新型分泌蛋白AKR1B10的分泌机制及其在乳腺癌分子诊断中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
醛酮还原酶家族1成员B10(Aldo-keto Reductase family 1, member B10, AKR1B10),也叫醛糖还原酶相似蛋白1 (Aldo-keto Reductase Like-Protein, ARL-1)主要表达于正常人的结肠和小肠组织,而在肝、胸腺、前列腺、睾丸和骨骼肌等组织中表达低。AKR1B1O一方面还原醛酮类羰基化合物为相应的醇类,保护DNA免于羰基毒性损伤和细胞免于癌变;另一方面AKR1B10稳定乙酰辅酶A羧化酶α(Acetyl-CoA Carboxylase, ACCα),阻止ACCα降解,从而调节脂质合成,促进肿瘤细胞生长增值。因此,AKR1B10与肿瘤的发生发展密切相关。AKR1B10在肝癌、肺癌、子宫颈癌等多种肿瘤细胞中高表达,是吸烟导致的非小细胞型肺癌的病理学诊断标记物。
     在本课题中,利用自行开发的ELISA检测法(.已申请专利保护:US13/017,618),我们发现AKR1B10可从肿瘤细胞内分泌到细胞外。这种分泌现象不但发生在肠癌细胞株HCT-8、HT29,肺癌细胞株H460、A549,乳腺癌细胞株MDA-MB-468, BT-20,肝癌细胞株HepG2等表达内源性AKR1B0的肿瘤细胞株和转染外源性AKR1B10基因的MCF-7乳腺癌细胞株。血清可刺激细胞分泌AKR1B10,而且与透析过的血清相比,平台期的高度无明显变化,但达到平台期的时间更短;这提示血清小分子(离子)决定了分泌的速度,而血清大分子决定了分泌的峰值。AKR1B10的分泌量与细胞数目正相关,但单位细胞分泌量与细胞密度负相关。分泌的AKR1B10仍然保留着与等量纯蛋白酶同样的活性。
     本课题还深入研究了AKRlB10分泌的机制。通过信号肽分析软件,我们发现AKR1B10的氨基酸序列缺少分泌信号肽,所以推测AKR1B10并不能通过经典的内质网-高尔基(ER-to-Golgi)分泌途径分泌到细胞外的。AKR1B10的分泌不受蛋白翻译抑制剂Cycloheximide(CHX)和ER-to-Golgi分泌途径抑制剂Brefeldin A的影响,说明分泌的AKR1B10是已经合成的,而与正在翻译合成的AKRlB10无关,也与ER到Golgi体之间的转运无关。因此,AKR1B10的分泌途径是非ER-to-Golgi依赖的非经典途径。
     溶酶体介导的分泌途径是常见的非经典分泌途径。为了论证AKR1B10是否也是通过溶酶体途径分泌的,我们分离了HCT-8细胞的溶酶体,发现AKR1B10存在溶酶体中;用荧光蛋白保护分析法发现,细胞被打孔剂Digitonin和胰蛋白酶(Trypsin)处理后,胞浆内绝大部分带绿色荧光(EGFP)标记的游离AKR1B10被消化掉了,而剩下的点状EGFP-AKR1B10可与溶酶体共定位。这说明AKR1B10存在于溶酶体。为了进一步论证AKR1B10的分泌与分泌型溶酶体出胞的关系,我们用影响溶酶体出胞的因素如温度、ATP、钙离子(Ca2+)等处理HCT-8细胞,发现温度越高,AKR1B10分泌越多,温度越低,分泌越少,4℃时,分泌几乎停止;提供能量的ATP能促进AKR1B10分泌;增加培养基中Ca2+浓度也可促进AKR1B10的分泌,Ca2+跨膜转运体Ionomycin则显著地促进了AKR1B10的释放。趋溶酶体药氯化氨(NH4C1)一方面可促进溶酶体出胞,另一方面可阻止蛋白进入溶酶体;因此,用N-H4C1预处理HCT-8细胞后,AKR1B10分泌减少了;而未预处理组,NH4Cl促进了AKR1B10的分泌。同时,我们发现AKR1B10的释放与溶酶体标记物Cathepsin D的释放规律是一致的,这提示AKR1B10是通过溶酶体介导的非经典途径分泌的。分泌性溶酶体的出胞受调节细胞内Ca2+浓度的信号通路所调节。AKR1B10的分泌受到这些通路中关键信号分子ADP核糖基化因子(ADP-ribosylation factor, ARF)抑制剂Exo-1、磷脂酶C(phospholipase C, PLC)抑制剂U73122的抑制,受G蛋白激动剂GTPγS、G蛋白偶联受体配体fMLP的刺激。进一步证明了AKR1B10的分泌是通过分泌性溶酶体的出胞介导的。
     本课题接着探讨了AKR1B10进入溶酶体的机制。我们用ATP结合盒超家族转运蛋白(ATP-Binding cassette, ABC)的抑制剂4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS)和Glibenclamide(Glib)处理HCT-8细胞后,发现溶酶体内AKR1B10含量显著减少,分泌到细胞外的AKR1B10也相应减少。提示溶酶体膜上ABC转运体是转运AKR1B10进入溶酶体的主要通道。
     本课题还证实了AKR1B10在体内也是分泌蛋白。因为AKR1B10主要表达于肠道上皮,因此我们收集了11例正常人的回肠液,检测了其中AKR1B10浓度,发现AKR1B10特异性表达于成熟的肠道上皮细胞,并分泌到肠腔,浓度为188.6~535.7ng/ml (average=298.1ng/ml, n=11)。
     本课题进一步探讨了主要分布于胞浆的AKR1B10转运到溶酶体的机制。用免疫共沉淀(CoIP)和Pulldown法发现热休克蛋白90a(Heat Shock Protein 90 alpha, HSP90a)可与AKR1B10相互作用。HSP90α抑制剂Geldanamycin (GA)显著地抑制了HCT-8细胞AKR1B10的分泌,降低了HSP90α与AKR1B1O的结合,减少了AKRlB10在溶酶体内的聚集。
     非经典分泌蛋白通常包含一个与分泌相关的功能域。因此,我们研究了不同AKR1B10肽段的分泌效率,以及它们与HSP90α的结合情况。通过构建AKR1B10全长和不同肽段(N端的N1-39、N1-83、N1-142、N1-231以及C端的C204-261、C204-316)的表达载体GST/pGEX,并将它们分别转染到293T细胞中;与全长AKR1B10的分泌效率相比,N端肽段(N1-231)不具有分泌功能;而C端肽段C204-261、C204-316的相对分泌效率可达74.2±3.0%和81.54±5.5%。这提示介导AKR1B10分泌的功能域可能存在于C端肽段C204-261。接着,我们将螺旋10(氨基酸残基233到240)上氨基酸残基233K、236E和240K三个位点进行了单点或联合突变;与野生型AKR1B10相比,233K/A、236E/A和240K/A单点突变型AKR1B10的分泌效率分别下降到59.2±2.1%、63.3±1.1%和46.9±3.1%;而两点联合突变型AKR1B10的分泌效率减少到了43.15±1.5%(K233A和E236A联合突变)、33.30±1%(K233A和K240A联合突变)和33.52±3.1%(E236A和K240A联合突变);三点突变型AKR1B10的分泌效率只有野生型的18.24±3.2%。免疫共沉淀实验显示,三点突变性AKR1B10丧失了结合HSP90α的能力;western blot分析表明,突变性AKR1B10在溶酶体内的聚集显著减少了。这些结果提示,螺旋10(aa233-240)通过与HSP90α结合从而介导了AKR1B10的分泌;该螺旋中氨基酸位点233K、236E和240K是结合HSP90α的关键位点。
     最近,我们研究发现,AKR1B10在乳腺癌组织中过表达,可增加乳腺癌细胞的脂质合成,促进生长增值,抑制醛酮类羰基化合物诱导的凋亡;AKR1B10高表达与乳腺癌的生长、淋巴结转移和存活率相关,提示AKR1B10是一个新的乳腺癌预测指标。因此,本课题探讨了开发AKR1B10为诊断乳腺癌的血清学指标的可行性。通过对乳腺癌组织芯片进行免疫染色发现,正常乳腺小叶和乳腺管低表达或不表达AKR1B10;而在28例原位乳腺管癌中,有20例(71.4%)AKR1B10高表达;在220例乳腺浸润癌中有184(83.6%)AKR1B10高表达;在32例术后复发乳腺癌中有28例AKR1B10高表达。此外,我们检测了50例乳腺癌患者肿瘤组织中AKR1B10的表达和血液中AKR1B10的含量,发现48例乳腺癌组织中的AKR1B10表达水平要显著高于癌旁正常组织的;血清中AKR1B10的平均浓度为20.72ng/ml,显著高于正常人群的5.19ng/ml;乳腺癌患者血清AKR1B10的浓度与肿瘤组织中AKR1B10的表达水平呈正相关。提示AKR1B10可作为诊断乳腺癌的血清分子标记物。
     总之,AKR1B10可通过HSP90α介导的溶酶体途径分泌到细胞外;AKR1B10可开发为诊断乳腺癌的血清学标记物。
Aldo-keto reductase family 1 member B10 (AKR1B10) is primarily expressed in the normal human colon and small intestine. AKR1B10 efficiently catalyzes the reduction of aldehydes and ketones to form corresponding alcohols to protect cells from carbonyls-induced DNA damage and carcinogenesis. Our previous studies have shown that AKR1B10 mediates the ubiquitin-dependent degradation of acetyl-CoA carboxylase-a (ACCa). ACCa is a rate-limiting enzyme in long chain fatty acid synthesis. Therefore, AKR1B10 plays important roles in lipid synthesis, cell growth and proliferation. Futhermore, AKR1B10 is also highly related to tumorigenesis since it is overexpressed in liver, lung, cervices cancers.
     In this study, we developed a novel AKR1B10 detection ELISA kit, with purified AKR1B10 as standard samples and found not only that endogenous AKR1B10 is secreted from colon cancer cell lines HCT8, HT29, breat cancer cell lines H460, A549, MDA-MB-468, hepatic cancer cell line HepG2, but also exogenous AKR1B10 from 293T transfected with AKR1B10 gene. AKR1B10's secretion was stimulated by serum and decreased in serum-free or low serum conditions. Serum dialyzed with 5.0 kDa cut-off filters had less stimulatory activity at beginning, but the same plateau was eventually reached, suggesting that certain small molecules (such as ions) in serum were responsible for the immediate early stimulation, and large molecules (>5.0 kDa) participated in the later phase of stimulation. Cell number positively and cell density negatively affected AKR1B10's secretion. AKR1B10 is secreted in a functional form, which is identified by enzymatic activity assay to DL-glyceraldehyde.
     The potential mechanisms of AKR1B10 secretion were subsequently explored in current study. We found that AKRIBIO lacks a secretion signal peptide in its amino acid sequence by signal peptide prediction analysis. At the same time, AKR1B10's secretion was not affected by the protein synthesis inhibitor cycloheximide and the classical protein secretion pathway inhibitor brefeldin A. Therefore AKRIBIO is released through an endoplasmic reticulum (ER)-to-Golgi-independent non-classical secretion pathway.
     Lysosome-mediated protein secretion is one of most important non-classical secretion pathways. We isolated lysosomes and found AKR1B10 located in lysosomal fraction with Cathepsin D and protected from protease digestion. Fluorescence protein protection assay showed that EGFP-AKR1B10 was located in lysosomes marked with LysoTracker(?)Red DND-99, and this location can protect AKRIBIO from protease digestion by exogenous trypsin. AKR1B10's secretion is stimulated by many factors of stimulating lysosome exocytosis such as temperature, ATP, Ca2+and Ca2+carrier ionomycin, Mg2+chelator EDTA. Lysosomotropic NH4Cl induced AKR1B10 accumulation in lysosome and lysosome exocytosis to increase AKR1B10 release. Lysosomal exocytosis is regulated by several signal pathways modulating intracellular Ca2+ concentration, such as ADP-ribosylation factor (ARF), phospholipase C (PLC) and G-protein. AKR1B10 secretion is inhibited by Exo-1, an ARF inhibitor, and U73122, a PLC inhibitor, but stimulated by GTPyS, an activator of G-protein, and fMLP, a ligand of G-protein coupling receptor, suggesting AKR1B10 secretion is modulated by the signal pathways regulating secretory lysosomes exocytosis. AKR1B10 is secreted together with Cathepsin D, a lysosomal marker. Therefore, AKR1B10 is secreted through lysosome-mediated non-classical pathway. We also determined the translocation of AKR1B10 into lysosomes. ABC transporter inhibitors Glib and DIDS suppressed AKR1B10 secretion by reducing its accumulation in lysosomes, suggesting the role of ABC transporters in the entry of AKR1B10 into lysosomes.
     In this study, we also identify AKR1B10 as a secretory protein in vivo. AKR1B10 is primarily expressed in the normal human colon and small intestine, so we detected AKR1B10 concentration in ileal fluid from normal subjects, and found that in the intestine, AKR1B10 is specifically expressed in mature epithelial cells and secreted into the ileal fluids of lumen at the concentration of 188.6~535.7ng/ml (average= 298.1 ng/ml, n=11). Then we further explored the mechanism on the transportation of AKR1B10 to lysosome. HSP90a, a chaperone molecular, plays an important role in protein folding, transportation. We found that cytosolic AKR1B10 interacts with HSP90a by immunoprecipitation and pulldown assays. Geldamycin (GA), a HSP90a-specific inhibitor, decreased AKR1B10 accumulation in lysosomes and AKR1B10 secretion. Therefore HSP90a transports AKR1B10 to lysosomes.
