微尺度流动及强化混合技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为MEMS技术的一个重要分支,微流体系统已得到了很大的发展和广泛的应用,但其内部的流动和传递过程的理论仍不成熟。为此,本文着眼微尺度流动与传热传质,采用理论分析和数值模拟的方法,分别就微喷管内的流动特性及推进性能、微尺度下强化混合技术进行了较为系统的研究,并设计和制作了微喷管和微混合器,用实验的方法来验证理论分析。
     针对微槽道中气体流动的特征,分别采用连续介质模型和分子运动模型(DSMC方法)简要分析了连续介质模型中不同滑移边界条件的适用范围,并总结出稀薄效应对槽道中压力的的影响和可压缩效应的作用趋势是相反的。
     通过DSMC方法和求解无滑移和有滑移的Navier-Stokes方程,对微喷管中的流动特性和推进性能进行了数值模拟,分析了喷管的外形、工作压力及温度边界条件对流场结构和推进性能的影响,提出相应的优化方案,并以此为参考设计和制作了微喷管。研究表明,在喷管扩张段气体的非平衡效应和稀薄效应增强;雷诺数是表征喷管性能的特征参数,调节喷管尺寸和工作压力获得合适的雷诺数,以改善推进效率;增大推进工质的滞止温度将提高比冲,但以牺牲推进效率为代价。
     微尺度下强化混合技术即是增大混合流体间的接触面积,加强分子扩散的过程。其中,被动式混合过程中,雷诺数(Re)和施密斯数(Sc)是它的相似准则数,而在主动式中,可以采用雷诺数(Re)、斯托拉赫数(St)和佩克莱数(Pe)或沃姆斯莱数(Pe)和佩克莱数(Wo)为相似准则数。
     从微尺度下混合过程的机理出发,根据不同应用场合,提出了基于合成射流的主动式混合器和带挡板的被动式混合器。利用Navier-Stokes方程和组分扩散方程研究了主动式混合器中进口条件以及射流参数对混合过程的影响,采用了相似分析方法分析了被动式混合器中不同槽道结构以及进口条件下的混合特征,研究表明,非对称的结构有利于混合的发生,被动式混合器中雷诺数表征了混合的发展状况。
     通过实验手段研究了不同槽道形状的被动式混合器中混合过程,利用流场显示方法验证了被动式混合器中混合效果随雷诺数的发展过程以及挡板高度对混合过程的影响的理论分析。
As one of the main branches of MEMS, micro flow systems have achieved a great development and wide application. However, there are many unsolved academic problems and challenges in the flow and transport processes of the micro fluidic systems. Focusing on the microscale flow, heat and mass transfer, in the present dissertation, the flow characteristics and thrust performance of the micronozzles, mixing enhancement technique for micro channel flows were studied in detail. Based on analytically and numerically results, micronozzles and micromixers were designed and fabricated. Their performances were evaluated numerically and experimentally.
     Numerical methods based on the continuum hypothesis and molecule kinetic theory are performed to investigate the gaseous flow in the microchannels. The validity of different boundary conditions based on continuum model is examined by DSMC method under different Knudsen number. It is found that the impact of rarefied and compressibility effects are different.
     DSMC method and Navier-Stokes equation (with no-slip and slip conditions) are applied to study the effects of configuration, operating parameters and temperature boundary conditions on flow characteristics and thrust performance of micronozzles in detail. The optimization proposals for micronozzle design are put forward based on the numerical data and analytical results. Numerical results show that the rarefied effects and non-equilibrium effects are strengthened due to larger Mach number in the divergent section of micronozzle. The Reynolds number is the key parameter for the micronozzle performance. To improve the propulsion efficiency, the appropriate Reynolds number could be obtained by either regulating the operating pressure or nozzle size. Special impulse is increased by the higher propellant temperature, which results in the loss of thrust efficiency.
     Due to the laminar nature of the flow, the mixing rate is strongly diffusion limited and long mixing channel or time may be required to attain full mixing. As a result, the rapid mixing is difficult to achieve in these micro channels. Strategies to increase stream-stream mixing can be broken into two main categories: active and passive. For passive mixing, the Reynolds number and Schmidt number are the similarity parameters. On the other hand, Reynolds number, Strouhal number, peclet number or Womersley number and Peclet number are the similarity parameters for active mixing.
