ZnO晶须生长理论及热镀锌渣制备四针状晶须工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四针状氧化锌晶须研究的现状是:生长机理不清楚,基础理论研究薄弱;制备研究时都采用高纯锌粉为原料,有时还需进行十分繁琐的锌粉预处理和加入大量催化剂,难以形成规模生产,成本较高,阻碍了其本应得到的普遍推广和应用。本课题正是针对上述问题而展开的,目的是在深入研究其成核和生长理论的基础上探索直接利用工业热镀锌渣制取四针状氧化锌晶须的最佳工艺条件,从而开发出拥有自主知识产权的制备高纯四针状氧化锌晶须的新技术。
     本文首先研究了液态锌——锌蒸气——氧化——结晶过程的热力学和动力学。热力学研究表明锌蒸气在沸点附近比在熔点附近更容易被双原子惰性气体所冷凝,因此,在一定的条件下,锌蒸气可以凝聚生成锌液滴;在锌的沸点以下,反应体系中锌的分压可以由液态锌的蒸发平衡来调节。动力学研究表明液态锌的蒸发除了与温度有关外,还显著地受气相成份的影响,随着气相中氧含量的提高,锌的蒸发速度增大,并且,锌的蒸发速度在各种气氛条件下都是线性的。
     根据晶须的VS和VLS生长机制所包含的物理化学原理,研究了晶须的生长速度。VS生长是气相原子撞击在晶须表面后再沿表面扩散至生长点的过程,由晶须表面的原子平衡方程导出其生长速度,得知在一定的条件下,晶须的生长速度是恒定的。VLS生长受液相—晶相之间的扩散传质过程控制,由表面能即Gibbs—Thomson效应可推导出生长速度V的平方根与晶须直径d的倒数呈线性关系。
Studies about tetrapod ZnO are now facing many challenges, that the growth mechanism and other theory questions still remain in dimness, that high pure zinc powders are unreasonably demanded in the present techniques and fussy processing of zinc powders is a prerequisite in some cases, and, that mass production is difficult to achieve and higher costs thus hinders the whisker from wide utilization in many fields. From these considerations, this study aimed at investigating and understanding its growth mechanism and researching the conditions of preparing tetrapod ZnO using waste galvanizing zinc on the base of the knowledge obtained from the former, so as to develop a new technique of preparing tetrapod ZnO with own intellectual property.Prior exploration were focused on both thermodynamics and kinetics of the system of liquid zinc — evaporation — vapor oxidation — crystallization. The thermodynamics revealed that zinc vapor was easier to be condensed to form droplets by inert gases of double atoms such as nitrogen round temperature of its boiling point than the melting point. The partial pressure of zinc vapor in the system could be modified by the equilibrium of zinc evaporating below the boiling point of zinc. The kinetics manifested that the evaporating rate was determined by not only the temperature but also the gaseous composition above the molten zinc. The zinc evaporating rate increased with the raise of oxygen content in
    the gaseous phase and advanced linearly in all the different atmosphere.Criterions stem from physical and chemical principles of VS and VLS growth model were elicited for practical judgement. As whiskers grow in the VS model, gaseous atoms impinge on the side faces of the whiskers and diffuse to the whiskers tip. Therefore, the whisker growth rate is determined by the atoms balance equation. It was concluded that the elongation rate was constant during the whisker growth. While in the VLS model, mass diffusion from liquid to solid is the key factor of whisker growth and the relationship between elongation rate V and whisker diameter d can be deduced from Gibbs—Thomson effects. It was deduced that V1'2 -\ld changes linearly in the VLS model.Waste zinc and zinc powders and high pure zinc were used as raw materials and zeolite and Bi2O3 as catalyst in experiments investigating effects of conditions of oxidizing zinc vapor at high temperature on the crystal morphologies of ZnO and relations among various morphologies. Results shown that there were five typical morphologies—amorphous, granular, needle, tetrapod and multipod-like ZnO, in spite of the differences of raw materials and no matter catalyst was added or not. All morphologies of ZnO crystals depend on the temperature, oxygen partial pressure and the total gas flow rate when oxidizing zinc vapor. Therefore, ZnO crystal morphologies can be effectively controlled by adjusting the preparing conditions.
    Further attention was paid on what is the reason of morphologies varying with preparing conditions. It was found that the kinetics of oxidizing zinc vapor at elevated temperature varied with the atmosphere. It was speculated that the dynamic equilibrium between zinc droplets and atomized zinc is the cause of kinetics change. When temperature and oxygen in the system are higher or lower, no zinc droplets formed in zinc vapor and atomized zinc react directly with oxygen. The homogeneous oxidation reaction advances linearly to produce ZnO with morphologies of amorphous, granular and needle-like. As oxygen turned to moderate or low, zinc droplets forming in the zinc vapor made heterogeneous nucleation take place on the surface of the droplets, so, the reaction kinetics proceeded parabolically and products of tetrapod and multipod-like ZnO appeared. So, different morphologies are obtained under different oxidation conditions because of the difference of nucleation and growth process of ZnO crystals. It was obvious that the key factor to produce tetrapod ZnO is to form zinc droplets in the vapor. Zinc droplets can be formed by condensation only at proper temprature, oxygen content and the gas flow rate.The elongation rate at different growth stages of tetrapod ZnO was determined by "Time mark" experiments and morphologies of products at different atmosphere and growth stages were examined by scanning electron microscope. Results shown that the elongation rate of tetrapod
