研究.生物技术, 7: 40~42.
    徐兆师. 2005.小麦抗逆相关DREB/ERF转录因子基因的克隆与鉴定.[博士学位论文].北京:中国农业科学院
    薛哲勇,支大英,夏光敏. 2003.根癌农杆菌介导AtNHX1基因转化小麦.山东大学学报(理学版), 38(1):106~109
    薛哲勇. 2005.小麦耐盐、抗病转基因育种研究. [博士学位论文].山东:山东大学
    阎新甫,刘文轩,王胜军,王西成,王锡锋. 1994.大麦DNA导入小麦产生抗白粉病变异的遗传研究.遗传, 16(1):26~30
    杨晓玲,东方阳,孙耀中,刘永军,郭学民. 2006.转BADH基因水稻幼苗抗盐性研究.西北植物学报, 26(8): 1627~1632
    叶兴国,程红梅,徐惠君,杜丽璞,陆维忠,黄益洪. 2005.转几丁质酶和β-1,3-葡聚糖酶双价基因小麦的获得和鉴定.作物学报,31(5): 583~586
    叶长明,魏祥东,陈东红,蓝崇钰,朱利民. 2003.转基因番木瓜的抗病性及分子鉴定.遗传, 25 (2): 181~184
    于月华,陈明,李连城,徐兆师,刘阳娜,曲延英,曹新有,马有志. 2008.大豆(Glycine max) GmDREB5互作蛋白GmGβ1的筛选及鉴定.作物学报, 34(10): 1688~1695
    曾祥艳,张增艳,杜丽璞,辛志勇,陈孝. 2005.分子标记辅助选育兼抗白粉病、条锈病、黄矮病小麦新种质.中国农业科学, 38(12):2380~2386
    张新梅,徐惠君,杜丽璞,叶兴国,辛志勇,郭蔼光,薛崧,马有志. 2004.共转化法剔除转基因小麦中的bar基因.作物学报, 30(1): 26~30
    张艳敏,郭北海,丁占生,温之雨,蒋春志,李辉,李洪杰,陈受宜. 2003.小麦农杆菌转化系统的建立与转基因植株的获得.华北农学报, 18(3): l~3
    赵恢武,陈杨坚,胡鸢雷,高音,林忠平. 2000.干旱诱导性启动子驱动的海藻糖-6-磷酸合酶基因载体的构建及转基因烟草的耐旱性.植物学报, 42(6): 616~619
    支大英,徐春晖,薛哲勇,刘庆忠,姜鸿鸣,夏光敏. 2004.农杆菌介导AFPl基因转化小麦获得转基因植株.山东农业科学, (3): 14~16
    Abe H, Urao T, Ito T, Seki M, Shinozald K, Yamaguchi-Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2(MYB)function as transcriptional activators in abscisic acid signaling.Plant Cell,15:63~78
    Agarwal P K, Agarwal P, Reddy M K. 2006. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports, 25: 1263~1274.
    Aida M, Ishida T, Fkaki H, Fujisawa. 1997. Genes involved in organ seperationin Arabidopsis, analysis of the cup-shaped cotyledon mutant. Plant Cell, 9:841~857
    Bajji M,Lutts S,Kinet J M.2001. Water deficit effect on solution contribution to osmotic adjustment as a
    function of leaf ageing in three durum wheat(Triticum durum Desf cultivars performing differently in arid conditions.Plant Sci,160:669~68l
    Bartels D, Sunkar R. 2005, Drought and salt tolerance in plants.Critical Reviews in Plant Sciences, 24(1): 23~58
    Bian Y M, Chen S Y, Liu M Y. 1988. Effects of HF on proline of some plants.Plant Physiology Communications. 6: 19~21
    Blumwald E,Aharon G S,Apse M P.2000. Sodium transport in plant cells.Biochim Biophys Acta,1465:140~15l
    Boyer J S. 1982, Plant productivity and environmen.Science, 218: 443~448.