     A functional domain is often recognized in the proteins secreted through a nonclassical secretion pathway. We tested the secretory activity of different N-and C-terminal peptides. GST-tagged N/C-terminal peptides were expressed in 293T cells and tested for their secretory activity. The N-terminus up to 231aa had not secretory activity, whereas C-terminal peptides (C204-261 and C204-316) were secreted with efficiencies of 74.2±3.0%and 81.5±5.5% compared to full length AKR1B10 (316aa), suggesting that the functional domain mediating AKR1B10 secretion may be located in the C-terminal peptide C204-261. We replaced the amino acids with a long, charged residue in helix 10 (233-240aa) with alanine, producing mutants K233A, E236A, or K240A. A single mutation of K233A, E236A, or K240A decreased secretory efficiency of AKR1B10 to 59.2±2.1%,63.3±1.1%, and 46.9±3.1%, respectively. Combinations of two-site mutations further reduced the secretory activity to 43.15±1.5% for K233A plus E236A,33.3O±1% for K233A plus K240A, and 33.52±3.1% for E236A plus K240A, and all three-site mutations lowered down AKR1B10 secretory activity to 18.2±3.2%. These secretory data were supported by the decrease of the mutant AKR1B10 in lysosome. The mutant AKR1B10 in lost the capability of interacting with HSP90. These data suggest that the helix 10 acts as a functional domain for the secretion of AKR1B10 and the amino acids K233, E236, and K240 in this helix are the key residues.
     Recently, my colleagues found that overexpression of AKR1B10 in breast cancer is associated with tumor growth, lymph node metastasis, and patient survival, suggesting that AKR1B10 may promote tumor growth and progression, thus being a novel prognostic marker. In this study, we detected AKR1B10 expression in tissue microarray of breast cancer by immunohistochemistry and found AKR1B10 was undetectable or at a very low level in normal breast lobules and ducts, but overexpressed in 20 of 28 (71.4%) ductal carcinomas in situ,184 of 220 (83.6%) infiltrating carcinomas, and 28 of 32 (87.5%) recurrent tumors. Moreover, we collected 50 cases of tumor tissue and blood samples of breast cancer patients and found that AKRIB10 was highly expressed in tumor tissue than adjacent noncancerous tissue in 48 cases, and the AKRIB10 concentration was 20.72 ng/ml, which was the higher than the concentration of 5.19 ng/ml in normal subjects. There is a positive correlation between AKR1B10 concentration in serum and AKR1B10 expression in tissue of the breast cancer of patients, suggesting that AKR1B10 may be a novel serum marker for breast cancer.
     In summary, this study demonstrated that AKR1B10 is secreted through a HSP90a-mediated lysosomal nonclassical pathway and may act as a serum biomarker for the diagnosis of breast cancer.
引文
[1]Cao, D., Fan, S. T., and Chung, S. S. (1998) Identification and characterization of a novel human aldose reductase-like gene, The Journal of biological chemistry 273,11429-11435.
    [2]Scuric, Z., Stain, S. C., Anderson, W. F., and Hwang, J. J. (1998) New member of aldose reductase family proteins overexpressed in human hepatocellular carcinoma, Hepatology (Baltimore, Md27,943-950.
    [3]Mindnich, R. D., and Penning, T. M. (2009) Aldo-keto reductase (AKR) superfamily:genomics and annotation, Human genomics 3,362-370.
    [4]Barski, O. A., Tipparaju, S. M., and Bhatnagar, A. (2008) The aldo-keto reductase superfamily and its role in drug metabolism and detoxification, Drug metabolism reviews 40,553-624.
    [5]Hyndman, D., Bauman, D. R., Heredia, V. V., and Penning, T. M. (2003) The aldo-keto reductase superfamily homepage, Chemico-biological interactions 143-144,621-631.
    [6]Ebert, B., Kisiela, M., Wsol, V., and Maser, E. Proteasome inhibitors MG-132 and bortezomib induce AKR1C1, AKR1C3, AKR1B1, and AKR1B10 in human colon cancer cell lines SW-480 and HT-29, Chemico-biological interactions.
    [7]Wang, R., Wang, G, Ricard, M. J., Ferris, B., Strulovici-Barel, Y., Salit, J., Hackett, N. R., Gudas, L. J., and Crystal, R. G. Smoking-induced upregulation of AKR1B10 expression in the airway epithelium of healthy individuals, Chest 138, 1402-1410.
    [8]Kropotova, E. S., Tychko, R. A., Zinov'eva, O. L., Zyrianova, A. F., Khankin, S. L., Cherkes, V. L., Aliev, V. A., Beresten, S. F., Oparina, N., and Mashkova, T. D. [Downregulation of AKR1B10 gene expression in colorectal cancer], Molekuliarnaia biologiia 44,243-250.
    [9]Zhao, H. T., Soda, M., Endo, S., Hara, A., and El-Kabbani, O. Selectivity determinants of inhibitor binding to the tumour marker human aldose reductase-like protein (AKR1B10) discovered from molecular docking and database screening, European journal of medicinal chemistry 45,4354-4357.
    [10]Endo, S., Matsunaga, T., Kuwata, K., Zhao, H. T., El-Kabbani, O., Kitade, Y., and Hara, A. Chromene-3-carboxamide derivatives discovered from virtual screening as potent inhibitors of the tumour maker, AKR1B10, Bioorganic & medicinal chemistry 18,2485-2490.
    [11]Matsunaga, T., Endo, S., Soda, M., Zhao, H. T., El-Kabbani, O., Tajima, K., and Hara, A. (2009) Potent and selective inhibition of the tumor marker AKR1B10 by bisdemethoxycurcumin:probing the active site of the enzyme with molecular modeling and site-directed mutagenesis, Biochemical and biophysical research communications 389,128-132.
    [12]Balendiran, G. K., Martin, H. J., El-Hawari, Y, and Maser, E. (2009) Cancer biomarker AKR1B10 and carbonyl metabolism, Chemico-biological interactions 178,134-137.
    [13]Fukumoto, S., Yamauchi, N., Moriguchi, H., Hippo, Y, Watanabe, A., Shibahara, J., Taniguchi, H., Ishikawa, S., Ito, H., Yamamoto, S., Iwanari, H., Hironaka, M., Ishikawa, Y, Niki, T., Sohara, Y., Kodama, T., Nishimura, M., Fukayama, M., Dosaka-Akita, H., and Aburatani, H. (2005) Overexpression of the aldo-keto reductase family protein AKR1B10 is highly correlated with smokers'non-small cell lung carcinomas, Clin Cancer Res 11,1776-1785.
    [14]Penning, T. M. (2005) AKR1B10:a new diagnostic marker of non-small cell lung carcinoma in smokers, Clin Cancer Res 11,1687-1690.
    [15]Yoshitake, H., Takahashi, M., Ishikawa, H., Nojima, M., Iwanari, H., Watanabe, A., Aburatani, H., Yoshida, K., Ishi, K., Takamori, K., Ogawa, H., Hamakubo, T., Kodama, T., and Araki, Y. (2007) Aldo-keto reductase family 1, member B10 in uterine carcinomas:a potential risk factor of recurrence after surgical therapy in cervical cancer, Int J Gynecol Cancer 17,1300-1306.
    [16]Penning, T. M., and Drury, J. E. (2007) Human aldo-keto reductases:Function, gene regulation, and single nucleotide polymorphisms, Arch Biochem Biophys 464,241-250.
    [17]Martin, H. J., Breyer-Pfaff, U., Wsol, V., Venz, S., Block, S., and Maser, E. (2006) Purification and characterization of akr1b10 from human liver:role in carbonyl reduction of xenobiotics, Drug metabolism and disposition:the biological fate of chemicals 34,464-470.
    [18]Martin, H. J., and Maser, E. (2009) Role of human aldo-keto-reductase AKR1B10 in the protection against toxic aldehydes, Chemico-biological interactions 178,145-150.
    [19]Zhong, L., Liu, Z., Yan, R., Johnson, S., Zhao, Y, Fang, X., and Cao, D. (2009) Aldo-keto reductase family 1 B10 protein detoxifies dietary and lipid-derived alpha, beta-unsaturated carbonyls at physiological levels, Biochemical and biophysical research communications 387,245-250.
    [20]Yan, R., Zu, X., Ma, J., Liu, Z., Adeyanju, M., and Cao, D. (2007) Aldo-keto reductase family 1 B10 gene silencing results in growth inhibition of colorectal cancer cells:Implication for cancer intervention, Int J Cancer 121,2301-2306.
    [21]Zu, X., Yan, R., Robbins, S., Krishack, P. A., Liao, D. F., and Cao, D. (2007) Reduced 293T cell susceptibility to acrolein due to aldose reductase-like-1 protein expression, Toxicol Sci 97,562-568.
    [22]Dkhar, P., and Sharma, R. Effect of dimethylsulphoxide and curcumin on protein carbonyls and reactive oxygen species of cerebral hemispheres of mice as a function of age, Int J Dev Neurosci 28,351-357.
    [23]Mano, J., Belles-Boix, E., Babiychuk, E., Inze, D., Torii, Y., Hiraoka, E., Takimoto, K., Slooten, L., Asada, K., and Kushnir, S. (2005) Protection against photooxidative injury of tobacco leaves by 2-alkenal reductase. Detoxication of lipid peroxide-derived reactive carbonyls, Plant physiology 139,1773-1783.
    [24]Davydov, V. V., Dobaeva, N. M., and Bozhkov, A. I. (2004) Possible role of alteration of aldehyde's scavenger enzymes during aging, Experimental gerontology 39,11-16.
    [25]Hashimoto, M., Sibata, T., Wasada, H., Toyokuni, S., and Uchida, K. (2003) Structural basis of protein-bound endogenous aldehydes. Chemical and immunochemical characterizations of configurational isomers of a 4-hydroxy-2-nonenal-histidine adduct, The Journal of biological chemistry 278, 5044-5051.
    [26]Vasiliou, V., Pappa, A., and Petersen, D. R. (2000) Role of aldehyde dehydrogenases in endogenous and xenobiotic metabolism, Chemico-biological interactions 129,1-19.
    [27]Schaeferhenrich, A., Beyer-Sehlmeyer, G., Festag, G., Kuechler, A., Haag, N., Weise, A., Liehr, T., Claussen, U., Marian, B., Sendt, W., Scheele, J., and Pool-Zobel, B. L. (2003) Human adenoma cells are highly susceptible to the genotoxic action of 4-hydroxy-2-nonenal, Mutation research 526,19-32.
    [28]Korenaga, D., Takesue, F., Kido, K., Yasuda, M., Inutsuka, S., Honda, M., and Nagahama, S. (2002) Impaired antioxidant defense system of colonic tissue and cancer development in dextran sulfate sodium-induced colitis in mice, The Journal of surgical research 102,144-149.
    [29]Nyska, A., Moomaw, C. R., Lomnitski, L., and Chan, P. C. (2001) Glutathione S-transferase pi expression in forestomach carcinogenesis process induced by gavage-administered 2,4-hexadienal in the F344 rat, Archives of toxicology 75, 618-624.
    [30]Homann, N., Tillonen, J., and Salaspuro, M. (2000) Microbially produced acetaldehyde from ethanol may increase the risk of colon cancer via folate deficiency, International journal of cancer 86,169-173.
    [31]Endo, S., Matsunaga, T., Mamiya, H., Ohta, C., Soda, M., Kitade, Y., Tajima, K., Zhao, H. T., El-Kabbani, O., and Hara, A. (2009) Kinetic studies of AKR1B10, human aldose reductase-like protein:endogenous substrates and inhibition by steroids, Archives of biochemistry and biophysics 487,1-9.
    [32]Quinn, A. M., Harvey, R. G, and Penning, T. M. (2008) Oxidation of PAH trans-dihydrodiols by human aldo-keto reductase AKR1B10, Chemical research in toxicology 21,2207-2215.
    [33]Seaman, V. Y., Charles, M. J., and Cahill, T. M. (2006) A sensitive method for the quantification of acrolein and other volatile carbonyls in ambient air, Analytical chemistry 78,2405-2412.
    [34]Schuler, B. D., and Eder, E. (2000) Development of a 32P-postlabelling method for the detection of 1,N2-propanodeoxyguanosine adducts of crotonaldehyde in vivo, Archives of toxicology 74,404-414.
    [35]Bowmer, K. H., and Higgins, M. L. (1976) Some aspects of the persistence and fate of acrolein herbicide in water, Archives of environmental contamination and toxicology 5,87-96.
    [36]Fujioka, K., and Shibamoto, T. (2004) Formation of genotoxic dicarbonyl compounds in dietary oils upon oxidation, Lipids 39,481-486.
    [37]Ames, B. N. (1983) Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases, Science (New York, N.Y 221,1256-1264.
    [38]Crosas, B., Hyndman, D. J., Gallego, O., Martras, S., Pares, X., Flynn, T. G, and Farres, J. (2003) Human aldose reductase and human small intestine aldose reductase are efficient retinal reductases:consequences for retinoid metabolism, Biochem J 373,973-979.
    [39]Gallego, O., Belyaeva, O. V., Porte, S., Ruiz, F. X., Stetsenko, A. V., Shabrova, E. V., Kostereva, N. V., Farres, J., Pares, X., and Kedishvili, N. Y. (2006) Comparative functional analysis of human medium-chain dehydrogenases, short-chain dehydrogenases/reductases and aldo-keto reductases with retinoids, The Biochemical journal 399,101-109.