    ZnO was governed by spiral growth and the crystallization was via the VLS model. The growth of tetrapod ZnO was found to be consisted of stages:(l)atomized zinc evaporating from the molten zinc and entering the gaseous phase above;(2)atomized zinc being condensed by inert gas and forming tiny zinc droplets;(3)oxygen absorbed on the droplets and oxidation reaction taking place;(4)heterogeneous nucleation proceeding on the surface of the droplets and zinc diffusing outwards as whiskers growing. Morphologies of the products are thus determined by the dimension of the zinc droplets. Smaller droplets formed under mild oxygen partial pressure, will be oxidized to form tetrapod ZnO, while small droplets formed under lower oxygen pressure were oxidized to form mutipod ZnO.The process of oxidizing zinc droplets was that the zinc atoms inside droplets diffuse outwards and generate growth steps on the side and terminated faces of the whisker. The elongation of whiskers continued until zinc atoms inside the droplets were depleted. Although, VS crystallization, which stood by from the beginning to the end but had little effect on the elongation growth, took place at side faces of the whiskers and consequently made the whiskers radius increase.The kinetics of zinc droplet oxidation is divided into two stages. First, when t/t05 < 1.5, the kinetics proceeded as:[1 - (1 - a)1'3} = (0.0249 ~ 0.0971V
    and then, when / / /0 5 > 1.5, the kinetics followed the equation below :[1 -\a-(l-cO2"] = (2.347- 9.230)xlO'3tOn the base of knowledge obtained from studies above, new technique of preparing tetrapod ZnO was developed. The purification must be accomplished at the same time when tetrapod ZnO was prepared directly from the waste zinc. For this purpose , the behavior of impurity elements at the oxidation conditions were examined to understand the effects on the quality of products. Elemental As and Sb access in the products while their compounds remain in the residue. Elements of Ok Co> Iik Ni et al, have little effects on the products for their high meting temperature and negligible content. Fe content in whiskers is in the way of mechanical carry out by the zinc evaporating and the positive effects on the activity coefficient of Fe-Zn system, which can be controlled by the oxidizing atmosphere and the evaporating rate of the waste zinc. Pb content in whiskers is for the evaporation of Pb element itself and the positive effects on the activity coefficient of Pb-Zn system, which can be restrained by the modification of the oxidizing atmosphere.The optimized conditions of directly preparing tetrapod ZnO by waste zinc were concluded below: temperature of 850-950"C; oxygen partial pressure of 8-12 v%; total gas flow rate of 140-260 L.h'1; waste zinc evaporating rate being ^93%. Characterization of the products was conducted by means of SEM, ICP-AES, EDS and IR. Results shown that
    the mophology of products is uniform tetrapod ZnO with perfect crystallization of hexagonal wurtzite; length of needles is 80-130//m and ratio of radius over length is 25-30; ZnO content is ^99.96% and yield of whiskers is ^92%; the quality of products can rival the whiskers produced by pure zinc powders.Features of the new technique are listed: free of catalyst, no special restriction on the particle size and the purity of the raw material after crashing, the whisker fabrication is under atmosphere pressure and moderate temperature; mass production of whisker is easy to achieve for the simplicity of the process and equipments; impurities are separated by controlling preparing conditions at the same time when whisker grow.
引文
[1] 赵天从.重金属冶金学(下册).北京:冶金工业出版社,1981.1-108
    [2] 彭容秋.有色金属提取冶金手册.北京:冶金工业出版社,1992.1-11
    [3] 铅锌冶金编委会.铅锌冶金学.北京:科学出版社,2003 1-17
    [4] 彭容秋.重金属冶金学.长沙:中南大学出版社,1998.77-81
    [5] 刘志宏.国内外锌冶炼技术的现状及发展方向.世界有色金属,2000,(1):23-26
    [6] 王忠实.中国锌冶金现状.有色冶炼,1996,(6):1-5
    [7] 刘彦龙.中国电池行业市场分析.2002年中国国际铅锌年会论文集,北京安泰科信息开发有限公司,云南昆明:84-97
    [8] 徐采栋,林蓉,汪大成.锌冶金物理化学.上海:上海科学技术出版社,1977.34
    [9] 梅光贵,王德润,周敬元.湿法炼锌学.长沙:中南大学出版社,2001.489
    [10] Harvey E. Brown. Zinc oxide properties and applications. International lead zinc research organization, Inc., New York, N. Y., 1976. 10
    [11] Michael H. Huang, Samuel Mao, Henning Feick et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292: 1897-1899
    [12] Alkesandra B. D, Y. Chan, E. Herbert Li. Progress in the room-temperature optical functions of semiconductors. Mat. Sci. Eng. R, 2002, 38: 237-293
    [13] D. C. Reynolds, D. C. Look, B. Jogai, et al. Optical properties of ZnO crystals containing internal strain[J] J. Luminesence, 1999, 82: 173-176.
    [14] D. C. Look Recent advances in ZnO materials and devices material, science and engineering B, 2001, 80: 383-387.
    [15] 徐彭寿,孙玉明,施朝淑,等.ZnO及其缺陷的电子结构.中国科学(A辑),2001,31(4):358-365
    [16] Jeff E. ZnO broadens the spectrum. Ⅲ-Ⅴs Review, 1999, 12(4): 28-31
    [17] Yefan Chen, Darren Bagnall, Takafumi Yao. ZnO as a novel photonic material for the UV region. Materials Science and Engineering B, 2000, 75: 190-198
    [18] W. E. Carlosa, E. R. Glasera, D. C. Look. Magnetic resonance studies of ZnO. Physica B, 2001, 308-310: 976-979
    [19] Mitchnick, Mark. A. Zinc oxide, an old friend to the rescue. J. Cosmet. Toiletries, 1992, 107(10): 111-116
    [20] 天津化工研究设计院编,无机精细化工品手册.北京:化学工业出版社,2001.1020-1031
    [21] 化学工业出版社编,中国化工产品大全.北京:化学工业出版社,1998.391-393
    [22] 中国化工商品大全编委会.中国化工商品大全.北京:中国物质出版社,1998.401-403
    [23] Dale L. Perry. Handbook of Inorganic Compounds. New York: CRC press, 1995. 2759
    [24] 陈艺锋,唐谟堂,张保平等.湿法合成氧化锌压敏电阻粉体的现状与展望.电子元件与材料.2004,23(1):23-26.