    Bray E A. 1997, Plant responses to water deficit. Trends plant SCI, 2(1): 48~54.
    Brini F,Hanin M,Mezghani I,Berkowitz G A,Masmoudi K.2007. Overexpression of wheat Na+/H+ antiporter TNHXI and H+-pyrophosphatase TVPl improve salt and drought stress tolerance in Arabidopsis thaliana plants.J Exp Bot, 58:301~308
    Cardinale F, Jonak C, Ligterink W. Niehaus K. Boller T, Hirt H. 2000. Differential activation of four specific MAPK pathways by distinct elicitors. J Biol Chem, 275: 36734~36740.
    Casaretto J, Ho T.H. 2003.The transcription factors HvAB15 and HvVPl are require for the abscisic acid induction of gene expression in Barley Aleurone cells. Plant Cell, 15(1): 271~284 Chen C, Chen Z. 2002. Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol, 129: 706~716
    Chen M,Wang Q Y,Cheng X G.Xu Z S, Li L C, Ye X G, Xia L Q, Ma Y Z.2007. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants Biochemical and Biophysical Research Com munications, 353: 299~305
    Cheng Z,Targolli J,Huang X. 2002, Wheat LEA genes,PMA80 and PMA1959,enhance dehydration tolerance of transgenic rice(Oryza sativa L.).Molecular Breeding, 10: 71~82
    Choi H, Hong J, Kang J, Kim S Y. 2000.ABFs, a family of ABA-responsive element binding factors. J Biol Chem 21: 1723~1730.
    Churchill KA, Sze H. 1983, Anion-sensitive H+-pumping ATPase in membrane vesicles from oat roots. Plant Physiol, 71: 610~617
    Crowe J H,Crowe L M,Oliver A E,Tsvetkova N, Wolkers. W, and Tablin F. 2001, The trehalose myth revisited: introduction to a symposium on stabilization of cells in the dry state. Cryobiol, 43: 89~105.
    Davis T,Yamada M Elgort M, Saier H, 1988, Nucleotide sequence of the mannitol (mtl) operon in Escherichia coli.Molecular Microbiol, 2(3): 405~412)
    Dellagi A, Helibronn J, Avrova A Q. 2000.Apotatogene encoding a WRKY-like transcription factor is induced in susceptible interactions with Erwinia carotovora subsp, atroseptica and Phytophthora infestans and is coregulated with class I endochitinase expression. Mol Plant Microbe In, 13: 1092~1101
    Dong J, Chen C, Chen Z. 2003. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51: 21~37
    Drew M C. 1975. Comparison of the effects of a localized supply of phosphate,nitrate,ammonium,and potassium on the growth of the seminal root system and the shoot in barley.New Phytol, 75:479~490
    Dubouzet J G, Sakuma Y, Ito Y. 2003,OsDREB genes in rice,Oryza sativa I encode transcription activators that function in drought,high salt and cold—responsive gene expression.Plant Journal, 33(4):75l~763.
    Finkelstein R R,Gampala S S,Rock C D. 2002.Abscisic acid signaling inseeds and seedlings.The Plant Cel1,14(Supplement): 15~45
    Finkelstein R R,Lynch T J.2000.The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor.The PIant Cell, 12: 599~609
    Flowers T J, Koyama M L, Flowers S A, Sudhakar C, Singh K P,Ye A R 2000.QTL:their place in engineering tolerance of rice to salinity.J Exp Bot 5 1:99~106.