    [40]Gallego, O., Ruiz, F. X., Ardevol, A., Dominguez, M., Alvarez, R., de Lera, A. R., Rovira, C., Farres, J., Fita, I., and Pares, X. (2007) Structural basis for the high all-trans-retinaldehyde reductase activity of the tumor marker AKR1B10, Proceedings of the National Academy of Sciences of the United States of America 104,20764-20769.
    [41]Ma, J., Yan, R., Zu, X., Cheng, J. M., Rao, K., Liao, D. F., and Cao, D. (2008) Aldo-keto reductase family 1 B10 affects fatty acid synthesis by regulating the stability of acetyl-CoA carboxylase-alpha in breast cancer cells, The Journal of biological chemistry 283,3418-3423.
    [42]Wang, C, Yan, R., Luo, D., Watabe, K., Liao, D. F., and Cao, D. (2009) Aldo-keto reductase family 1 member B10 promotes cell survival by regulating lipid synthesis and eliminating carbonyls, The Journal of biological chemistry 284,26742-26748.
    [43]Garbay, B., Bauxis-Lagrave, S., Boiron-Sargueil, F., Elson, G, and Cassagne, C. (1997) Acetyl-CoA carboxylase gene expression in the developing mouse brain. Comparison with other genes involved in lipid biosynthesis, Brain research 98, 197-203.
    [44]Wilentz, R. E., Witters, L. A., and Pizer, E. S. (2000) Lipogenic enzymes fatty acid synthase and acetyl-coenzyme A carboxylase are coexpressed with sterol regulatory element binding protein and Ki-67 in fetal tissues, Pediatr Dev Pathol 3,525-531.
    [45]Beckers, A., Organe, S., Timmermans, L., Scheys, K., Peeters, A., Brusselmans, K., Verhoeven, G, and Swinnen, J. V. (2007) Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells, Cancer research 67,8180-8187.
    [46]Scaglia, N., Chisholm, J. W., and Igal, R. A. (2009) Inhibition of stearoylCoA desaturase-1 inactivates acetyl-CoA carboxylase and impairs proliferation in cancer cells:role of AMPK, PloS one 4, e6812.
    [47]Huang, L. J., Chen, S. X., Huang, Y., Luo, W. J., Jiang, H. H., Hu, Q. H., Zhang, P. F., and Yi, H. (2006) Proteomics-based identification of secreted protein dihydrodiol dehydrogenase as a novel serum markers of non-small cell lung cancer, Lung cancer (Amsterdam, Netherlands) 54,87-94.
    [48]Pailhoux, E. A., Martinez, A., Veyssiere, G. M., and Jean, C. G. (1990) Androgen-dependent protein from mouse vas deferens. cDNA cloning and protein homology with the aldo-keto reductase superfamily, The Journal of biological chemistry 265,19932-19936.
    [49]Baumann, C., Davies, B., Peters, M., Kaufmann-Reiche, U., Lessl, M., and Theuring, F. (2007) AKR1B7 (mouse vas deferens protein) is dispensable for mouse development and reproductive success, Reproduction (Cambridge, England) 134,97-109.
    [50]Bottger, A., Strasser, D., Alexandrova, O., Levin, A., Fischer, S., Lasi, M., Rudd, S., and David, C. N. (2006) Genetic screen for signal peptides in Hydra reveals novel secreted proteins and evidence for non-classical protein secretion, European journal of cell biology 85,1107-1117.
    [51]Bendtsen, J. D., Jensen, L. J., Blom, N., Von Heijne, G, and Brunak, S. (2004) Feature-based prediction of non-classical and leaderless protein secretion, Protein Eng Des Sel 17,349-356.
    [52]Nickel, W. (2003) The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes, European journal of biochemistry/ FEBS 270,2109-2119.
    [53]Andrei, C., Margiocco, P., Poggi, A., Lotti, L. V., Torrisi, M. R., and Rubartelli, A. (2004) Phospholipases C and A2 control lysosome-mediated IL-1 beta secretion: Implications for inflammatory processes, Proceedings of the National Academy of Sciences of the United States of America 101,9745-9750.
    [54]Johansson, A. C., Nandakumar, K. S., Persson, A. M., Olsson, I., and Hansson, M. (2009) Secretory lysosome targeting and induced secretion of human soluble TNF-alpha receptor in murine hematopoietic cells in vivo as a principle for immunoregulation in inflammation and malignancy, Experimental hematology 37,969-978.
    [55]Flieger, O., Engling, A., Bucala, R., Lue, H., Nickel, W., and Bernhagen, J. (2003) Regulated secretion of macrophage migration inhibitory factor is mediated by a non-classical pathway involving an ABC transporter, FEBS letters 551,78-86.
    [56]Mambula, S. S., and Calderwood, S. K. (2006) Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes, J Immunol I77,7849-7857.
    [57]Gudipaty, L., Munetz, J., Verhoef, P. A., and Dubyak, G. R. (2003) Essential role for Ca2+in regulation of IL-1 beta secretion by P2X7 nucleotide receptor in monocytes, macrophages, and HEK-293 cells, American journal of physiology 285, C286-299.
    [58]Reddy, A., Caler, E. V., and Andrews, N. W. (2001) Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes, Cell 106,157-169.
    [59]Qu, Y., Franchi, L., Nunez, G, and Dubyak, G. R. (2007) Nonclassical IL-1 beta secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages, J Immunol 179, 1913-1925.
    [60]Chen, F. W., Li, C., and Ioannou, Y. A. Cyclodextrin induces calcium-dependent lysosomal exocytosis, PloS one 5, e15054.
    [61]Kim, Y. H., Shim, Y. J., Shin, Y. J., Sul, D., Lee, E., and Min, B. H. (2009) 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces calcium influx through T-type calcium channel and enhances lysosomal exocytosis and insulin secretion in INS-1 cells, International journal of toxicology 28,151-161.
    [62]Jaiswal, J. K., Fix, M., Takano, T., Nedergaard, M., and Simon, S. M. (2007) Resolving vesicle fusion from lysis to monitor calcium-triggered lysosomal exocytosis in astrocytes, Proceedings of the National Academy of Sciences of the United States of America 104,14151-14156.
    [63]del Rey, A., Renigunta, V., Dalpke, A. H., Leipziger, J., Matos, J. E., Robaye, B., Zuzarte, M., Kavelaars, A., and Hanley, P. J. (2006) Knock-out mice reveal the contributions of P2Y and P2X receptors to nucleotide-induced Ca2+ signaling in macrophages, J Biol Chem 281,35147-35155.
    [64]Solle, M., Labasi, J., Perregaux, D. G., Stam, E., Petrushova, N., Koller, B. H., Griffiths, R. J., and Gabel, C. A. (2001) Altered cytokine production in mice lacking P2X(7) receptors, J Biol Chem 276,125-132.
    [65]Cockcroft, S. (1990) G-proteins and exocytotic secretion in phagocytic cells, FEMS microbiology immunology 2,3-8.
    [66]Cockcroft, S. (1997) Phosphatidylinositol transfer proteins:requirements in phospholipase C signaling and in regulated exocytosis, FEBS letters 410,44-48.
    [67]Cockcroft, S. (1998) Phosphatidylinositol transfer proteins:a requirement in signal transduction and vesicle traffic, Bioessays 20,423-432.
    [68]Jones, D., Morgan, C., and Cockcroft, S. (1999) Phospholipase D and membrane traffic. Potential roles in regulated exocytosis, membrane delivery and vesicle budding, Biochimica et biophysica acta 1439,229-244.
    [69]Cockcroft, S., and Stutchfield, J. (1988) Effect of pertussis toxin and neomycin on G-protein-regulated polyphosphoinositide phosphodiesterase. A comparison between HL60 membranes and permeabilized HL60 cells, The Biochemical journal 256,343-350.
    [70]Tapper, H., and Sundler, R. (1990) Role of lysosomal and cytosolic pH in the regulation of macrophage lysosomal enzyme secretion, The Biochemical journal 272,407-414.
    [71]Andrei, C., Dazzi, C., Lotti, L., Torrisi, M. R., Chimini, G., and Rubartelli, A. (1999) The secretory route of the leaderless protein interleukin 1beta involves exocytosis of endolysosome-related vesicles, Molecular biology of the cell 10, 1463-1475.
    [72]Ling, H., Ardjomand, P., Samvakas, S., Simm, A., Busch, G.L., Lang, F., Sebekova, K., and Heidland, A. (1998) Mesangial cell hypertrophy induced by NH4Cl:role of depressed activities of cathepsins due to elevated lysosomal pH, Kidney international 53,1706-1712.
    [73]Mambula, S. S., Stevenson, M. A., Ogawa, K., and Calderwood, S. K. (2007) Mechanisms for Hsp70 secretion:crossing membranes without a leader, Methods (San Diego, Calif 43,168-175.
    [74]Hunter-Lavin, C., Davies, E. L., Bacelar, M. M., Marshall, M. J., Andrew, S. M., and Williams, J. H. (2004) Hsp70 release from peripheral blood mononuclear cells, Biochemical and biophysical research communications 324,511-517.
    [75]Galigniana, M. D., Harrell, J. M., Housley, P. R., Patterson, C., Fisher, S. K., and Pratt, W. B. (2004) Retrograde transport of the glucocorticoid receptor in neurites requires dynamic assembly of complexes with the protein chaperone hsp90 and is linked to the CHIP component of the machinery for proteasomal degradation, Brain research 123,27-36.
    [76]Wiech, H., Buchner, J., Zimmermann, M., Zimmermann, R., and Jakob, U. (1993) Hsc70, immunoglobulin heavy chain binding protein, and Hsp90 differ in their ability to stimulate transport of precursor proteins into mammalian microsomes, The Journal of biological chemistry 268,7414-7421.
    [77]Lotz, G. P., Brychzy, A., Heinz, S., and Obermann, W. M. (2008) A novel HSP90 chaperone complex regulates intracellular vesicle transport, Journal of cell science 121,717-723.
    [78]Price, E. R., Jin, M., Lim, D., Pati, S., Walsh, C. T., and McKeon, F. D. (1994) Cyclophilin B trafficking through the secretory pathway is altered by binding of cyclosporin A, Proceedings of the National Academy of Sciences of the United States of America 91,3931-3935.
    [79]Yuan, X., Yao, J., Norris, D., Tran, D. D., Bram, R. J., Chen, G., and Luscher, B. (2008) Calcium-modulating cyclophilin ligand regulates membrane trafficking of postsynaptic GABA(A) receptors, Molecular and cellular neurosciences 38, 277-289.
    [80]Gething, M. J., and Sambrook, J. (1992) Protein folding in the cell, Nature 355, 33-45.
    [81]Tsutsumi, S., and Neckers, L. (2007) Extracellular heat shock protein 90:a role for a molecular chaperone in cell motility and cancer metastasis, Cancer science 98,1536-1539.
    [82]Chen, J. S., Hsu, Y. M., Chen, C. C., Chen, L. L., Lee, C. C., and Huang, T. S. Secreted heat shock protein 90alpha induces colorectal cancer cell invasion through CD91/LRP-1 and NF-kappaB-mediated integrin alphaⅤ expression, The Journal of biological chemistry 285,25458-25466.
    [83]Cheng, C. F., Fan, J., Fedesco, M., Guan, S., Li, Y., Bandyopadhyay, B., Bright, A. M., Yerushalmi, D., Liang, M., Chen, M., Han, Y. P., Woodley, D. T., and Li, W. (2008) Transforming growth factor alpha (TGFalpha)-stimulated secretion of HSP90alpha:using the receptor LRP-1/CD91 to promote human skin cell migration against a TGFbeta-rich environment during wound healing, Molecular and cellular biology 28,3344-3358.
    [84]Hegmans, J. P., Bard, M. P., Hemmes, A., Luider, T. M., Kleijmeer, M. J., Prins, J. B., Zitvogel, L., Burgers, S. A., Hoogsteden, H. C., and Lambrecht, B. N. (2004) Proteomic analysis of exosomes secreted by human mesothelioma cells, The American journal of pathology 164,1807-1815.
    [85]Li, W., Li, Y.,Guan, S., Fan, J., Cheng, C. F., Bright, A. M., Chinn, C., Chen, M., and Woodley, D. T. (2007) Extracellular heat shock protein-90alpha:linking hypoxia to skin cell motility and wound healing, The EMBO journal 26, 1221-1233.
    [86]Tian, T., Hao, J., Xu, A., Hao, J., Luo, C., Liu, C., Huang, L., Xiao, X., and He, D. (2007) Determination of metastasis-associated proteins in non-small cell lung cancer by comparative proteomic analysis, Cancer science 98,1265-1274.
    [87]Wang, X., Song, X., Zhuo, W., Fu, Y., Shi, H., Liang, Y., Tong, M., Chang, G., and Luo, Y. (2009) The regulatory mechanism of Hsp90alpha secretion and its function in tumor malignancy, Proceedings of the National Academy of Sciences of the United States of America 106,21288-21293.
    [88]Jackson, A., Tarantini, F., Gamble, S., Friedman, S., and Maciag, T. (1995) The release of fibroblast growth factor-1 from NIH 3T3 cells in response to temperature involves the function of cysteine residues, The Journal of biological chemistry 270,33-36.