    [25] Hohenberger G, Tomandal G. Sol-Gel Processing of Powders. J Mater Res. 1992, 7(3): 546-551
    [26] Lauf R J, Bond W D. Fabrication of High-Field Zinc Oxide Varistors by Sol-Gel Processing. Am Cerm Soc Bull: 1984, 63(1): 278-281
    [27] 王步国,仲维卓,施尔畏.水热条件下ZnO微晶的结晶习性极其形成机理.酸盐学报.1997,25(2):223-229
    [28] Sonder E, Quinby T C, Kinser D L. ZnO Varistors Made From Powders Produced Using a Urea Process. J. Am Cerm Soc Bull. 1985, 64(4): 665-668
    [29] 刘超峰,胡行方,祖庸.以尿素为沉淀剂制备纳米氧化锌粉体.无机材料学报,1999,14(3):391-396
    [30] 郁平,房鼎业.纳米氧化锌的制备.化学世界,2000,6:293-295
    [31] 王宇晓,任字红.超细氧化锌的制备.南昌大学学报(理科版),1999,2:136-139
    [32] 王疆瑛,贾殿增,陶明德.固相配位化学反应合成ZnO纳米粉体.功能材料,1998,29(6):598-603
    [33] O. Milosevic, et al. Synthesis of ZnO-based Varistor Procursor Powders by means of the Reaction Spray Process. J. Mat. Sci. 1993, 28: 5211-5217
    [34] 赵新宇,郑柏存,李春忠,等.喷雾热解合成ZnO超细粒子工艺及机理研究无机材料学报,1996,11(4):611-616
    [35] 徐甲强,潘庆谊,孙雨安,等.纳米氧化锌的乳液合成,结构表征与气敏性质.无机化学学报,1998,14(3):355-359
    [36] 王零森.特种陶瓷.长沙:中南大学出版社,1994:59
    [37] 陈德峰,施国顺,马礼敦.热爆法制取纳米氧化锌.复旦学报(自然科学版),1997,36(1):112-116
    [38] 赵建华,王文魁.微重力条件下材料气相生长研究进展.物理学进展,1998,18(3):283-307
    [39] E. I. Givargizov. Highly Anisotropic Crystals. Tokyo: Terra scientific publishing company, 1987. 70
    [40] Evans C C. Whiskers. London: Mill&Boon Limited, 1972. 62
    [41] Albert P Levitt. Whisker Technology. New York: John Wiley, 1970. 47-119
    [42] Fu-Sheng Sun, F. H. (Sam) Froes. Solidification behavior of Ti5Si3 whiskers in TiAl alloys. Mat. Sci. Eng. A, 2003, 345: 262-269
    [43] Katsumi Y, Iwao H. Development of directionally aligned SiC whisker wheel. Precision Engineering, 1995, 17: 5-9
    [44] 潘金生,陈永华.晶须及其应用.复合材料学报,1995,12(4):1-7
    [45] 袁建君,方琪,刘智恩.晶须的研究进展.材料科学与工程,1996,14(4):1-7
    [46] 李广宇,李子东,叶进.晶须的性能及其应用进展.热固性树脂,2000,15(2):48-51
    [47] F. C. Frank. The influence of dislocation on crystal growth. Far. Soc., 1949, 5: 48-54
    [48] Wagner, R. S. Defects in silicon crystals grown by VLS technique. J. Appl. Phys., 1967, 38: 1554-1560
    [49] Wagner, R. S, W. C. Ellis. The vapor-liquid-solid mechanism of crystal growth and its application to silicon. Trans. Metal. Soc. AIME, 1965, 233: 1053-1064
    [50] Q. Tai, A. Mocellin. Review: High temperature deformation of Al2O3-based ceramic particle or whisker composites. Ceramics International, 1999, 25: 395-408
    [51] Kishi, K. The effect of halide impurities on the mass production of metal whiskers by reduction. Jpan. J. Appl. Phys., 1973, 12: 962-967
    [52] Hamamura, K., K.Takenouchi. Growth and morphology of copper-nickel alloy crystals by hydrogen reduction of a CuI-NiBr_2 mixture. J. Crystal Growth, 1979, 46: 804-806
    [53] Kaneko, T. Growth rate of iron whiskers. J. Crystal Growth, 1978, 44: 14-22
    [54] Brenner. S. S., G. W. Sears. Mechanism of whisker growth, Ⅲ: Nature of growth sites. Acta. Metal, 1956, 4: 268-270
    [55] Sears. G. W. Mercury whiskers. Acta Metal. 1953, 1: 457-459
    [56] Sears. G. W. A growth mechanism for mercury whiskers. Acta Metal. 1953, 3: 361-366
    [57] Hasiguti, R. R., T. Ishibashi, H. Yumoto. Morphology and growth mechanism of vapor grown Cd crystal as affected by Bi impurity. J. Crystal Growth, 1978,45:13-16
    [58]Hasiguti,R.R.,T.Ishibashi, H.Yumoto.Thin layer VLS growth, its cessation and morphologies of Cd crystals with Bi impurity. J. Crystal Growth, 1981,52:135-140
    [59]Yumoto,H.A., A.Ohkawa, R.R.Hasiguti. Morphology and growth mechanism of vapor grown Zn crystals as affected by impurity Sn. J. Crystal Growth, 1983,62:433-438
    [60]Nakhodkin,N.G,A.FBardamid,A.I.Shaldervan. Influence of impurities on film structure. Izv.Akad.Nauk SSSR, 1974,38:1435-1437
    [61]Dittmar,W., K.Neumann. Wachstums und Verdampfungsgeschwindigkeit von nadelformigen Kaliumkristallen. Z.Eletrochem, 1960,64:297-305
    [62]Webb,W.W. Dislocation mechanism in the growth of palladium whisker crystal. J. Appl.Phys. 1965,36:214-221
    [63]J.L. Liu, S.J. Cai, G.L. Jin, et al.Growth of Si whiskers on Au/Si(l 1 1) substrate by gas source molecular beam epitaxy (MBE). J. Crystal Growth, 1999,200:106-111
    [64]Iwanaga H, Motojima S, Ichihara M, et al. Amorphous Si_3N_4 whiskers containing a crystalline core. J,Crystal Growth, 1990,100(l-4):271-274
    [65]Seiji M, Kohzo S. Preparation of whiskers and spring-like fibers of Si_3N_4 by impurity-activated chemical vapor deposition. J,Crystal Growth, 1989,96(l-2):383-389
    [66]Futamoto M, Yuito I, Kawabe U. Hafnium carbide and nitride whiskers growth by chemical vapor deposition. J,Crystal Growth, 1983,61(1 ):69-74
    [67]Givargizov,E.I., A.A.Babasian. Controlled growth of whiskers of whiskers of A~ⅡB~Ⅵ compounds. Inorg. Mater. 1980,16:538-540
    [68]Renli Fu, Heping Zhou, Lu Chen, et al. Morphologies and growth mechanisms of aluminum nitride whiskers synthesized by carbothermal reduction. Materials Science and Engineering A, 1999,266:44-51
    [69]Guo W, Ning X G, Ye H Q. Growth morphology of titanium nitride whiskers. J,Crystal Growth, 1990,106(2-3 ):400-404
    [70]Schreiner M, Wruss W, Lux B.Growth morphology and growth mechanism of a-Al_2O_3 whiskers. J. Crystal Growth, 1983,61(l):75-79
    [71]Nagano M. Growth of SnO_2 whiskers by VLS mechanism. J. Crystal Growth, 1984,66(2):377-379
    [72]Koparanova N, Zlatev Z, Genchev D, et al. Cadmium oxide whisker crystal grown by the vapor-liquid-solid mechanism using various elements as growth intiators. J.Mat. Sci. 1994,29(1): 103-104
    [73]Wokulski Z. The influence of nickel on VLS growth and real structure of TiC whiskers. J. Crystal Growth, 1978,82(3):427-434