    Fujimoto S Y, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. 2000.Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC Box-mediated gene expression. Plant Cell, 12: 393~404
    Fujita Y,Fujita M,Satoh R.2005.AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis.Plant Cell, 17(12): 3470~3488
    Furihata T,Maruyama K,Fujita Y. 2006.Abscisic acid—dependent muhisite ph0sph0rylation regulates the activity of a transcription activator AREB1.Proceedings of the National Academy of Sciences of the USA,103(6): 1988~1993
    Gao SQ, Xu HJ, Cheng XG,Chen M, Xu ZS,Li LCH,Ye XG,Du LP,Hao XY,Ma YZH 2005.Improvement of wheat drought and salt tolerance by expression of a stress-inducible transcription factor GmDREB of soybean (Glycine max). Chinese Science Bulletin, 23: 2714~2723
    Gaxiola R A,Li J,Undurraga S,Dang L M,Allen G J,Alper S L,Fink G R.2001. Drought-and salt-tolerant plants result from overexpression of the AVPI H+-pump.Proc Natl Acad Sei.USA,98:11444~11449
    Gaxiola RA, Rao RI, Sherman A, Grisafi P, Alper SSI. and Fink GR 1999, The Arabidopsis thaliana proton transporters, AtNhxl and Avpl can functionin cation detoxification in yeast. Proc Natl Acad Sci USA, 96: 1480~1485
    Giimour S J,Zarka D G,Stockinger E J,Salazar M P,Houghton J M,Thomashow M F.1998, Low temperature regulation of the Arabidopsiv CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. The Plant Journal, 16(4):433~442.
    Gilmour S J, Sebolt A M, Salazar M P, Everard J D, Thomashow M F. 2000.Overexpression of the arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiology, (124): 1854~1865
    Graham RD. 1984. Breeding for nutritional characteristic in cereals. Adv Plant Nutr, 1:57~102
    Guo S L,Yin H B,Zhang X,Zhao F Y,Li P H,Chen S H,Zhao Y X,Zhang H.2006. Molecular cloning and characterization of a vacuolar H十-pyrophosphatase gene,SsVP,from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis.Plant Mol Biol 60:41~50
    Guo SL, Yin HB, Zhang X, 2006, Molecular cloning and characterization of a vacuolar H+-pyrophosphatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis. Plant Mol Biol, 60: 41~50
    Gurr S J,Rushton P J. 2003.Engineering plants with increased disease resistance:what are we going to express.Trends in Biotechnology,23(6):275~282
    Hammond—Kosack K E, Parker J E . 2003.Deciphering plant—pathogen communication : fresh perspectives for molecular resistance breeding.Current Opinion in Biotechnology,14: 177~193
    Hare P D, Cress W A, Van Staden J. 1998. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ, 21: 535~553
    Hasegawa P M,Bressan R A,Zhu J K,Bohnert H J.2000. Plant cellular and molecular responses tohigh salinity.Annu Rev Plant Physml Plant Mol Biol,5l:463~499
    Hedrich R, Schroeder J I. 1989,The physiology of ion channels and electrogenic pumps in higher plants. Annu Rev Plant Physiol, 40: 539~569
    Hiroshi Abe, Kazuko Yamaguchi-Shinozaki.1997. Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression. The Plant Cell,9:1859~1868
    Hobo T, Asada M, Kowyama Y, Hattori T. 1999, A bZIP factor, TRABI, interacts with VP1 andmediates abscisic acid-induced transcription. PNAS, 26: 15348~15353.
    Huang B, Jin I, Liu J. 2007, Molecular cloning and functional characterization of a DREB1/CBF-like gene(GhDREB1L)from cotton. Science in China Series C:Life Sciences, 50(1): 7~14.
    Jakoby M, Weisshaar B,DrOge-Laser W,2002, bZlP transcription factors in Arabidopsis. Trends in Plant Science, 7: 106~l11
    JofukuK D, Den Boer B G W, Van Montagu M. 1994, Control of Arabidopsis flower and seed development by the homeotic gene, APETALA2. Plant Cell, 6: 1211~1225
    Kasuga M, Liu Q, Miura S. 1999. Improving plant drought,salt,and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology, 17:287~292
    Kawakami A,Sato Y,Yoshida M. 2008, Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance. Journal of Experimental Borany, 59: 793~802
    Kirsten R, Jaglo-Ottosen, Gilmour S J, Zarka D G, Schabenberger O, Thomashow M F 1998. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 280: 104~106.