    [89]Tarantini, F., Gamble, S., Jackson, A., and Maciag, T. (1995) The cysteine residue responsible for the release of fibroblast growth factor-1 residues in a domain independent of the domain for phosphatidylserine binding, The Journal of biological chemistry 270,29039-29042.
    [90]Ma, J., Markwell, S., Adeyanju, m., Gao, J., and Cao, D. ((Submitted)) Aldo-Keto Reductase Family 1 Member B10 as a Novel Prognostic Biomarker for Breast Cancer
    [91]Petrash, J. M. (2004) All in the family:aldose reductase and closely related aldo-keto reductases, Cell Mol Life Sci 61,737-749.
    [92]Petrash, J. M., Harter, T. M., Srivastava, S., Chandra, A., Bhatnagar, A., and Srivastava, S. K. (1999) Structure-function studies of FR-1. A growth factor-inducible aldo-keto reductase, Advances in experimental medicine and biology 463,435-443.
    [93]Srivastava, S. K., Das, B., Hair, G. A., Gracy, R. W., Awasthi, S., Ansari, N. H., and Petrash, J. M. (1985) Interrelationships among human aldo-keto reductases: immunochemical, kinetic and structural properties, Biochimica et biophysica acta 840,334-343.
    [94]Srivastava, S., Watowich, S. J., Petrash, J. M., Srivastava, S. K., and Bhatnagar, A. (1999) Structural and kinetic determinants of aldehyde reduction by aldose reductase, Biochemistry 38,42-54.
    [95]Berridge, M. J. (1993) Inositol trisphosphate and calcium signalling, Nature 361, 315-325.
    [96]Fensome, A., Cunningham, E., Prosser, S., Tan, S. K., Swigart, P., Thomas, G, Hsuan, J., and Cockcroft, S. (1996) ARF and PITP restore GTP gamma S-stimulated protein secretion from cytosol-depleted HL60 cells by promoting PIP2 synthesis, Curr Biol 6,730-738.
    [97]Feng, Y., Yu, S., Lasell, T. K., Jadhav, A. P., Macia, E., Chardin, P., Melancon, P., Roth, M., Mitchison, T., and Kirchhausen, T. (2003) Exol:a new chemical inhibitor of the exocytic pathway, Proceedings of the National Academy of Sciences of the United States of America 100,6469-6474.
    [98]Jin, J., Krishack, P. A., and Cao, D. (2006) Role of aldo-keto reductases in development of prostate and breast cancer, Front Biosci 11,2767-2773.
    [99]Casey, T. M., Meade, J. L., and Hewitt, E. W. (2007) Organelle proteomics: identification of the exocytic machinery associated with the natural killer cell secretory lysosome, Mol Cell Proteomics 6,767-780.
    [100]Moreno, R. D., and Alvarado, C. P. (2006) The mammalian acrosome as a secretory lysosome:new and old evidence, Molecular reproduction and development 73,1430-1434.
    [101]Stinchcombe, J. C., Page, L. J., and Griffiths, G. M. (2000) Secretory lysosome biogenesis in cytotoxic T lymphocytes from normal and Chediak Higashi syndrome patients, Traffic (Copenhagen, Denmark) 1,435-444.
    [102]Rodriguez, A., Webster, P., Ortego, J., and Andrews, N. W. (1997) Lysosomes behave as Ca2+-regulated exocytic vesicles in fibroblasts and epithelial cells, J Cell Biol 137,93-104.
    [103]Di Virgilio, F., Chiozzi, P., Ferrari, D., Falzoni, S., Sanz, J. M., Morelli, A., Torboli, M., Bolognesi, G., and Baricordi, O. R. (2001) Nucleotide receptors:an emerging family of regulatory molecules in blood cells, Blood 97,587-600.
    [104]Lubke, T., Lobel, P., and Sleat, D. E. (2009) Proteomics of the lysosome, Biochimica et biophysica act a 1793,625-635.
    [105]Obermuller, S., Kiecke, C., von Figura, K., and Honing, S. (2002) The tyrosine motifs of Lamp 1 and LAP determine their direct and indirect targetting to lysosomes, Journal of cell science 115,185-194.
    [106]Eskelinen, E. L. (2006) Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy, Molecular aspects of medicine 27,495-502.
    [107]Hamon, Y., Luciani, M. F., Becq, F., Verrier, B., Rubartelli, A., and Chimini, G. (1997) Interleukin-1beta secretion is impaired by inhibitors of the Atp binding cassette transporter, ABC1, Blood 90,2911-2915.
    [108]Soderberg, A., Sahaf, B., and Rosen, A. (2000) Thioredoxin reductase, a redox-active selenoprotein, is secreted by normal and neoplastic cells:presence in human plasma, Cancer Res 60,2281-2289.
    [109]Ruiz, F. X., Gallego, O., Ardevol, A., Moro, A., Dominguez, M., Alvarez, S., Alvarez, R., de Lera, A. R., Rovira, C., Fita, I., Pares, X., and Farres, J. (2009) Aldo-keto reductases from the AKR1B subfamily:retinoid specificity and control of cellular retinoic acid levels, Chemico-biological interactions 178, 171-177.
    [110]Balendiran, G. K. (2009) Fibrates in the chemical action of daunorubicin, Current cancer drug targets 9,366-369.
    [111]Bartsch, H., and Nair, J. (2004) Oxidative stress and lipid peroxidation-derived DNA-lesions in inflammation driven carcinogenesis, Cancer detection and prevention 28,385-391.
    [112]Berlose, J. P., Convert, O., Derossi, D., Brunissen, A., and Chassaing, G. (1996) Conformational and associative behaviours of the third helix of antennapedia homeodomain in membrane-mimetic environments, European journal of biochemistry/FEBS 242,372-386.
    [113]Derossi, D., Calvet, S., Trembleau, A., Brunissen, A., Chassaing, G., and Prochiantz, A. (1996) Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent, The Journal of biological chemistry 271, 18188-18193.
    [114]Okada, K., Wangpoengtrakul, C., Osawa, T., Toyokuni, S., Tanaka, K., and Uchida, K. (1999) 4-Hydroxy-2-nonenal-mediated impairment of intracellular proteolysis during oxidative stress. Identification of proteasomes as target molecules, The Journal of biological chemistry 274,23787-23793.
    [115]Berhane, K., Widersten, M., Engstrom, A., Kozarich, J. W., and Mannervik, B. (1994) Detoxication of base propenals and other alpha, beta-unsaturated aldehyde products of radical reactions and lipid peroxidation by human glutathione transferases, Proceedings of the National Academy of Sciences of the United States of America 91,1480-1484.
    [116]Choudhary, S., Xiao, T., Srivastava, S., Zhang, W., Chan, L. L., Vergara, L. A., Van Kuijk, F. J., and Ansari, N. H. (2005) Toxicity and detoxification of lipid-derived aldehydes in cultured retinal pigmented epithelial cells, Toxicology and applied pharmacology 204,122-134.
    [117]De Bont, R., and van Larebeke, N. (2004) Endogenous DNA damage in humans: a review of quantitative data, Mutagenesis 19,169-185.
    [118]Eder, E., Scheckenbach, S., Deininger, C., and Hoffman, C. (1993) The possible role of alpha, beta-unsaturated carbonyl compounds in mutagenesis and carcinogenesis, Toxicology letters 67,87-103.
    [119]Hauptlorenz, S., Esterbauer, H., Moll, W., Pumpel, R., Schauenstein, E., and Puschendorf, B. (1985) Effects of the lipidperoxidation product 4-hydroxynonenal and related aldehydes on proliferation and viability of cultured Ehrlich ascites tumor cells, Biochemical pharmacology 34,3803-3809.
    [120]Hyndman, D. J., and Flynn, T. G. (1998) Sequence and expression levels in human tissues of a new member of the aldo-keto reductase family, Biochimica et biophysica acta 1399,198-202.
    [121]Li, C. P., Goto, A., Watanabe, A., Murata, K., Ota, S., Niki, T., Aburatani, H., and Fukayama, M. (2008) AKR1B10 in usual interstitial pneumonia:expression in squamous metaplasia in association with smoking and lung cancer, Pathology, research and practice 204,295-304.
    [122]Nagaraj, N. S., Beckers, S., Mensah, J. K., Waigel, S., Vigneswaran, N., and Zacharias, W. (2006) Cigarette smoke condensate induces cytochromes P450 and aldo-keto reductases in oral cancer cells, Toxicology letters 165,182-194.
    [123]Woenckhaus, M., Klein-Hitpass, L., Grepmeier, U., Merk, J., Pfeifer, M., Wild, P., Bettstetter, M., Wuensch, P., Blaszyk, H., Hartmann, A., Hofstaedter, F., and Dietmaier, W. (2006) Smoking and cancer-related gene expression in bronchial epithelium and non-small-cell lung cancers, The Journal of pathology 210, 192-204.
    [124]Chajes, V., Cambot, M., Moreau, K., Lenoir, G. M., and Joulin, V. (2006) Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival, Cancer research 66,5287-5294.
    [125]Sinilnikova, O. M., Ginolhac, S. M., Magnard, C., Leone, M., Anczukow, O., Hughes, D., Moreau, K., Thompson, D., Coutanson, C., Hall, J., Romestaing, P., Gerard, J. P., Bonadona, V., Lasset, C., Goldgar, D. E., Joulin, V., Venezia, N. D., and Lenoir, G. M. (2004) Acetyl-CoA carboxylase alpha gene and breast cancer susceptibility, Carcinogenesis 25,2417-2424.
    [1]Cao, D., Fan, S. T., and Chung, S. S. (1998) Identification and characterization of a novel human aldose reductase-like gene, The Journal of biological chemistry 273,11429-11435.
    [2]Fukumoto, S., Yamauchi, N., Moriguchi, H., Hippo, Y., Watanabe, A., Shibahara, J., Taniguchi, H., Ishikawa, S., Ito, H., Yamamoto, S., Iwanari, H., Hironaka, M., Ishikawa, Y, Niki, T., Sohara, Y, Kodama, T., Nishimura, M., Fukayama, M., Dosaka-Akita, H., and Aburatani, H. (2005) Overexpression of the aldo-keto reductase family protein AKR1B10 is highly correlated with smokers'non-small cell lung carcinomas, Clin Cancer Res 11,1776-1785.
    [3]Ma, J., Yan, R., Zu, X., Cheng, J. M., Rao, K., Liao, D. F., and Cao, D. (2008) Aldo-keto reductase family 1 B10 affects fatty acid synthesis by regulating the stability of acetyl-CoA carboxylase-alpha in breast cancer cells, The Journal of biological chemistry 283,3418-3423.
    [4]Wang, C., Yan, R., Luo, D., Watabe, K., Liao, D. F., and Cao, D. (2009) Aldo-keto reductase family 1 member B10 promotes cell survival by regulating lipid synthesis and eliminating carbonyls, The Journal of biological chemistry 284,26742-26748.
    [5]Wang, R., Wang, G., Ricard, M. J., Ferris, B., Strulovici-Barel, Y, Salit, J., Hackett, N. R., Gudas, L. J., and Crystal, R. G (2010) Smoking-induced upregulation of AKR1B10 expression in the airway epithelium of healthy individuals, Chest 138,1402-1410.
    [6]Yan, R., Zu, X., Ma, J., Liu, Z., Adeyanju, M., and Cao, D. (2007) Aldo-keto reductase family 1 B10 gene silencing results in growth inhibition of colorectal cancer cells:Implication for cancer intervention, International journal of cancer 121,2301-2306.
    [7]Zu, X., Yan, R., Robbins, S., Krishack, P. A., Liao, D.F., and Cao, D. (2007) Reduced 293 T cell susceptibility to acrolein due to aldose reductase-like-1 protein expression, Toxicol Sci 97,562-568.
    [8]Mindnich, R. D., and Penning, T. M. (2009) Aldo-keto reductase (AKR) superfamily:genomics and annotation, Human genomics 3,362-370.
    [9]Spite, M., Baba, S. P., Ahmed, Y, Barski, O. A., Nijhawan, K., Petrash, J. M., Bhatnagar, A., and Srivastava, S. (2007) Substrate specificity and catalytic efficiency of aldo-keto reductases with phospholipid aldehydes, The Biochemical journal 405,95-105.
    [10]Barski, O. A., Tipparaju, S. M., and Bhatnagar, A. (2008) The aldo-keto reductase superfamily and its role in drug metabolism and detoxification, Drug metabolism reviews 40,553-624.
    [11]Davies, N. J., Hayden, R. E., Simpson, P. J., Birtwistle, J., Mayer, K., Ride, J. P., and Bunce, C. M. (2009) AKR1C isoforms represent a novel cellular target for jasmonates alongside their mitochondrial-mediated effects, Cancer research 69, 4769-4775.
    [12]Wsol, V., Szotakova, B., Martin, H. J., and Maser, E. (2007) Aldo-keto reductases (AKR) from the AKR1C subfamily catalyze the carbonyl reduction of the novel anticancer drug oracin in man, Toxicology 238,111-118.
    [13]Schmidt, D. R., Schmidt, S., Holmstrom, S. R., Makishima, M., Yu, R. T., Cummins, C. L., Mangelsdorf, D. J., and Kliewer, S. A. (2011) AKR1B7 is induced by the farnesoid X receptor and metabolizes bile acids, J Biol Chem 286(4):2425-32.
    [14]Liu, M. J., Takahashi, Y, Wada, T., He, J., Gao, J., Tian, Y, Li, S., and Xie, W. (2009) The aldo-keto reductase Akrlb7 gene is a common transcriptional target of xenobiotic receptors pregnane X receptor and constitutive androstane receptor, Molecular pharmacology 76,604-611.