    [74]Shimada,S.,K.J.D.Mackenzie. A novel method for crystal growth of indium oxide,In_2O_3,from the vapour phase. J.Crystal Growth, 1981,55:453-456
    [75]Kasahara,J., K.Kajiwara, T.Yamada. GaAs whiskers grown by a thermal decomposition method. J.Crystal Growth, 1977,38:23-38
    [76]Addamiano,A. Preparation and properties of 2H SiC crystals. J. Crystal Growth, 1982,58:617-622
    [77]Ing-Chi Leu, Min-Hsiung Hon. Nucleation behavior of silicon carbide whiskers grown by chemical vapor deposition. J. Crystal Growth, 2002,236 :171—175
    [78]Supatra Jinawath , Dujreutai Pongkao, Wojciech Suchanek, et al.Hydrothermal synthesis of
     monetite and hydroxyapatite from monocalcium phosphate monohydrate. International Journal of Inorganic Materials, 2001,3:997-1001
    [79]Debao Wang, Dabin Yu, Mingwang Shao,et al. Growth of Sb_2Se_3 whiskers via a hydrothermal method. Materials Chemistry and Physics, 2003,82:546-550
    [80]Zhi-Zhan Chen, Er-Wei Shi, Yan-Qing Zheng, et al. Growth of hex-pod-like Cu_2O whisker under hydrothermal conditions. J. Crystal Growth, 2003,249:294-300
    [81]Ping Penga, Chris Sorrella.Preparation of mullite whiskers from topaz decomposition. Mater. Lett. 2004,58:1288-1291
    [82]J.X.LI, T Narita, J Ogawa, et al. In situ synthesis of porous ceramics with a framework structure of alumimuum borate whisker. J.Mat. Sci.l998,33(10-12):2601-2605
    [83]H.X. Zhu, R. Abbaschian.In-situ processing of NiAl-alumina composites by thermite reaction Materials Science and Engineering A, 2000,282:1-7
    [84]W.R.Tyson. Theoretical strength of perfect crystals. Phil.Mag. 1966,14:925-936
    [85]Brenner.S.S. Facters influencing the strength of whiskers in composite materials. American Society for Metals, 1965: 11-18
    [86]H.Uemoto, H.Tanaka, T.Hirao, et al. Bi-based superconducting whiskers grown at various O_2 gas ow rates. Physica C, 2002,378-381.303-305
    [87]K.lnomata, T.Kawae, S.-J. Kim, et al. Carrier density control of Bi-2212 whiskers. Physica C, 2002,372-376:335-338
    [88]H.W.Rauch, W.H.Sutton, L.R.McGreight. The fabrication,testing and application of fiber reinforced materials: A survey. Space Science Laboratory, General Electric Company, Technical Report AFML-TR-68-162, September 1968.
    [89]Masahiro Y, Hiroyuki S, Kengo O, et al. Hydrothermal synthesis of biocompatible whiskers. J.Mat. Sci. 1994,29:3399-3402
    [90]Hockin H.K. Xua, Douglas T. Smithb, Carl G.Simonb. Strong and bioactive composites containing nano-silica-fused whiskers for bone repair. Biomaterials, 2004,25:4615-4626
    [91]Hockin H.K.Xu, Janet B. Quinn, Douglas T. Smith, et al. Effects of different whiskers on the reinforcement of dental resin composites. Dental Materials, 2003,19:359-367
    [92]Chihiro Kawai, Akira Yamakawa. Effect of metal oxides addition on the preparation of Si_3N_4 whiskers by vaporization of amorphous Si_3N_4. Ceramics International, 1999,25:297-302
    [93]Javier Llorca. Fatigue of particle-and-whisker-reinforced-metal-matrix composites. Progress m Material Science, 2002,47:283-353
    [94]S.Q. Wu, Z.S. Wei, S.C. Tjong. The mechanical and thermal expansion behavior of an Al-Si alloy composite reinforced with potassium titanate whisker. Composites Science and Technology, 2000,60 :2873-2880
    [95]Soon H. Hong, Kyung H. Chung, Chi H. Lee. Effects of hot extrusion parameters on the tensile properties and microstructures of SiCw-2124Al composites. Materials Science and Engineering A, 1996,206:225- 232
    [96]Isao Tochigi, Tsunemichi Imai, Kyosuke Ai. High temperature properties of a β-Si_3N_4 whisker reinforced aluminium alloy composite produced by squeeze casting. Scripta Metallurgical et Materialia, 1995,32(11): 1801-1806
    [97]Pernilla Pettersson, Mats Johnsson. Thermal shock properties of alumina reinforced with Ti(C,N) whiskers. Journal of the European Ceramic Society, 2003,23:309-313
    [98]D.Y. Ding, D.Z. Wang, X.X. Zhang, et al. Mechanical properties of the alumina-coated
     Al_(18)B_4O_(33)w:6061Al composites. Materials Science and Engineering A, 2001, 308: 19-24
    [99] Huang Chuanzhen, Ai Xing. Development of advanced composite ceramic tool material. Mater. Res. Bull., 1996, 31 (8): 951-956
    [100] Lan Sun, Jinsheng Pan. Fabrication and characterization of TiCw/MoSi_2 and SiCw/MoSi_2 composites.. Mater. Lett. 2002, 52: 223-228
    [101] Masahide Sato, Makio Uwaha. Change of wandering pattern with anisotropy in step kinetics. J. Crystal Growth, 1999, 198/199: 38-42
    [102] T. Nishinaga, K. Pak, S. Uchiyama. Studies of LPE ripple based on morphological stability theory. J. Crystal Growth, 1978, 43: 85-92
    [103] Dong-Sheng Yu, Jian-Jun Xu. Dendritic growth with external flow: interfacial wave theory and its comparison with experiments. J. Crystal Growth, 1999, 198/199: 49-55
    [104] R.A.劳迪斯著.单晶生长(刘光照译).北京:科学出版社,1979.92
    [105] 张克从,张乐憓.晶体生长科学与技术.北京:科学出版社,1990.91
    [106] 张克从.近代晶体学基础(上册).北京:科学出版社,1998.105
    [107] 罗谷风.结晶学导论.北京:地质出版社,1985.112
    [108] 徐宝琨,阎卫平,刘明登.结晶学.长春:吉林大学出版社,1991.143,269
    [109] 仲维卓,华素坤.晶体生长形态学.北京:科学出版社,1999.197
    [110] 元如林,施尔畏,王步国,等.氧化锌晶粒生长基元与生长形态的形成机理.中国科学(E辑),1997,27(3):229-236
    [111] 施尔畏,仲维卓,华素坤,等.关于离子配位多面体生长基元模型.中国科学(E辑),1998,28(1):37-45
    [112] 李汶军,施尔畏,殷之文,等.配位多面体生长基元模型与晶体的生长习性.中国科学(E辑),2001,31(6):487-495
    [113] Wen-Jun Li, Er-wei Shi. Growth mechanism and growth habit of oxide particles. J. Crystal Growth, 1999, 203: 186-192
    [114] 王步国,仲维卓,施尔畏,等.ZnO晶体的极性生长习性与双晶的形成机理.人工晶体学报,1997,26(2):102-107
    [115] 李汶军,仲维卓.极性晶体的生长习性.科学通报.1999,44(22):2388-2392
    [116] 陈艺锋,唐谟堂,杨声海,等.四针状氧化锌晶须的研究进展.材料导报.2004,18(1):39-42.