    Kishor P B K, Hong Z, Miao G H, Verma DPS. 1995.Overexpression of△1-Pyrroline-5-Carboxylate Synthetase Increases Proline Production and Confers Osmotolerance in Transgenic Plants. Plant Physiol, 108: 1387~1394
    Kohayashi F, Maeta E, Terashima A.2008.Development of abiotic stress tolerance via bZIP—type transcription factor LIP19 in common wheat. Journal of Experimental Botany,59(4): 891~905.
    Lee MO, Cho K, Kim SH, Jeong SH, Kim JA, Jung YH, Shim J, Shibato J, Rakwal R, Tamogami S, Kubo A, Agrawal GK, Jwa NS. 2008. Novel rice OsSIPK is a multiple stress responsive MAPK family member showing rhythmic expression at mRNA level. Planta, 227(5): 98l~990
    Li JS, Yang HB, Peer WA, Richter GB, Blakeslee J, Bandyopadhyay A, Arabidopsis 2005,H+-Ppase AVP1 regulates Auxin-mediated organ development. Sci, 310:121~125
    Liu Q, Kasuga M, Sakuma Y, 1998. Two transcription factors,DREBI and DREB2,with an EREBP/AP2 DNA binding domain separate two cellular signalling pathways in draught- and low temperature responsive gene expression,respectively in Arabidopsis. Plant Cell, 10: 1391~1406
    Lv S,Zhang K, Gao Q,Lian L, Song Y,Zhang J R.2008. Overexpression of an H+-PPase gene from Thellungiella hnlophila in cotton enhances salt tolerance and improves growth and photosynthetic performance.Plant Cell Physiol,49:l150~ll64
    Mckersie B D, Chen Y, De Beus M. 1993, Superoxide dismutase enhance tolerance of freezing stress in transgenetic alfalfa(Medicago Satival).Plant Physiol,l03: 1155~1163.
    Miao Y, Laun T, Zimmermann P, Zentgraf U. 2004.Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis.Plant Molecular Biology 55(6): 853~867
    Nakagawa H, Ohmiya K, and Hattori T. 1996.A rice bZIP protein, designated OSBZ8, is rapidly induced by abscisic acid. Plant J, 9: 217~227.
    Nanjo T, Kobayashi M, Yoshiba Y, Kakubari K, Shinozaki Y, Shinozaki K. 1999. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Letters, 461:205~210.
    Nanjo T,Kobayashi M,Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K and Shinozaki K, 1999, Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett, 461:205~210
    Niu X,Bressan R A,Hasegawa P M,Pardo J M.1995. Ion homeostasis in NaCl stress environment.Plant Physiol, 109:735~742
    Oeda K, Salinas J, and Chua N H, 1991. A tobacco bZIP transcription activator (TAF-1) binds to G-BOX-like motif Conserved in plant genes. EMBOJ,10: 1793~1802.
    Pamela C. Ronald(刘义思译). 1998.让水稻抗病.科学(中文版), 2: 50~55
    Park S, Li JS, Pittman JK, Berkowitz GA, Yang HB, Morris J, Undurraga S, Hirschi KD, Gaxiola RA. 2005, Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. PNAS, 2005,102(52): 18830~18835
    Parvanova D,Ivanov S,Konstantinova T,Karanov E, Atanassov A, Tsvetkov T, Alexieva V, Djilianov D. 2004, Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol Biochem, 42:57~63
    Peng Z,Lu Q,Verma DPF,1996, Reciprocal regulation ofΔ1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Mol Gen Gent, 253: 334~341.
    Robatzek S, Somssich I E. 2001.A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence and defence related processes. Plant J, 28: 123~133
    Rozema J, Flowers T J. 2008, Crops for a salinized world.Science, 322:1478~1480.