    [15]Baumann, C., Davies, B., Peters, M., Kaufmann-Reiche, U., Lessl, M., and Theuring, F. (2007) AKR1B7 (mouse vas deferens protein) is dispensable for mouse development and reproductive success, Reproduction (Cambridge, England) 134,97-109.
    [16]Ebert, B., Kisiela, M., Wsol, V., and Maser, E. (2011) Proteasome inhibitors MG-132 and bortezomib induce AKR1C1, AKR1C3, AKR1B1, and AKR1B10 in human colon cancer cell lines SW-480 and HT-29, Chem Biol Interact.2011 Jan 6. [Epub ahead of print]
    [17]Wei, W., Liang, H. J., Cui, J. F., Guo, K., Kang, X. N., Cao, J., Su, J. J., Li, Y, and Liu, Y. K. (2010) [Effects of AKR1B10 gene silence on the growth and gene expression of HCC cell line MHCC97H], Zhonghua Gan Zang Bing Za Zhi, 18(9):666-71.
    [18]Endo, S., Matsunaga, T., Kuragano, T., Ohno, S., Kitade, Y, Tajima, K., El-Kabbani, O., and Hara, A. (2010) Properties and tissue distribution of a novel aldo-keto reductase encoding in a rat gene (Akr1b10), Arch Biochem Biophys, 503(2):230-7.
    [19]Kropotova, E. S., Tychko, R. A., Zinov'eva, O. L., Zyrianova, A. F., Khankin, S. L., Cherkes, V. L., Aliev, V. A., Beresten, S.F., Oparina, N., and Mashkova, T. D. (2010) [Downregulation of AKR1B10 gene expression in colorectal cancer], Mol Biol (Mosk),44(2):243-50.
    [20]Zhao, H. T., Soda, M., Endo, S., Hara, A., and El-Kabbani, O. (2010) Selectivity determinants of inhibitor binding to the tumour marker human aldose reductase-like protein (AKR1B10) discovered from molecular docking and database screening, Eur J Med Chem,45(9):4354-7.
    [21]Endo, S., Matsunaga, T., Soda, M., Tajima, K., Zhao, H. T., El-Kabbani, O., and Hara, A. (2010) Selective inhibition of the tumor marker AKR1B10 by antiinflammatory N-phenylanthranilic acids and glycyrrhetic acid, Biol Pharm Bull,33(5):886-90.
    [22]Bresson, E., Boucher-Kovalik, S., Chapdelaine, P., Madore, E., Harvey, N., Laberge, P. Y., Leboeuf, M., and Fortier, M. A. (2011) The human aldose reductase AKR1B1 qualifies as the primary prostaglandin F synthase in the endometrium, J Clin Endocrinol Metab,96(1):210-9.
    [23]Prasad, P., Tiwari, A. K., Kumar, K. M., Ammini, A. C., Gupta, A., Gupta, R., and Thelma, B. K. (2010) Association analysis of ADPRT1, AKR1B1, RAGE, GFPT2 and PAI-1 gene polymorphisms with chronic renal insufficiency among Asian Indians with type-2 diabetes, BMC Med Genet,11:52.
    [24]Baba, S. P., Wetzelberger, K., Hoetker, J. D., and Bhatnagar, A. (2009) Posttranslational glutathiolation of aldose reductase (AKR1B1):a possible mechanism of protein recovery from S-nitrosylation, Chemico-biological interactions 178,250-258.
    [25]Wolford, J. K., Yeatts, K. A., Red Eagle, A. R., Nelson, R. G., Knowler, W. C., and Hanson, R. L. (2006) Variants in the gene encoding aldose reductase (AKR-1B1) and diabetic nephropathy in American Indians, Diabet Med 23,367-376.
    [26]Donaghue, K. C., Margan, S. H., Chan, A. K., Holloway, B., Silink, M., Rangel, T., and Bennetts, B. (2005) The association of aldose reductase gene (AKR1B1) polymorphisms with diabetic neuropathy in adolescents, Diabet Med 22,1315-1320.
    [27]Chung, S. S., and Chung, S. K. (2005) Aldose reductase in diabetic microvas- cular complications, Current drug targets 6,475-486.
    [28]Joshi, A., Rajput, S., Wang, C., Ma, J., and Cao, D. (2010) Murine aldo-keto reductase family 1 subfamily B:identification of AKR1B8 as an ortholog of human AKR1B10, Biological chemistry 391,1371-1378.
    [29]Matsunaga, T., Endo, S., Soda, M., Zhao, H. T., El-Kabbani, O., Tajima, K., and Hara, A. (2009) Potent and selective inhibition of the tumor marker AKR1B10 by bisdemethoxycurcumin:probing the active site of the enzyme with molecular modeling and site-directed mutagenesis, Biochemical and biophysical research communications 389,128-132.
    [30]Gallego, O., Ruiz, F. X., Ardevol, A., Dominguez, M., Alvarez, R., de Lera, A. R., Rovira, C., Farres, J., Fita, I., and Pares, X. (2007) Structural basis for the high all-trans-retinaldehyde reductase activity of the tumor marker AKR1B10, Proceedings of the National Academy of Sciences of the United States of America 104,20764-20769.
    [31]Martin, H. J., Breyer-Pfaff, U., Wsol, V., Venz, S., Block, S., and Maser, E. (2006) Purification and characterization of akr1b10 from human liver:role in carbonyl reduction of xenobiotics, Drug metabolism and disposition:the biological fate of chemicals 34,464-470.
    [32]Petrash, J. M. (2004) All in the family:aldose reductase and closely related aldoketo reductases, Cell. Mol. Life Sci. Vol 61,737-749.
    [33]Petrash, J. M. (2004) All in the family:aldose reductase and closely related aldo-keto reductases, Cell Mol Life Sci 61,737-749.
    [34]Endo, S., Matsunaga, T., Mamiya, H., Ohta, C., Soda, M., Kitade, Y., Tajima, K., Zhao, H. T., El-Kabbani, O., and Hara, A. (2009) Kinetic studies of AKR1B10, human aldose reductase-like protein:endogenous substrates and inhibition by steroids, Archives of biochemistry and biophysics 487,1-9.
    [35]Ruiz, F. X., Moro, A., Gallego, O., Ardevol, A., Rovira, C., Petrash, J. M., Pares, X., and Farres, J. (2011) Human and rodent aldo-keto reductases from the AKR1B subfamily and their specificity with retinaldehyde, Chemico-biological interactions.
    [36]Shen, Y., Zhong, L., Markwell, S., and Cao, D. (2010) Thiol-disulfide exchanges modulate aldo-keto reductase family 1 member B10 activity and sensitivity to inhibitors, Biochimie 92,530-537.
    [37]Shen, Y, Zhong, L., Johnson, S., and Cao, D.(2011) Human aldo-keto reductases 1B1 and 1B10:A comparative study on their enzyme activity toward electrophilic carbonyl compounds, Chem Biol Interact.2011 Feb 15. [Epub ahead of print].
    [38]Ruiz, F. X., Moro, A., Gallego, O., Ardevol, A., Rovira, C., Petrash, J. M., Pares, X., and Farres, J. (2011) Human and rodent aldo-keto reductases from the AKR1B subfamily and their specificity with retinaldehyde, Chem Biol Interact. 2011 Feb 15. [Epub ahead of print]
    [39]Salabei, J. K., Li, X. P., Petrash, J. M., Bhatnagar, A., and Barski, O. A. (2011) Functional expression of novel human and murine AKR1B genes, Chem Biol Interact.2011 Jan 27. [Epub ahead of print]
    [40]Liu, J., Wen, G, and Cao, D. (2009) Aldo-keto reductase family 1 member B1 inhibitors:old drugs with new perspectives, Recent patents on anti-cancer drug discovery 4,246-253.
    [41]Ruiz, F. X., Gallego, O., Ardevol, A., Moro, A., Dominguez, M., Alvarez, S., Alvarez, R., de Lera, A. R., Rovira, C., Fita, I., Pares, X., and Farres, J. (2009) Aldo-keto reductases from the AKR1B subfamily:retinoid specificity and control of cellular retinoic acid levels, Chemico-biological interactions 178, 171-177.
    [42]Quinn, A. M., Harvey, R. G, and Penning, T. M. (2008) Oxidation of PAH trans-dihydrodiols by human aldo-keto reductase AKR1B10, Chemical research in toxicology 21,2207-2215.
    [43]Stavridis, M. P., Collins, B. J., and Storey, K. G (2010) Retinoic acid orchestrates fibroblast growth factor signalling to drive embryonic stem cell differentiation, Development 137,881-890.
    [44]Sadikoglou, E., Magoulas, G, Theodoropoulou, C., Athanassopoulos, C. M., Giannopoulou, E., Theodorakopoulou, O., Drainas, D., Papaioannou, D., and Papadimitriou, E. (2009) Effect of conjugates of all-trans-retinoic acid and shorter polyene chain analogues with amino acids on prostate cancer cell growth, Eur J Med Chem 44,3175-3187.
    [45]Miasaki, F. Y., Vivaldi, A., Ciampi, R., Agate, L., Collecchi, P., Capodanno, A., Pinchera, A., and Elisei, R. (2008) Retinoic acid receptor beta2 re-expression and growth inhibition in thyroid carcinoma cell lines after 5-aza-2'-deoxycytidine treatment, J Endocrinol Invest 31,724-730.
    [46]Wolf, G. (2008) Retinoic acid as cause of cell proliferation or cell growth inhibition depending on activation of one of two different nuclear receptors, Nutr Rev 66,55-59.
    [47]Benson, M. J., Pino-Lagos, K., Rosemblatt, M., and Noelle, R. J. (2007) All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation, The Journal of experimental medicine 204,1765-1774.
    [48]Kim, C. W., Moon, Y. A., Park, S. W., Cheng, D., Kwon, H. J., and Horton, J. D. (2010) Induced polymerization of mammalian acetyl-CoA carboxylase by MIG12 provides a tertiary level of regulation of fatty acid synthesis, Proc Natl Acad Sci U S A,107(21):9626-31.
    [49]Sugimoto, Y., Naniwa, Y., Nakamura, T., Kato, H., Yamamoto, M., Tanabe, H., Inoue, K., and Imaizumi, A. (2007) A novel acetyl-CoA carboxylase inhibitor reduces de novo fatty acid synthesis in HepG2 cells and rat primary hepatocytes, Archives of biochemistry and biophysics 468,44-48.
    [50]Wright, T. C., Cant, J. P., Brenna, J. T., and McBride, B. W. (2006) Acetyl CoA carboxylase shares control of fatty acid synthesis with fatty acid synthase in bovine mammary homogenate, Journal of dairy science 89,2552-2558.
    [51]Folmes, C. D., and Lopaschuk, G. D. (2007) Role of malonyl-CoA in heart disease and the hypothalamic control of obesity, Cardiovascular research 73, 278-287.
    [52]Onay-Besikci, A., and Sambandam, N. (2006) Malonyl CoA control of fatty acid oxidation in the newborn heart in response to increased fatty acid supply, Canadian journal of physiology and pharmacology 84,1215-1222.
    [53]Harwood, H. J., Jr., Petras, S. F., Shelly, L. D., Zaccaro, L. M., Perry, D. A., Makowski, M. R., Hargrove, D. M., Martin, K. A., Tracey, W. R., Chapman, J. G., Magee, W. P., Dalvie, D. K., Soliman, V. F., Martin, W. H., Mularski, C. J., and Eisenbeis, S. A. (2003) Isozyme-nonselective N-substituted bipiperidylcar-boxamide acetyl-CoA carboxylase inhibitors reduce tissue malonyl-CoA concentrations, inhibit fatty acid synthesis, and increase fatty acid oxidation in cultured cells and in experimental animals, The Journal of biological chemistry 275,37099-37111.
    [54]Loeffler-Ragg, J., Mueller, D., Gamerith, G., Auer, T., Skvortsov, S., Sarg, B., Skvortsova, I., Schmitz, K. J., Martin, H. J., Krugmann, J., Alakus, H., Maser, E., Menzel, J., Hilbe, W., Lindner, H., Schmid, K. W., and Zwierzina, H. (2009) Proteomic identification of aldo-keto reductase AKR1B10 induction after treatment of colorectal cancer cells with the proteasome inhibitor bortezomib, Molecular cancer therapeutics 8,1995-2006.
    [55]Wang, R., Wang, G., Ricard, M. J., Ferris, B., Strulovici-Barel, Y., Salit, J., Hackett, N. R., Gudas, L. J., and Crystal, R. G. (2010) Smoking-induced upregulation of AKR1B10 expression in the airway epithelium of healthy individuals, Chest 138,1402-1410.
    [56]Martin, H. J., and Maser, E. (2009) Role of human aldo-keto-reductase AKR1B10 in the protection against toxic aldehydes, Chemico-biological interactions 178,145-150.
    [57]Balendiran, G.K., Martin, H. J., El-Hawari, Y.,and Maser, E. (2009) Cancer biomarker AKR1B10 and carbonyl metabolism, Chemico-biological interactions 178,134-137.
    [58]Seaman, V.Y., Charles, M. J., and Cahill, T. M. (2006) A sensitive method for the quantification of acrolein and other volatile carbonyls in ambient air, Analytical chemistry 78,2405-2412.
    [59]Fujioka, K., and Shibamoto, T. (2004) Formation of genotoxic dicarbonyl compounds in dietary oils upon oxidation, Lipids 39,481-486.