    [117] 吕越峰,吴华武.四脚状氧化锌晶须的制备\性能及应用.化学通报,1996,11:15-18
    [118] M. L. Fullen Tiwnning in zinc oxide. J. Appl. Phys. 1944, 15: 164-170
    [119] M. Kitano, T. Hamabe, S. Maeda, et al. Growth of large tetrapod ZnO crystals(l). J. Crystal Growth, 1990, 102: 965-973.
    [120] M. Kitano, T. Hamabe, S. Maeda, Growth of large tetrapod ZnO crystals(2). J. Crystal Growth, 1991, 108: 277-284
    [121] Yoshinaka M, Asakura E, T Miyashi, et al. Method of producing zinc oxide whiskers. EP0378995, 1990-3-13
    [122] Yoshinaka M, Asakura E, T Misaki, et al. Zinc oxide whiskers having a novel crystalline form and method for making the same. EP0325797, 1989-11-5
    [123] 陈尔凡,田雅娟,程远杰,等.四脚状氧化锌晶须的制备及微观形态研究.高等学校化学学报.2000,21(2):172-176
    [124] 戴英,张跃,方圆等.高品质四针状氧化锌晶须的结构及生长机理.北京科技大学学报,2002,24(2):200
    [125] 裴新华,张聚宝.四针状氧化锌晶须的制备.陶瓷,2001,4:36-37
    [126] 李树尘.碳还原剂控制氧化锌晶须生长工艺方法.CN1101952A.1995-4-26
    [127] 吴华武.氧化锌晶须的制备方法及装置CN1099816A.1995-3-8
    [128] Zuowan Zhou, Hai Deng, Jing Yi, et al. A New method for preparation of zinc oxide whiskers. Materials Research Bulletin, 1999, 34(10/11): 1563-1567
    [129] Y. Suyama, Y. Tomokiyo, T. Manabe, et al. Shape and structure of zinc oxide particles prepared by vapor-phase oxidation of zinc vapor. J. Am. Ceram. Soc. 1988, 71: 391-395
    [130] A. A. A. Saleh, X. J. Zhai, Y. C. Zhai, et al. Preparation of nanometer zinc oxide by evaporation method. Acta Metallurgical Sinica (English letters), 2002, 15(6): 499-504
    [131] Y. Dai, Y. Zhang, Q. K. Li. Synthesis and optical properties of tetrapod-like zinc oxide nanorods. Chemical Physics Letters, 2002, 358: 83-86
    [132] Xiaoming. S, Xing. C, Yadong, L, Evaporation growth of multipod ZnO whiskers assisted by a Cu~(+2) etching technique. J. Crystal Growth, 2002, 244: 218-223
    [133] Jinmin Wang, Lian Gao. Synthesis of uniform rod-like, multi-pod-like ZnO whiskers and their photoluminescence properties. J. Crystal Growth, 2004, 262: 290-294
    [134] C. C. Tang, S. S. Fan, Marc Lamy de la Chapelle, et al. Silica-assisted catalytic growth of oxide and nitride nanowires. Chemical Physics Letters, 2001, 333: 12-15
    [135] Xian-Hua Zhang, Su-Yuan Xie, Zhi-Yuan Jiang, et al. Microwave plasma growth and high spatial resolution cathodoluminescent spectrum of tetrapod ZnO nanostructures. Journal of Solid State Chemistry, 2003, 173: 109-113
    [136] V. A. L. Roy, A. B. Djurisic, W. K. Chan. et al. Luminescent and structure properties of ZnO nanorods prepared under different conditions. Appl. Phy. Lett. 2003, 83(1): 141-143
    [137] Run Wu, Jun Wu, Changsheng Xie, et al. Morphological characteristic of Zn/ZnO nanopowders and the optical properties. Materials Science and Engineering A, 2002, 328: 196-200
    [138] Run Wu, Xie Chang-sheng, Xia Hui, et al. The thermal physical formation of ZnO nanoparticles and their morphology. J. Crystal Growth. 2000, 217: 274-280
    [139] Joodong Park, Han-Ho Choi, Kerry Siebein, et al. Two-step evaporation process for formation of aligned zinc oxide nanowires. J. Crystal Growth, 2003, 258: 342-348
    [140] Q. Wan, K. Yu, T. H. Wang, et al. Low-field electron emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation. Appl. Phy. Lett. 2003, 83(11): 2253-2255
    [141] D. W. Zeng, C. S. Xie, B. L. Zhu, et al. Controlled growth of ZnO nanomaterials via doping Sb. J. Crystal Growth, 2004, 266: 511-518
    [142] Yu Hang Leung, Aleksandra B. Djurisic, Ju Gao, et al. Changing the shape of ZnO nanostructures by controlling Zn vapor release: from tetrapod to bone-like nanorods. Chemical Physics Letters, 2004, 385: 155-159
    [143] H. Iwanaga, M. Fujii, S. Takeuchi, Inter-leg angles in tetrapod ZnO particles. J. Crystal Growth, 1998, 183: 190-195
    [144] H. Iwanaga, M. Fujii, S. Takeuchi, Growth model of tetrapod-like zinc oxide particles. [J]. J. Crystal Growth, 1993, 134: 275-280
    [145] H. Iwanaga, M. Fujii, S. Takeuchi, Structure of tetrapod-like ZnO crystals. J. Crystal Growth, 1993, 128: 1095-1098
    [146] Ying Dai, Yue Zhang, Zhong Lin Wang. The octa-twin tetraleg ZnO nanostructures. Solid State Communications, 2003, 126: 629-633
    [147] Ying Dai, Yue Zhang, Yuan Qiang Bai, et al. Bicrystalline zinc oxide nanowires. Chemical Physics Letters, 2003, 375: 96-101
    [148] Motoi K, Takeshi. H, Sachiko. M, Morphology and growth mechanism of new-shaped ZnO crystals. J. Crystal Growth, 1993, 128: 1099
    [149] 周祚万,彭卫民,邓海.氧化锌晶须及其复合材料的应用.化工新型材料,1998,26(11):13-15
    [150] Mitsmasa. O. Electrical conductivity of tetrapod-shaped ZnO whiskers. Jpn. J. Appl. Phys, Part1, 1993, 32(9B): 4377.