    Sawahel W.2003, Improved performance of transgenic glycinebetaine accumulating rice plants under drought stress.Biologia Plantarum, 47(1): 39~44
    Selth L A, Dogra S C, Rasheed M S. 2005. A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell, 17: 311~325
    Shan D P,Huang J G,Yang Y T, 2007.Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gihberellic acid. New Phytologist, 176(1): 7O~81
    Shen B, Jensen R G, Bohnert H J, 1997, Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol, 113: 1177~1183
    Shen Y G, Yan G Q, Zhang W K,and Du B X.2003. Novel halophyte EREBP/AP2一Type DNA binding protein improves salt toleran ce in transgenic tobacco,Acta Bot.Sin.,5:82~87
    Shen Y G, Zhang W K, He S J.2003. An EREBP/AP2~type protein in Triticum aestivum was a DRE—binding tran—scription factor induced by cold,dehydration and ABA stress.Theoretical and Applied Genetics,106: 923~930
    Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho TD, Qu R. 2000.Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci, 155(1): 1~9
    Sugimoto K, Takeda S, Hirochika H. 2000. MYB-related transcription factor NtMYB2 induced by wounding and elicitors is a regulator of the tobacco ret rot ransposon Ttol and defense-related genes. Plant Cell, 5:1529~1539
    Sullivan W M,Jiang Z C,Hull R J . 2000. Root morphology and its relationship with nitrate uptake in Kentucky bluegrass.Crop Sci, 40:765~772
    Tarczynski M C, Jensen R G,Bohnert H J. 1993, Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science, 259: 508~510
    Thomas J C,Sepahi M,Arendall B. 1995, Enhancement of seed germination in high salinity By engineering mannitol expression in Arabidopsis thaliana. Plant Cell and Environment, 18: 801~806
    Uno Y,Furihata T,Abe H. 2000. Arabidopsis basic leucine zipper transcription factors involved in an absdsic acid-dependent signal transduction pathway under drought an d high-salinity conditions.Proceedings of the National Academy of Sciences in USA, 97: 11632~11637.
    Uro T, Yamaguchi-Shinozaki K, Urao S. 1993. An Arbidopsis is MYB homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell, 5:1529~1539
    Vendruscolo E C G, Schuster I, Pileggi M. 2007.Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat, Journal of Plant Physiology, 64(10): 1367~1376
    Waditee R, Bhuiyan M.N, Rai V, Aoki K, Tanaka Y, Hibino T, Suzuki S, Takano J, Jagendorf A, and Takabe T. 2005, Genes for direct methylation of glycine provide high levels of glycinebetaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. The National Academy of Sciences, 102(5):1318~1323.
    Wangxia Wang, Basia Vinocur, Arie Altman. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218:1~14
    Xiao B,Huang Y,Tang N X. 2007, Overexpression of a LEA gene in rice improves drought resistance under the field conditions. Theoretical and Applied Genetics, 115(1):35~46
    Xiong L M., Schumaker KS., Zhu JK. 2002, Cell signaling during cold, drought, and salt stress.The Plant Cell, 14 Supp1:S165~S183.
    Xu D, Duan X, Wang B.1996, Expression of a late embryogenesisabundant protein gene,HVA1,from barley confers tolerance towater deficit and salt stress in transgenic rice.Plant Physiol, 110(1): 249~257
    Yamaguchi-Shinozaki K., Shinozaki K. 1993,Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet 236: 331~340.
    Zhang D Z, Wang P H, Zhao H X, 1990. Detemination of the content of free proline in wheat leaves.Physiology Commnications.4: 62~65
    Zhao J, Ren W,Zhi D. 2007. Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress. Plant Cell Report, 26(9): 1521~1528.
    Zhu J K.2001. Plant salt tolerance.Trends Plant Sci, 2:66~7l

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700