    [60]Davydov, V. V., Dobaeva, N. M., and Bozhkov, A. I. (2004) Possible role of alteration of aldehyde's scavenger enzymes during aging, Experimental gerontology 39,11-16.
    [61]Mutlu-Turkoglu, U., Akalin, Z., Ilhan, E., Yilmaz, E., Bilge, A., Nisanci, Y., and Uysal, M. (2005) Increased plasma malondialdehyde and protein carbonyl levels and lymphocyte DNA damage in patients with angiographically defined coronary artery disease, Clinical biochemistry 38,1059-1065.
    [62]Cline, S. D., Riggins, J. N., Tornaletti, S., Marnett, L. J., and Hanawalt, P. C. (2004) Malondialdehyde adducts in DNA arrest transcription by T7 RNA polymerase and mammalian RNA polymerase Ⅱ,Proceedings of the National Academy of Sciences of the United States of America 101,7275-7280.
    [63]De Bont, R., and van Larebeke, N. (2004) Endogenous DNA damage in humans: a review of quantitative data, Mutagenesis 19,169-185.
    [64]Nagy, E., Zeisig, M., Kawamura, K., Hisamatsu, Y.,Sugeta, A., Adachi, S., and Moller, L. (2005) DNA adduct and tumor formations in rats after intratracheal administration of the urban air pollutant 3-nitrobenzanthrone, Carcinogenesis 26, 1821-1828.
    [65]Jump, D. B., Torres-Gonzalez, M., and Olson, L. K. (2011) Soraphen A, an inhibitor of acetyl CoA carboxylase activity, interferes with fatty acid elongation, Biochemical pharmacology 81,649-660.
    [66]Beckers, A., Organe, S., Timmermans, L., Scheys, K., Peeters, A., Brusselmans, K., Verhoeven, G, and Swinnen, J. V. (2007) Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells, Cancer research 67,8180-8187.
    [67]Yoon, S., Lee, M. Y, Park, S. W., Moon, J. S., Koh, Y. K., Ahn, Y. H., Park, B. W., and Kim, K. S. (2007) Up-regulation of acetyl-CoA carboxylase alpha and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells, The Journal of biological chemistry 282, 26122-26131.
    [68]Brunet, J., Vazquez-Martin, A., Colomer, R., Grana-Suarez, B., Martin-Castillo, B., and Menendez, J. A. (2008) BRCA1 and acetyl-CoA carboxylase:the metabolic syndrome of breast cancer, Molecular carcinogenesis 47,157-163.
    [69]Chajes, V., Cambot, M., Moreau, K., Lenoir, G. M., and Joulin, V. (2006) Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival, Cancer research 66,5287-5294.
    [70]Wen, J. P., Liu, C. E., Hu, Y. T., Chen, G, and Lin, L. X. (2010) Globular adiponectin regulates energy homeostasis through AMP-activated protein kinase-acetyl-CoA carboxylase (AMPK/ACC) pathway in the hypothalamus, Molecular and cellular biochemistry 344,109-115.
    [71]Adam, T., Opie, L. H., and Essop, M. F. (2010) AMPK activation represses the human gene promoter of the cardiac isoform of acetyl-CoA carboxylase:Role of nuclear respiratory factor-1, Biochemical and biophysical research communications 398,495-499.
    [72]Scaglia, N., Chisholm, J. W., and Igal, R. A. (2009) Inhibition of stearoylCoA desaturase-1 inactivates acetyl-CoA carboxylase and impairs proliferation in cancer cells:role of AMPK, PloS one 4, e6812.
    [73]Hattori, A., Mawatari, K., Tsuzuki, S., Yoshioka, E., Toda, S., Yoshida, M., Yasui, S., Furukawa, H., Morishima, M., Ono, K., Ohnishi, T., Nakano, M., Harada, N., Takahashi, A., and Nakaya, Y (2010) Beta-adrenergic-AMPK pathway phosphorylates acetyl-CoA carboxylase in a high-epinephrine rat model, SPORTS, Obesity (Silver Spring, Md 18,48-54.
    [74]Park, S. H., Gammon, S. R., Knippers, J. D., Paulsen, S. R., Rubink, D. S., and Winder, W. W. (2002) Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle, JAppl Physiol 92,2475-2482.
    [75]Rubink, D. S., and Winder, W. W. (2005) Effect of phosphorylation by AMP-activated protein kinase on palmitoyl-CoA inhibition of skeletal muscle acetyl-CoA carboxylase, JAppl Physiol 98,1221-1227.
    [76]Bengtsson C, Blaho S, Saitton DB, Brickmann K, Broddefalk J, Davidsson O, Drmota T, Folmer R, Hallberg K, Hallen S, Hovland R, Isin E, Johannesson P, Kull B, Larsson LO, Lofgren L, Nilsson KE, Noeske T, Oakes N, Plowright AT, Schnecke V, Stahlberg P, Sorme P, Wan H, Wellner E, Oster L. (2011) Design of small molecule inhibitors of acetyl-CoA carboxylase 1 and 2 showing reduction of hepatic malonyl-CoA levels in vivo in obese Zucker rats. Bioorg Med Chem, 19(10):3039-53.
    [77]Cesquini, M., Stoppa, G. R., Prada, P. O., Torsoni, A. S., Romanatto, T., Souza, A., Saad, M. J., Velloso, L. A., and Torsoni, M. A. (2008) Citrate diminishes hypothalamic acetyl-CoA carboxylase phosphorylation and modulates satiety signals and hepatic mechanisms involved in glucose homeostasis in rats, Life sciences 82,1262-1271.
    [78]Wang, C., Xu, C., Sun, M., Luo, D., Liao, D. F., and Cao, D. (2009) Acetyl-CoA carboxylase-alpha inhibitor TOFA induces human cancer cell apoptosis, Biochemical and biophysical research communications 385,302-306.
    [79]Zhong, L., Liu, Z., Yan, R., Johnson, S., Zhao, Y., Fang, X., and Cao, D. (2009) Aldo-keto reductase family 1 B10 protein detoxifies dietary and lipid-derived alpha, beta-unsaturated carbonyls at physiological levels, Biochemical and biophysical research communications 387,245-250.
    1. Tong L, Harwood HJ, Jr. Acetyl-coenzyme A carboxylases:versatile targets for drug discovery. J Cell Biochem 2006;99(6):1476-88.
    2. Keil S, Muller M, Zoller G, Haschke G, Schroeter K, Glien M, Ruf S, Focken I, Herling AW, Schmoll D. Identification and synthesis of novel inhibitors of acetyl-CoA carboxylase with in vitro and in vivo efficacy on fat oxidation. J Med Chem.2010 Dec 23;53(24):8679-87.
    3. Zhao LF, Iwasaki Y, Zhe W, Nishiyama M, Taguchi T, Tsugita M, Kambayashi M, Hashimoto K, Terada Y. Hormonal regulation of acetyl-Co A carboxylase isoenzyme gene transcription. Endocr J.2010;57(4):317-24.
    4. Harwood HJ, Jr. Treating the metabolic syndrome:acetyl-CoA carboxylase inhibition. Expert opinion on therapeutic targets 2005;9(2):267-81.
    5. Tong L. Acetyl-coenzyme A carboxylase:crucial metabolic enzyme and attractive target for drug discovery. Cell Mol Life Sci 2005;62(16):1784-803.
    6. Bengtsson C, Blaho S, Saitton DB, Brickmann K, Broddefalk J, Davidsson O, Drmota T, Folmer R, Hallberg K, Hallen S, Hovland R, Isin E, Johannesson P, Kull B, Larsson LO, Lofgren L, Nilsson KE, Noeske T, Oakes N, Plowright AT, Schnecke V, Stahlberg P, Sorme P, Wan H, Wellner E, Oster L. Design of small molecule inhibitors of acetyl-CoA carboxylase 1 and 2 showing reduction of hepatic malonyl-CoA levels in vivo in obese Zucker rats. Bioorg Med Chem. 2011 May 15;19(10):3039-53.
    7. Gao S, Zhu G, Gao X, Wu D, Carrasco P, Casals N, Hegardt FG, Moran TH, Lopaschuk GD. Important roles of brain-specific carnitine palmitoyltransferase and ceramide metabolism in leptin hypothalamic control of feeding. Proc Natl Acad Sci U S A.2011 May 18. Epub ahead of print.
    8. Priore P, Giudetti AM, Natali F, Gnoni GV, Geelen MJ. Metabolism and short-term metabolic effects of conjugated linoleic acids in rat hepatocytes. Biochim Biophys Acta.2007 Oct;1771(10):1299-307.
    9. Gao S, Keung W, Serra D, Wang W, Carrasco P, Casals N, Hegardt FG, Moran TH, Lopaschuk GD. Malonyl-CoA Mediates Leptin Hypothalamic Control of Feeding Independent of Inhibition of CPT-1a. Am J Physiol Regul Integr Comp Physiol.2011 Apr 20. [Epub ahead of print]
    10. Violante S, Ijlst L, van Lenthe H, de Almeida IT, Wanders RJ, Ventura FV. Carnitine palmitoyltransferase 2:New insights on the substrate specificity and implications for acylcarnitine profiling. Biochim Biophys Acta.2010 Sep;1802(9):728-32.
    11. Beckers A, Organe S, Timmermans L, et al. Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer research 2007;67(17):8180-7.
    12. Jin YY, Cheng J, Yang SH, Meng L, Palaniyand SA, Zhao XQ, Suh JW. S-Adenosyl-L-methionine Activates Actinorhodin Biosynthesis by Increasing Autophosphorylation of the Ser/Thr Protein Kinase AfsK in Streptomyces coelicolor A3(2). Biosci Biotechnol Biochem.2011 May 20. [Epub ahead of print]
    13. Dall'aglio P, Arthur CJ, Williams C, Vasilakis K, Maple HJ, Crosby J, Crump MP, Hadfield AT. Analysis of Streptomyces coelicolor phosphopantetheinyl transferase, AcpS reveals the basis for relaxed substrate and cofactor specificity. Biochemistry.2011 May 19. [Epub ahead of print]
    14. Arabolaza A, Shillito ME, Lin TW, Diacovich L, Melgar M, Pham H, Amick D, Gramajo H, Tsai SC. Crystal structures and mutational analyses of acyl-CoA carboxylase beta subunit of Streptomyces coelicolor. Biochemistry.2010 Aug 31;49(34):7367-76.
    15. Yu LP, Kim YS, Tong L. Mechanism for the inhibition of the carboxyltransferase domain of acetyl-coenzyme A carboxylase by pinoxaden. Proc Natl Acad Sci U S A.2010 Dec 21; 107(51):22072-7.
    16. Kiatpapan P, Kobayashi H, Sakaguchi M, et al. Molecular characterization of Lactobacillus plantarum genes for beta-ketoacyl-acyl carrier protein synthase III (fabH) and acetyl coenzyme A carboxylase (accBCDA), which are essential for fatty acid biosynthesis. Applied and environmental microbiology 2001;67(1):426-33.
    17. Zhang H, Yang Z, Shen Y, Tong L. Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase. Science (New York, NY 2003;299(5615):2064-7.
    18. Leibundgut M, Maier T, Jenni S, Ban N. The multienzyme architecture of eukaryotic fatty acid synthases. Current opinion in structural biology 2008;18(6):714-25.
    19. Maier T, Leibundgut M, Ban N. The crystal structure of a mammalian fatty acid synthase. Science 2008;321(5894):1315-22.
    20. Munoz E, Lu J, Yakobson BI.Ballistic thermal conductance of graphene ribbons. Nano Lett.2010 May 12;10(5):1652-6.
    21. Chou CY, Tong L. Structural and biochemical studies on the regulation of biotin carboxylase by substrate inhibition and dimerization. J Biol Chem.2011 May 18. [Epub ahead of print]
    22. Hollenhorst MA, Clardy J, Walsh CT. The ATP-dependent amide ligases DdaG and DdaF assemble the fumaramoyl-dipeptide scaffold of the dapdiamide antibiotics. Biochemistry.2009 Nov 3;48(43):10467-72.
    23. Novak BR, Moldovan D, Waldrop GL, de Queiroz MS. Behavior of the ATP grasp domain of biotin carboxylase monomers and dimers studied using molecular dynamics simulations. Proteins.2011 Feb;79(2):622-32.
    24. Chou CY, Yu LP, Tong L. Crystal structure of biotin carboxylase in complex with substrates and implications for its catalytic mechanism. J Biol Chem.2009 Apr 24;284(17):11690-7.
    25. Zhang H, Tweel B, Tong L. Molecular basis for the inhibition of the carboxyltransferase domain of acetyl-coenzyme-A carboxylase by haloxyfop and diclofop. Proceedings of the National Academy of Sciences of the United States of America 2004;101(16):5910-5.
    26. Zhang H, Tweel B, Li J, Tong L. Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase in complex with CP-640186. Structure 2004;12(9):1683-91.
    27. Waldrop GL, Rayment I, Holden HM. Three-dimensional structure of the biotin carboxylase subunit of acetyl-CoA carboxylase. Biochemistry.1994 Aug 30;33(34):10249-56.
    28. Mochalkin I, Miller JR, Evdokimov A, Lightle S, Yan C, Stover CK, Waldrop GL. Structural evidence for substrate-induced synergism and half-sites reactivity in biotin carboxylase. Protein Sci.2008 Oct;17(10):1706-18.