    [151] 田雅娟,陈尔凡,程远杰,等.四脚状氧化锌晶须及应用.硅酸盐学报.2000,28(2):165-168
    [152] 田雅娟,于洋,陈尔凡.四脚状氧化锌晶须增强MC尼龙复合材料的研究.工程塑料应用.2002,30(8):4~6
    [153] Zuowan Zhou. Tetrapod-shaped ZnO whisker and its composites. J. Materials Processing Technology, 1999, 89-90: 415.
    [154] T. Xu, C. S. Xie.Tetrapod-like nano-particle ZnO/acrylic resin composite and its multi-function property. Progress in Organic Coatings, 2003, 46: 297-301
    [155] 周祚万,楚珑晟,雷强.氧化锌晶须在树脂基复合材料中的应用.化工新型材料.2001,29(9):45-47.
    [156] 胡义,姚国萍.ZnO晶须用作泡沫硅橡胶增强体应用研究.有机硅材料,1996,10(1):11-14
    [157] 胡义,姚国萍.用物理发泡剂制备韧性泡沫硅橡胶.有机硅材料,2000,14(1):11-14
    [158] 陈宏,胡文军,陈晓丽,等.已烯基含量对开孔硅橡胶泡沫材料性能的影响.橡胶工业,2000,47(8):460-463
    [159] 吴华武,黄红花.含四针状ZnO晶须的高分子导电膜的研制.功能材料.1999,30(4):389-391
    [160] 周祚万,刘世楷,顾丽霞.四针状ZnOw/树脂基复合材料导电性能的研究.功能材料,2001,32(5):492-495
    [161] 周祚万,卢昌颖.复合型导电高分子材料导电性能影响因素研究概况.高分子材料科学与工程,1998,14(2):5-7
    [162] Z. Dang, L. Fan, Y. Shen, et al. Study of thermal and dielectric behavior of low-density polyethylene composites reinforced with zinc oxide whiskers. Journal of Thermal Analysis and Calorimetry, 2003, 71: 635-641
    [163] R. Vijaya Kumar, R. Elgamiel, Yu. Koltypin, et al. Synthesis and characterization of a micro scale zinc oxide-PVA composite by ultrasound irradiation and the effect of composite on the crystal growth of zinc oxide. J. Crystal Growth, 2003, 250: 409-417
    [164] 周祚万,谢宁,易锦.PVC/ZnO_w复合材料的抗静电性能研究.西南交通大学学报.1998,33(2):179-182
    [165] Biaobing Wang, Zuowan Zhou, Lixia Gu Influence oftetrapod-shaped zinc oxide whisker on poly(vinylidene fluoride) based gel polymer electrolyte. Materials Research Bulletin, 2003, 38: 1449-1455
    [166] 彭曙光.四针状氧化锌晶须的性能应用制备和市场[A],第八届全国铅锌冶金技术产品应用学术年会论文集[C].中国有色金属学会重冶学术委员会,2001.6:267-270
    [167] 马峰,翟学军.防静电阻燃聚丙烯材料制备方法的研究.物理.2000,29(9):552-555
    [168] Zuowan Zhou, Longsheng Chu, Wenming Tang, et al. Studies on the antistatic mechanism of tetrapod-shaped zinc oxide whisker. Journal of Electrostatics, 2003, 57: 347-354
    [169] 张文,陈长勇,金增平,等.氧化锌晶须/环氧树脂复合材料减振性能.青岛化工学院学报,1998,19(4):361-364
    [170] Deng Hai, Zhou Zuowan. The absorption behavior of tetrapod-shaped ZnO whiskers. Journal of Southwest Jiaotong University, 1999, 7(2): 203-208
    [171] 邓龙江,谢建良,梁迪飞.磁性材料在RAM中的应用及其进展.功能材料1999,30(2):118-121
    [172] 吴行,姚大庆,谢宁,等.多层复合型电磁屏蔽涂料的研究.功能材料,2001,32(4):365-367
    [173] 黄婉霞,陈家钊,毛健.氧化锌形态及含量对ZnO/Ni-Zn铁氧体复合材料电磁特性的影响.功能材料与器件学报,1997,3(4):259-262
    [174] Ishihara. M. Solid-State Materials for Advanced Technology.[J].Materials Science & Engineering B, 1996, 38: 1-2
    [175] Shuhei Nishida, Yutaka Funabashi, Atsushi Ikai. Combination of AFM with an objective-type total internal reflection fluorescence microscope (TIRFM) for nanomanipulation of single cells. [J]. Ultramicoscopy. 2002, 91: 269-274
    [176] Maeda. S. Modification of zinc oxide whisker. JP3160000. 1991
    [177] Wu Jun, Xie Changsheng, Bai Zikui, et al. Preparation of ZnO-glass varistor from tetrapod ZnO nanopowders. Materials Science and Engineering B, 2002, 95: 157-161
    [178] 梁英教,车荫昌,刘晓霞.无机物热力学数据手册.沈阳,东北大学出版社,1993.478
    [179] 傅崇说.冶金溶液热力学原理与计算.北京:科学出版社,1979.66
    [180] 戴永年,赵忠.真空冶金.北京:冶金工业出版社,1988.17
    [181] O. Winkler, R. Bakish.真空冶金学(,唐显澄,沈勇将,潘健武译)上海:上海科学技术出版社.1982.169
    [182] 胡荣祖,史启祯.热分析动力学.北京:科学出版社,1985.96
    [183] 莫鼎成.冶金反应动力学.长沙.中南工业大学出版社,1987.92
    [184] Blakely. J. M., K. A. Jackson. Growth of crystal whiskers, J. Chem. Phys. 1962, 37: 428-430
    [185] Webb, W. W. Dislocation mechanisms in the growth of palladium whisker crystals. J. Appl. Phys. 1965, 36: 214-221
    [186] Givargizov, E. I., A. A. Chernov. Rate of whisker growth by vapor-liquid-crystal mechanism and the role of surface energy. Sov. Phys.-Crystallogar. 1973, 18: 89-92
    [187] Kevin J. Davis, Patricia M. Dove, James J. De Yoreo. The role of Mg~(2+) as an impurity in calcite growth. Science, 2000, 290: 1134-1137
    [188] Ruth, V., J. P. Hirth. Kinetics of diffusion-controlled whisker growth. J. Chem. Phys., 1964, 41: 3139-3149
    [189] F. Z. Aoumeur, Kh. Benkabou, B. Belgoumene. Structural and dynamical properties of ZnO in zinc-blende and rocksalt phases. Physica B, 2003, 337: 292-297
    [190] Carl. H. Bates, William. B. White, Rustum Roy. New high-pressure polymorph of zinc oxide. Science, 1962, 137: 993.