    29. Healy S, McDonald MK, Wu X, Yue WW, Kochan G, Oppermann U, Gravel RA. Structural impact of human and Escherichia coli biotin carboxyl carrier proteins on biotin attachment. Biochemistry.2010 Jun 8;49(22):4687-94.
    30. Ye J, Debose-Boyd RA. Regulation of Cholesterol and Fatty Acid Synthesis. Cold Spring Harb Perspect Biol.2011 Apr 6. [Epub ahead of print]
    31. Huang B, Yuan HD, Kim do Y, Quan HY, Chung SH. Cinnamaldehyde Prevents Adipocyte Differentiation and Adipogenesis via Regulation of Peroxisome Proliferator-Activated Receptor-y (PPARy) and AMP-Activated Protein Kinase (AMPK) Pathways. J Agric Food Chem.2011 Apr 27;59(8):3666-73.
    32. Barber MC, Price NT, Travers MT. Structure and regulation of acetyl-CoA carboxylase genes of metazoa. Biochimica et biophysica acta 2005;1733(1):1-28.
    33. Liu QS, Pu L, Poo MM. Repeated cocaine exposure in vivo facilitates LTP induction in midbrain dopamine neurons. Nature 2005;437(7061):1027-31.
    34. Talukdar S, Hillgartner FB. The mechanism mediating the activation of acetyl-coenzyme A carboxylase-alpha gene transcription by the liver X receptor agonist TO-901317. Journal of lipid research 2006;47(11):2451-61.
    35. Liu JF, Ma Y, Wang Y, Du ZY, Shen JK, Peng HL. Reduction of lipid accumulation in HepG2 cells by luteolin is associated with activation of AMPK and mitigation of oxidative stress. Phytother Res.2011 Apr;25(4):588-96.
    36. Waldrop GL, Stephens, J. M., Levert, K. L., inventor US20026485941 patent US20026485941.2002.
    37. Yao N, Lu CL, Zhao JJ, et al. A network of miRNAs expressed in the ovary are regulated by FSH. Front Biosci 2009;14:3239-45.
    38. Ha SK, Kim J, Chae C. Role of AMP-activated Protein Kinase and Adiponectin during Development of Hepatic Steatosis in High-fat Diet-induced Obesity in Rats. J Comp Pathol.2011 Jul;145(1):88-94.
    39. Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell metabolism 2005; 1(1):15-25.
    40. Kim EK, Park JM, Lim S, Choi JW, Kim HS, Seok H, Seo JK, Oh K, Lee DS, Kim KT, Ryu SH, Suh. PG. Activation of AMP-activated protein kinase is essential for LPA-induced cell migration in ovarian cancer cells. J Biol Chem. 2011 May 20. [Epub ahead of print]
    41. Wong GW, Wang J, Hug C, Tsao TS, Lodish HF. A family of Acrp30/adiponectin structural and functional paralogs. Proceedings of the National Academy of Sciences of the United States of America 2004;101(28):10302-7.
    42. Huang B, Yuan HD, Kim do Y, Quan HY, Chung SH. Cinnamaldehyde Prevents Adipocyte Differentiation and Adipogenesis via Regulation of Peroxisome Proliferator-Activated Receptor-γ (PPARy) and AMP-Activated Protein Kinase (AMPK) Pathways. J Agric Food Chem.2011 Apr 27;59(8):3666-73.
    43. Ray H, Suau F, Vincent A, Dalla Venezia N. Cell cycle regulation of the BRCA1/acetyl-CoA-carboxylase complex. Biochem Biophys Res Commun. 2009 Jan 16;378(3):615-9.
    44. Shen Y, Tong L. Structural evidence for direct interactions between the BRCT domains of human BRCA1 and a phospho-peptide from human ACC1. Biochemistry 2008;47(21):5767-73.
    45. Cao D, Fan ST, Chung SS. Identification and characterization of a novel human aldose reductase-like gene. The Journal of biological chemistry 1998; 273 (19): 11429-35.
    46. Zu X, Yan R, Robbins S, Krishack PA, Liao DF, Cao D. Reduced 293T cell susceptibility to acrolein due to aldose reductase-like-1 protein expression. Toxicol Sci 2007;97(2):562-8.
    47. Yan R, Zu X, Ma J, Liu Z, Adeyanju M, Cao D. Aldo-keto reductase family 1 B10 gene silencing results in growth inhibition of colorectal cancer cells: Implication for cancer intervention. International journal of cancer 2007; 121(10):2301-6.
    48. Wang C, Yan R, Luo D, Watabe K, Liao DF, Cao D. Aldo-keto reductase family 1 member B10 promotes cell survival by regulating lipid synthesis and eliminating carbonyls. The Journal of biological chemistry 2009;284(39):26742-8.
    49. Ma J, Yan R, Zu X, et al. Aldo-keto reductase family 1 B10 affects fatty acid synthesis by regulating the stability of acetyl-CoA carboxylase-alpha in breast cancer cells. The Journal of biological chemistry 2008;283(6):3418-23.
    50. Moreau K, Dizin E, Ray H, et al. BRCA1 affects lipid synthesis through its interaction with acetyl-CoA carboxylase. The Journal of biological chemistry 2006;281(6):3172-81.
    51. Vihma V, Tikkanen MJ. Fatty acid esters of steroids:synthesis and metabolism in lipoproteins and adipose tissue. J Steroid Biochem Mol Biol.2011 Apr; 124 (3-5):65-76.
    52. Horstmann N, Essig S, Bockelmann S, Wieczorek H, Huss M, Sasse F, Menche D. Archazolid A-15-O-(3-d-glucopyranoside and iso-Archazolid B:Potent V-ATPase Inhibitory Polyketides from the Myxobacteria Cystobacter violaceus and Archangium gephyra. J Nat Prod.2011 Apr 22. [Epub ahead of print]
    53. Jump DB, Torres-Gonzalez M, Olson LK. Soraphen A, an inhibitor of acetyl CoA carboxylase activity, interferes with fatty acid elongation. Biochem Pharmacol. 2011 Mar 1;81(5):649-60.
    54. Mochalkin I, Miller JR, Evdokimov A, Lightle S, Yan C, Stover CK, Waldrop GL. Structural evidence for substrate-induced synergism and half-sites reactivity in biotin carboxylase. Protein Sci.2008 Oct;17(10):1706-18.
    55. Strongin RM, Saraiva, M. C., Waldrop, G. L., Amspacher, D. R., inventor patent US20016242610.2001.
    56. Sato S, Kajiura, T., Okusa, N., Hayashi, E., Nihei, Y, inventor patent WO03094912.2003.
    57. Sato S, Hayashi, E., Okusa, N., inventor patent JP035998.2005.
    58. Wellen CW, inventor patent WO05113069.2005.
    59. Lee YK, Park SY, Kim YM, Park OJ. Regulatory effect of the AMPK-COX-2 signaling pathway in curcumin-induced apoptosis in HT-29 colon cancer cells. Annals of the New York Academy of Sciences 2009; 1171:489-94.
    60. Kim T, Davis J, Zhang AJ, He X, Mathews ST. Curcumin activates AMPK and suppresses gluconeogenic gene expression in hepatoma cells. Biochemical and biophysical research communications 2009;388(2):377-82.
    61. Pan W, Yang H, Cao C, et al. AMPK mediates curcumin-induced cell death in CaOV3 ovarian cancer cells. Oncology reports 2008;20(6):1553-9.
    62. Olsen AM, Eisenberg BL, Kuemmerle NB, Flanagan AJ, Morganelli PM, Lombardo PS, Swinnen JV, Kinlaw WB. Fatty acid synthesis is a therapeutic target in human liposarcoma. Int J Oncol.2010 May;36(5):1309-14.
    63. Shen Y, Volrath SL, Weatherly SC, Elich TD, Tong L. A mechanism for the potent inhibition of eukaryotic acetyl-coenzyme A carboxylase by soraphen A, a macrocyclic polyketide natural product. Molecular cell 2004;16(6):881-91.
    64. Trost BM, Sieber JD, Qian W, Dhawan R, Ball ZT. Asymmetric total synthesis of soraphen A:a flexible alkyne strategy. Angew Chem Int Ed Engl. 2009;48(30):5478-81.
    65. Marjanovic J, Chalupska D, Patenode C, Coster A, Arnold E, Ye A, Anesi G, Lu Y, Okun I, Tkachenko S, Haselkorn R, Gornicki P. Recombinant yeast screen for new inhibitors of human acetyl-CoA carboxylase 2 identifies potential drugs to treat obesity. Proc Natl Acad Sci USA.2010 May 18;107(20):9093-8.
    66. Weatherly SC, Volrath SL, Elich TD. Expression and characterization of recombinant fungal acetyl-CoA carboxylase and isolation of a soraphen-binding domain. The Biochemical journal 2004;380(Pt 1):105-10.
    67. Belkebir A, De Paepe R, Tremolieres A, Aid F, Benhassaine-Kesri G. Sethoxydim affects lipid synthesis and acetyl-CoA carboxylase activity in soybean. Journal of experimental botany 2006;57(14):3553-62.
    68. Guseva NV, Rokhlin OW, Glover RA, Cohen MB. TOFA (5-tetradecyl-oxy-2-furoic acid) reduces fatty acid synthesis, inhibits expression of AR, neuropilin-1, and Mcl-1 and kills prostate cancer cells independent of p53 status. Cancer Biol Ther. 2011 Jul 1;12(1). [Epub ahead of print]
    69. Zeng L, Biernacka KM, Holly JM, Jarrett C, Morrison AA, Morgan A, Winters ZE, Foulstone EJ, Shield JP, Perks CM. Hyperglycaemia confers resistance to chemotherapy on breast cancer cells:the role of fatty acid synthase. Endocr Relat Cancer.2010 May 18;17(2):539-51.
    70. Ronnebaum SM, Joseph JW, Ilkayeva O, Burgess SC, Lu D, Becker TC, Sherry AD, Newgard CB. Chronic suppression of acetyl-CoA carboxylase 1 in beta-cells impairs insulin secretion via inhibition of glucose rather than lipid metabolism. J Biol Chem.2008 May 23;283(21):14248-56.
    71. Malewiak MI, Griglio S, Le Liepvre X. Relationship between lipogenesis, ketogenesis, and malonyl-CoA content in isolated hepatocytes from the obese Zucker rat adapted to a high-fat diet. Metabolism:clinical and experimental 1985;34(7):604-11.
    72. Wang XL, Suzuki R, Lee K, Tran T, Gunton JE, Saha AK, Patti ME, Goldfine A, Ruderman NB, Gonzalez FJ, Kahn CR. Ablation of ARNT/HIFlbeta in liver alters gluconeogenesis, lipogenic gene expression, and serum ketones. Cell Metab.2009 May;9(5):428-39.
    73. Wang C, Xu C, Sun M, Luo D, Liao DF, Cao D. Acetyl-CoA carboxylase-alpha inhibitor TOFA induces human cancer cell apoptosis. Biochemical and biophysical research communications 2009;385(3):302-6.
    74. Uddin S, Jehan Z, Ahmed M, Alyan A, Al-Dayel F, Hussain A, Bavi P, Al-Kuraya KS. Over Expression of Fatty Acid Synthase in Middle Eastern Epithelial Ovarian Carcinoma Activates AKT and its Inhibition Potentiates Cisplatin Induced Apoptosis. Mol Med.2011 Mar 21. doi:10.2119/molmed.2011.00046. [Epub ahead of print]
    75. Wesener SR, Potharla VY, Cheng YQ. Reconstitution of the FK228 biosynthetic pathway reveals cross talk between modular polyketide synthases and fatty acid synthase. Appl Environ Microbiol.2011 Feb;77(4):1501-7. Epub 2010 Dec 23.
    76. Zhou W, Han WF, Landree LE, et al. Fatty acid synthase inhibition activates AMP-activated protein kinase in SKOV3 human ovarian cancer cells. Cancer research 2007;67(7):2964-71.
    77. Liu X, Fortin PD, Walsh CT. Andrimid producers encode an acetyl-CoA carboxyltransferase subunit resistant to the action of the antibiotic. Proceedings of the National Academy of Sciences of the United States of America 2008;105(36):13321-6.
    78. Pohlmann J, Lampe T, Shimada M, et al. Pyrrolidinedione derivatives as antibacterial agents with a novel mode of action. Bioorganic & medicinal chemistry letters 2005; 15(4):1189-92.
    79. Chandra G, Chater KF, Bornemann S. Unexpected and widespread connections between bacterial glycogen and trehalose metabolism. Microbiology.2011 Apr 7. [Epub ahead of print]
    80. Freiberg C, Brunner NA, Schiffer G, et al. Identification and characterization of the first class of potent bacterial acetyl-CoA carboxylase inhibitors with antiba-cterial activity. The Journal of biological chemistry 2004;279 (25):26066-73.
    81. Healy S, McDonald MK, Wu X, Yue WW, Kochan G, Oppermann U, Gravel RA. Structural impact of human and Escherichia coli biotin carboxyl carrier proteins on biotin attachment. Biochemistry.2010 Jun 8;49(22):4687-94.
    82. Cramer CT, Goetz B, Hopson KL, et al. Effects of a novel dual lipid synthesis inhibitor and its potential utility in treating dyslipidemia and metabolic syndrome. Journal of lipid research 2004;45(7):1289-301.