    [191] Hideyuki Maki, Noboru Ichinose, Naoki Ohashi. et al. Lattice relaxation of a ZnO(0001) surface accompanied by a decrease in antibonding feature. J. Crystal Growth, 2001, 229: 114-118
    [192] Hideyuki Maki, Noboru Ichinose, Naoki Ohashi. et al. The lattice relaxation of ZnO single crystal(0001) surface. Surface Science, 2000, 457: 377-382
    [193] H. Maki, T. Ikoma, I. Sakaguchi, et al. Control of surface morphology of ZnO (0001) by hydrochloric acid etching Thin Solid Films, 2002, 411: 91-95
    [194] T. M. Parker, N. G. Condon, R. Lindsay, et al. Imaging the polar (0001) and non-polar (1010) surfaces of ZnO with STM. Surface Science, 1998, 415: L1046-L1050
    [195] Olga Dulub, Lynn A. Boatuner, Ulrike Diebold. STM study of the geometric and electronic structure of ZnO(0001)-Zn, (0001)-O, (10 10), and (11 20) surfaces. Surface Science, 2002, 519: 201-217
    [196] A. N. Mariano, R. E. Hanneman. Crystallographic polarity of ZnO crystals. J. Appl. Phys., 1963, 34(2): 384-388
    [197] Lioudmila N. Mechanism of zinc oxide single crystal growth under hydrothermal conditions. Ann. Chim. Mat. 2001, 26: 193
    [198] M. Kitano, T. Okabe, M. Shiojiri. Growth of electrocrystallized ZnO particles by reaction of vacuum-deposited Zn films with distilled water. J. Crystal Growth, 1995, 152: 73.
    [199] Jong-Soo Lee, Kwangsue Park, Myung-IL Kang, et al. ZnO nanomaterials synthesized from thermal evaporation of ball-milled ZnO powders. J. Crystal Growth, 2003, 254: 423-431
    [200] Xiaoming Sun, Zhaoxiang Deng, Yadong Li Self-organized growth of ZnO single crystal columns array. Materials Chemistry and Physics, 2003, 80: 366-370
    [201] Hongtao Yuan, Yao Zhang. Preparation of well-alignedZnO whiskers on glass substrate by atmospheric MOCVD. J. Crystal Growth, 2004, 263: 119-124
    [202] J. G. Wen, J. Y. Lao, D. Z. Wang, et al. Self-assembly of semiconducting oxide nanowires, nanorods, and nanoribbons. Chemical Physics Letters, 2003, 372: 717-722
    [203] J. -M. Ntep, M. Barbe, G. Cohen-Solal, et al. ZnO growth by chemically assisted sublimation. J. Crystal Growth, 1998, 184/185: 1026-1030
    [204] H. Iwanaga, N. Shibata. Crystal growth in c direction and crystallographic polarity in ZnO crystals. J. Crystal Growth, 1978, 45: 228-232
    [205] T. Yoshiie, H. Iwanaga, T. Yamaguchi, et al. Effect of oxygen on the growth of ZnO crystals along the polar axis. J. Crystal Growth 1981, 53: 639-641
    [206] S. D. Sharma, Subhash, C. K. Growth of whiskers, platelets, and dendrites. J. Appl. Phys., 1971, 42(13): 5302-5304
    [207] Shinobu H., Akira Y. Growth morphology and mechanism of a hollow ZnO polycrystal. J. Am. Ceram. Soc., 1996, 79(4): 1121-1123
    [208] Saitoh. H. Homogeneous growth of zinc oxide whiskers. Jpn. J. Appl. Phys, Part1, 1999, 38(12A): 6873-6876
    [209] T. Matsushita, K. Kodaira, J. Saito. Growth of ZnO needle crystals by vapor phase reaction method. J. Crystal Growth, 1974, 26: 147-151
    [210] J. Q. Hu, X. L. Ma, Z. Y. Xie. Characterization of zinc oxide crystal whiskers grown by thermal evaporation. Chemical Physics Letters. 2001, 344: 97-99
    [211] J. Q. Hu, Quan Li, N. B. Wong, et al. Synthesis of Uniform Hexagonal Prismatic ZnO Whiskers. Chem. Mater. 2002, 14: 1216-1219
    [212] J. Y. Li, X. L. Chen, H. Li. Fabrication of zinc oxide nanorods. J. Crystal Growth, 2001, 233: 5-9
    [213] Yingkai Liu, Zhihui Liu, Guanghou Wang, et al. Synthesis and characterization of ZnO nanorods. J. Crystal Growth, 2003, 252: 213-218
    [214] Y. G. Wang, Clement Yuen, S. P. Lau, et al. Ultraviolet lasing of ZnO whiskers preparedby catalyst-free thermal evaporation. Chemical Physics Letters, 2003, 377: 329-332
    [215] T. Sato, T. Tanigaki, H. Suzuki, et al. Structure and optical spectrum of ZnO nanoparticles produced in RF plasma. J. Crystal Growth, 2003, 255: 313-316
    [216] 杨声海.Zn(Ⅱ)-NH_3-NH_4Cl-H_2O体系制备高纯锌理论及应用[博士学位论文].长沙:中南大学,2003,3
    [217] 方开泰.均匀设计与均匀设计表.北京:科学出版社,1994.87
    [218] H. Iwanaga, T. Yamaguchi. Growth mechanism of hollow ZnO crystals from ZnSe. J. Crystal Growth, 1978, 43: 71.
    [219] K. J. Ficher. Vapor phase growth of ZnO crystals in an open system. J. Crystal Growth, 1976,34:139
    [220] K. Kish Morphological change from copper/α-copper-zinc whiskers to dendrites in zinc reduction growth. J. Crystal Growth, 1978,45:517
    [221] Yamada K. Growth of dendrite zinc oxide crystals by rapid condensation of high-temperature ultrasuper-saturated gas. Naturwissenshaften, 1994,81 (2):85.
    [222] J. Perkins. Morphology of ZnO microcrystals. J. Crystal Growth, 1977,40:152
    [223] 陈艺锋,唐谟堂,张保平等.气相氧化法制备氧化锌的结晶形貌研究.中国有色金属学报.2004,1 4(3):504-508.
    [224] 陈镜泓,李传儒.热分析及其应用.北京:科学出版社,2001.113
    [225] I. Sunagawa. Morphology of crystals, Part B. Tokyo: Terra Scientific Publishing Company, 1987.395-411
    [226] Kimoto K, Kamiya Y, Nonoyama M, et al. An electron microscope study on fine metal particles prepared by evaporation in argon at low pressure. Jpn.J.Appl.Phys,1963(2):702-713
    [227] Okazaki T, Uyeda R. Crystal habits of fine metal crystallites made by gas-evaporation method(I)Mg, Zn and Cd. J.Jpn.Assoc.Cryst.Growth, 1981 (8): 173-179
    [228] Wada N. Preparation of fine metal particles by means of evaporation in helium gas. Jpn.J.Appl.Phys, 1967(6):553-556
    [229] Wada N. Preparation of fine metal particles by means of evaporation in xenon gas. Jpn.J.Appl.Phys, 1968(7): 1278-1293
    [230] Kimoto K, Nishida I. An electron microscope and electron diffraction study on free smoke particles prepared by evaporation in argon gas at low pressure(Ⅱ). Jpn.J.Appl.Phys, 1967(6): 1047-1059
    [231] Andd Y Fine zinc crystals grown by a vacuum evaporation method, J.Jpn.Assoc.Cryst.Growth, 1981 (8): 19-25
    [232] 陈允鸿,姜玉梅.蒸发冷凝法中气体压强和蒸发温度对粒子大小的影响.功能材料,1994,25(5);418-421
    [233] W. J. Moore, E.L.Williams. Diffusion of zinc and oxygen in zinc oxide[A], Crystal imperfections and the chemical reactivity of solids.[C] Scotland: the Aberdeen University press Ltd. 1975.86-93
    [234] E. A. Secco. Exchange of zinc in polycrystalline zinc oxide.[A] , Crystal imperfections and the chemical reactivity of solids.[C] Scotland: the Aberdeen University press Ltd. 1975:94-103
    [235] Ing-Chi Leu, Yang-Ming Lu, Min-Hsing Hon. Factors determining the diameter of silicon carbide whiskers prepared by chemical vapor deposition. Material Chemistry and Physics, 1998,56:256-261
    [236] I. Bolshakova, T.Moskovets, I.Ostrovskii, et al. Modeling of InSb and InAs whiskers growth. Computational Material Science, 1998,10:38-41
    [237] Ing-Chi Leu, Min-Hsiung Hon. Nucleation behavior of silicon carbide whiskers grown by chemical vapor deposition. J. Crystal Growth, 2002,236:171-175
    [238] Niklas Ahlen, Mats Johnsson, Ann-Kristin Larsson, et al. On the carbothermal vapour-liquid-solid (VLS) mechanism for TaC, TiC, and Ta_xTi_(1-x)C whisker growth.. Journal of the European Ceramic Society, 2000,20:2607-2618
    [239] P. Van der sluis, J.Kroon. The development and prediction of needle habits. J.Crystal Growth, 1990, 104:310-314
    [240] Shinji Otoishi, Yoshihiro Tange. Growth rate and morphology of silicon carbide whiskers from polycarbosilane. J. Crystal Growth, 1999,200:467-471
    [241] Douglas H. Lowndes, Jason D. Fowlkes, Antonio J. Pedraza. Early stages of pulsed-laser growth of silicon microcolumns and microcones in air and SF_6 Applied Surface Science, 2000 154-155:647-658
    [242] D.P. Yua, Y.J. Xinga, Q.L. Hanga, et al. Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism. Physica E, 2001, 9:305-309
    [243] B.C.Tischendorf, T.M. Alam, R.T. Cygan; et al. The structure and properties of binary zinc phosphate glasses studied by molecular dynamics simulations. Journal of Non-Crystalline Solids, 2003,316:261-272
    [244] Geoff Thornton. Watching nanoparticles grow. Science, 2003,300:1378-1379
    [245] F. M. Ross, R. M. Tromp, M. C. Reuter. Transition states between pyramids and domes during Ge/Si Island Growth. Science, 1999,286:1931-1934
    [246] J. Yoshihara, S.C. Parker, C.T. Campbell. Island growth kinetics during vapor deposition of Cu onto the Zn-terminated ZnO(0001) surface. Surface Science, 1999,439:153-162
    [247] A. Wander, N.M. Harrison. An ab initio study of ZnO(1010). Surface Science, 2000,457: L342-L346
    [248] Zhenyu Zhang and Max G. Lagally. Atomistic processes in the early stages of thin-film growth. Science, 1997,276:377-383
    [249] George V. Chertihm, Lester Andrews. Reaction of laser-ablated Zn and Cd atoms with O_2: Infrared spectra of ZnO, OZnO, CdO and OCdO m solid argon. J.Chem.Phys. 1997, 106(9): 3457-3465
    [250] Andrei Burnin, Joseph J. BelBruno. Zn_nS_m~+ cluster production by laser ablation, Chemical Physics Letters, 2002,362:341-348
    [251] 虞觉奇,易文质.二元合金状态图集.上海:科学技术出版社,1987.172
    [252] 李淑兰,刘永成,翟大成等.硬锌真空蒸馏富集锗铟的研究.昆明工学院学报,1994,19(4):38-45
    [253] 陈艺锋,唐谟堂,杨声海.热镀锌渣制备四针状氧化锌晶须的方法与实验研究[A],2003全国粉末冶金学术会议论文集[C].长沙:中南大学出版社,2003.414-418.
    [254] Chen yi-feng, Tang too-tang, Yang sheng-hai, et al. Preparation of tetrapod-like ZnO whiskers from waste hot dipping zinc. [J]J.CENT.SOUTH UNIV.TECHNOL.2004, 11 (1):51-54.
    [255] 余永宁,毛卫民.材料的结构.北京:冶金工业出版社,2001.86-93
    [256] J. Kubota, K. Haga, Y. Kashiwaba, et al. Characteristics of ZnO whiskers prepared from organic-zinc. Applied Surface Science, 2003,216:431-435
    [257] D.C. Reynoldsa, D.C. Looka, B. Jogaia, et al. Determination of defect pair orientation in ZnO. Solid State Communications, 1999,109: 419-422
    [258] 张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001.300

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700