    83. Li N, Wang X, Li T, Ji H, Zhang Y, Qiu Z, Zhao D, Chen X. Identification of circulatory and excretory metabolites of a novel nitric oxide donor ZJM-289 in rat plasma, bile, urine and faeces by liquid chromatography-tandem mass spectrometry. Xenobiotica.2011 May 11. [Epub ahead of print]
    84. Ohmori K, Yamada H, Yasuda A, Yamamoto A, Matsuura N, Kiniwa M. Anti-hyperlipidemic action of a newly synthesized benzoic acid derivative, S-2E. European journal of pharmacology 2003;471(1):69-76.
    85. Ohmori K, Yamada H, Yasuda A, Yamamoto A, Matsuura N, Kiniwa M. Effects of a novel antihyperlipidemic agent, S-2E, on the blood lipid abnormalities in homozygous WHHL rabbits. Metabolism:clinical and experimental 2004; 53(5): 680-5.
    86. Jin M, Fischbach MA, Clardy J. A biosynthetic gene cluster for the acetyl-CoA carboxylase inhibitor andrimid. Journal of the American Chemical Society 2006;128(33):10660-1.
    87. Castelo-Branco PA, Rubinger MM, Alves Lde C, et al. Synthesis and antifungal activity of aromatic bis-gamma-lactones analogous to avenaciolide. Chem Biodivers 2007;4(12):2745-54.
    88. Saiz-Abajo MJ, Gonzalez-Saiz JM, Pizarro C. Orthogonal signal correction applied to the classification of wine and molasses vinegar samples by near-infrared spectroscopy. Feasibility study for the detection and quantification of adulterated vinegar samples. Anal Bioanal Chem.2005 May;382(2):412-20.
    89. Edwards RL, Dalebroux ZD, Swanson MS. Legionella pneumophila couples fatty acid flux to microbial differentiation and virulence. Mol Microbiol.2009 Mar;71(5):1190-1204.
    90. Seronello S, Ito C, Wakita T, Choi J. Ethanol enhances hepatitis C virus replication through lipid metabolism and elevated NADH/NAD+.J Biol Chem. 2010 Jan 8;285(2):845-54.
    91. B Sayago FJ, Pueyo MJ, Calaza MI, Jimenez AI, Cativiela C. Practical access to the proline analogs (S,S,S)-and (R,R,R)-2-methyloctahydroindole-2-carboxylic acids by HPLC enantioseparation. Chirality.2011 Apr 15. doi:10.1002/chir. 20952. [Epub ahead of print]
    92. Mathur A, Subramanian S, Mallia MB, Banerjee S, Samuel G, Sarma HD, Venkatesh M. Synthesis and bio-evaluation of a new fatty acid derivative for myocardial imaging. Bioorg Med Chem.2008 Sep 1;16(17):7927-31.
    93. Hara T, Hirasawa A, Sun Q, Sadakane K, Itsubo C, Iga T, Adachi T, Koshimizu TA, Hashimoto T, Asakawa Y, Tsujimoto G. Novel selective ligands for free fatty acid receptors GPR120 and GPR40. Naunyn Schmiedebergs Arch Pharmacol. 2009 Sep;380(3):247-55.
    94. Labbe SM, Croteau E, Grenier-Larouche T, Frisch F, Ouellet R, Langlois R, Guerin B, Turcotte EE, Carpentier AC. Normal postprandial nonesterified fatty acid uptake in muscles despite increased circulating fatty acids in type 2 diabetes. Diabetes.2011 Feb;60(2):408-15.
    95. Morken T, Bohov P, Skorve J, Ulvik R, Aukrust P, Berge RK, Livden JK. Anti-inflammatory and hypolipidemic effects of the modified fatty acid tetradecylthioacetic acid in psoriasis-a pilot study. Scand J Clin Lab Invest. 2011 Feb 21. [Epub ahead of print]
    96. Suanarunsawat T, Boonnak T, Na Ayutthaya WD, Thirawarapan S. Anti-hyperlipidemic and cardioprotective effects of Ocimum sanctum L. fixed oil in rats fed a high fat diet. J Basic Clin Physiol Pharmacol.2010;21(4):387-400.
    97. Menendez JA, Colomer R, Lupu R. Why does tumor-associated fatty acid synthase (oncogenic antigen-519) ignore dietary fatty acids? Medical hypotheses 2005;64(2):342-9.
    98. Gartner R, Rank P, Ander B. The role of iodine and delta-iodolactone in growth and apoptosis of malignant thyroid epithelial cells and breast cancer cells. Hormones (Athens).2010 Jan-Mar;9(1):60-6.
    99. Chajes V, Cambot M, Moreau K, Lenoir GM, Joulin V. Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival. Cancer research 2006; 66 (10): 5287-94.
    100. Brusselmans K, De Schrijver E, Verhoeven G, Swinnen JV. RNA interference-mediated silencing of the acetyl-CoA-carboxylase-alpha gene induces growth inhibition and apoptosis of prostate cancer cells. Cancer research 2005;65(15): 6719-25.
    101. Swinnen JV, Brusselmans K, Verhoeven G. Increased lipogenesis in cancer cells: new players, novel targets. Current opinion in clinical nutrition and metabolic care 2006;9(4):358-65.
    102. Sinilnikova OM, Ginolhac SM, Magnard C, et al. Acetyl-CoA carboxylase alpha gene and breast cancer susceptibility. Carcinogenesis 2004;25(12):2417-24.
    103. Liang B, Ferguson K, Kadyk L, Watts JL. The role of nuclear receptor NHR-64 in fat storage regulation in Caenorhabditis elegans. PLoS One.2010 Mar 25;5(3):e9869.
    104. Wu CH, Lin MC, Wang HC, Yang MY, Jou MJ, Wang CJ. Rutin Inhibits Oleic Acid Induced Lipid Accumulation via Reducing Lipogenesis and Oxidative Stress in Hepatocarcinoma Cells. J Food Sci.2011 Mar;76(2):T65-T72. doi: 10.1111/j.1750-3841.2010.02033.x.
    105. Oh W, Abu-Elheiga L, Kordari P, et al. Glucose and fat metabolism in adipose tissue of acetyl-CoA carboxylase 2 knockout mice. Proceedings of the National Academy of Sciences of the United States of America 2005;102(5):1384-9.
    106. Savage DB, Choi CS, Samuel VT, et al. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J Clin Invest 2006; 116(3):817-24.
    107. Poplawski MM, Mastaitis JW, Yang XJ, Mobbs CV. Hypothalamic responses to fasting indicate metabolic reprogramming away from glycolysis toward lipid oxidation. Endocrinology.2010 Nov;151(11):5206-17.
    108. Flavin R, Zadra G, Loda M. Metabolic alterations and targeted therapies in prostate cancer. J Pathol.2011 Jan;223(2):283-94.
    109. Lane MD, Hu Z, Cha SH, Dai Y, Wolfgang M, Sidhaye A. Role of malonyl-CoA in the hypothalamic control of food intake and energy expenditure. Biochemical Society transactions 2005;33(Pt 5):1063-7.
    110. Toblli J, Cao G, Rivas C, Munoz M, Giani J, Dominici F, Angerosa M. Cardiovascular protective effects of nebivolol in Zucker diabetic fatty rats. J Hypertens.2010 May;28(5):1007-19.
    111. Wei Z, Peterson JM, Wong GW. Metabolic Regulation by C1 q/TNF-related Protein-13 (CTRP13):ACTIVATION OF AMP-ACTIVATED PROTEIN KINASE AND SUPPRESSION OF FATTY ACID-INDUCED JNK SIGNALING JBiol Chem.2011 May 6;286(18):15652-65. Epub 2011 Mar 4.
    112. Mohanty D, Sankaranarayanan R, Gokhale RS. Fatty acyl-AMP ligases and polyketide synthases are unique enzymes of lipid biosynthetic machinery in Mycobacterium tuberculosis.Tuberculosis (Edinb).2011 May 19. [Epub ahead of print]
    113. Li ZG, Yin WB, Song LY, Chen YH, Guan RZ, Wang JQ, Wang RR, Hu ZM. Genes encoding the biotin carboxylase subunit of acetyl-CoA carboxylase from Brassica napus and parental species:cloning, expression patterns, and evolution. Genome.2011 Mar;54(3):202-11.
    114. Yu CM, Youn J, Jung J. Asymmetric sequential allylic transfer reaction for the synthesis of 2-(1-stannylvinyl)-1,3-diols:concise synthesis of (-)-avenaciolide and (-)-isoavenaciolide. Angew Chem Int Ed Engl 2006;45(10):1553-6.
    115. Castelo-Branco PA, Rubinger MM, Guilardi S, Leite VM, dos Santos AR, de C Alves L, Lariucci C, Vencato I, Pilo-Veloso D, Zambolim L. Synthesis, characterization, absolute structural determination and antifungal activity of a new chlorinated aromatic avenaciolide analogue. Pest Manag Sci.2009 Jan;65(1):34-40.
    116. Roell D, Rosler TW, Degen S, Matusch R, Baniahmad A. Antiandrogenic activity of anthranilic acid ester derivatives as novel lead structures to inhibit prostate cancer cell proliferation. Chem Biol Drug Des.2011 Jun;77(6):450-9.
    117. Roell D, Rosler TW, Degen S, Matusch R, Baniahmad A. Antiandrogenic activity of anthranilic acid ester derivatives as novel lead structures to inhibit prostate cancer cell proliferation. Chem Biol Drug Des.2011 Jun;77(6):450-9.
    118. Ikawa H, Nishimura M, Okada K, Nakamura T, Inaba N, Kojima K. WO0202101. 2002.
    119. Ikawa H, Nishimura M, Okada K, et al. US20030191323.2003.
    120. Gobbi LC, Gubler M, Neidhart W, Nettekoven MH. WO05048814.2005.
    121. Gobbi LC, Gubler M, Neidhart W, Nettekoven MH. US7459480.2008.
    122. Clark RF, Zhang T, Wang X, et al. Phenoxy thiazole derivatives as potent and selective acetyl-CoA carboxylase 2 inhibitors:Modulation of isozyme selectivity by incorporation of phenyl ring substituents. Bioorganic & medicinal chemistry letters 2007;17(7):1961-5.
    123. Gu YG, Weitzberg M, Clark RF, et al. Synthesis and structure-activity relationships of N-{3-[2-(4-alkoxyphenoxy)thiazol-5-yl]-1-methylprop-2-ynyl} carboxy derivatives as selective acetyl-CoA carboxylase 2 inhibitors. Journal of medicinal chemistry 2006;49(13):3770-3.
    124. Clark RF, Zhang T, Xin Z, et al. Structure-activity relationships for a novel series of thiazolyl phenyl ether derivatives exhibiting potent and selective acetyl-CoA carboxylase 2 inhibitory activity. Bioorganic & medicinal chemistry letters 2006;16(23):6078-81.
    125. Xu X, Weitzberg M, Keyes RF, et al. The synthesis and structure-activity relationship studies of selective acetyl-CoA carboxylase inhibitors containing 4-(thiazol-5-yl)but-3-yn-2-amino motif:polar region modifications. Bioorganic & medicinal chemistry letters 2007; 17(6):1803-7.
    126. Gu YG, Weitzberg M, Clark RF. et al. N-{3-[2-(4-alkoxyphenoxy) thiazol-5-yl]-1-methylprop-2-ynyl}carboxy derivatives as acetyl-coA carboxylase inhibi-tors--improvement of cardiovascular and neurological liabilities via structural modifications. Journal of medicinal chemistry 2007;50(5):1078-82.
    127. Ohmori K, Yamada H, Yasuda A, Yamamoto A, Matsuura N, Kiniwa M. Effects of a novel anti-hyperlipidemic agent, S-2E, on blood lipid levels in rats with fructose-induced hypertriglyceridemia. Pharmacology 2004;72(4):240-6.
    128. Duennenberger M, Schellenbaum M. US3546255.1970.
    129. Wright TR, Shan G, Walsh TA, Lira JM, Cui C, Song P, Zhuang M, Arnold NL, Lin G, Yau K, Russell SM, Cicchillo RM, Peterson MA, Simpson DM, Zhou N, Ponsamuel J, Zhang Z. Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes. Proc Natl Acad Sci USA. 2010 Nov 23;107(47):20240-5.
    130. Sun YX, Tang Y, Wu AL, Liu T, Dai XL, Zheng QS, Wang ZB. Neuroprotective effect of liquiritin against focal cerebral ischemia/reperfusion in mice via its antioxidant and antiapoptosis properties. J Asian Nat Prod Res.2010 Dec;12(12):1051-60.
    131. Li X, Ilarslan H, Brachova L, Qian HR, Li L, Che P, Wurtele ES, Nikolau BJ. Reverse-genetic analysis of the two biotin-containing subunit genes of the heteromeric acetyl-coenzyme A carboxylase in Arabidopsis indicates a unidirectional functional redundancy. Plant Physiol.2011 Jan;155(1):293-314.
    132. Brunner H, Lausen C. US4640706.1987.
    133. Perry DA, Hardie DG. WO03072197.2003.
    134. Kamata M, Fukatsu K, Yamashita T, Furuyama N, Endo S, Takashima H. WO07013691.2007.
    135. Chonan T, Oi T, Yamamoto D, et al. (4-Piperidinyl)-piperazine:a new platform for acetyl-CoA carboxylase inhibitors. Bioorganic & medicinal chemistry letters 2009;19(23):6645-8.
    136. Ichinose H, Niher Y, Yamamoto T, Suzuki N, Nakanishi E, Kondo N. JP119987. 2005.
    137. Yamakawa T, Jona H, Niiyama K, et al. WO07011811.2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700