     For different application purposes, active mixer based on synthetic jet and passive mixer with baffles at the inlet of confluent channel are proposed. To investigate the effect of the inlet velocity and the jet parameters on the mixing efficiency, Navier-Stokes equations with species diffusion equation are solved to study the mixing process in the active mixer. The similarity theory is applied to study the mixing performance of the passive mixers with different channel configuration and inlet conditions. It is found that active mixer with asymmetric structure has better mixing effectiveness; For passive mixing, as the baffle height increased, the mixing effectiveness improved significantly, while the pressure loss due to extra baffles increased a lot accordingly. The mixing performance improvement and pressure loss depended strongly on the operating Reynolds number. The mixing performances of passive mixer are also experimentally studied by the flow-field visualization. The results validate the numerical data.
引文
[1] R. Feynman. Their's Plenty of Room at the Bottom, Journal of MEMS, 1992, 1(1):60-66.
    [2] Fan L.S., Tai Y. C., Muller R.S.. IC-processed electrostatic micrometers. Sensors and Actuators, 1989, 20(15): 41-47.
    [3] 周兆英,杨兴.微/纳机电系统.仪表技术与传感器.2003,(2):1-5.
    [4] 林忠华,胡国清等.微机电系统的发展及应用.2004,2(2):117-123.
    [5] Nagel D. J.. MEMS: micro technology. IEEE Circuits & Device, 2001, 17(2): 14-25.
    [6] 徐泰然.MEMS和微系统 设计与制造,机械工业出版社,北京,2004.
    [7] 李德胜等.MEMS技术及其应用,哈尔滨工业大学出版社,哈尔滨,2003.
    [8] He C. M., Tai Y. C.. Micro Electro Mechanical Systems (MEMS) and Fluid Flows. Ann Rev Fluid Mech, 1998, 30: 579-612.
    [9] Judy J W. Microelectromechanical systems(MEMS): fabrication, design, and applications. Smart Materials and Structures. 2001, 10: 1115-1135.
    [10] 王沫然,李志信.基于MEMS的微流体机械研究进展.流体机械.2002,30(4):23-28.
    [11] http://www.electronics.ca/presscenter/articles/214/1/MEMS-Market-To-Reach-125-Billion-In-2010/Pagel.html
    [12] Karniadakis G. E., Beskok, A.. Micro Flows: Fundamentals and Simulation, New York: Springer-Verlag, 2002.
    [13] Gatzen H M. Rigid disk slider micromachining challenges to meet microtribology needs. Tribology International. 2000, 33: 337-342.
    [14] Meinhart C. D., Zhang H. The flow stucture inside a microfabricated inkjet printhead. Journal of Microelectromechanical Systems, 2000, 9(3): 67~75.
    [15] Hasegawa T, Suganuma M, Watanabe H. Anomaly of Excess Pressure Drops of the Flow Through Very Small Orifices. Phys. Fluids, 1997, 9(1): 1-3.
    [16] Jansen S. W., Helvajian H., and Breuer K.. MEMS, Microengineering and Aerospace Systems, 1999, AIAA Paper99-3802.
    [17] Muller J, Marrese C, Polk J, et al. An overview of MEMS-based micropropulsion developments at JPL. The 3rd International Symposium on Small Satellites for Earth Observation. Berlin: IAA, 2001.
    [18] Bayt R. L.. Analysis, Fabrication and Testing of a MEMS-Fabricated Micropropulsion System. Ph. D. Dissertation, MIT, Cambridge, MA, USA, 1999.
    [19] Byat R., Breuer K.. Fabrication and testing of micron-sized cold gas thrusters. Micropropulsion of small spacecraft, Advances in Aeronautics and Astroautics, eds. M. Micci and A. Ketsdever, AIAA-2000 Press, 187.
    [20] G. M. Whitesides. The origins and the future of microfluidics. Nature, 2006, 442: 368-373.
    [21] Stone H A, Stroock A D, Ajdari A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Ann Rev Fluid Mech, 2004, 36: 381-411.
    [22] Balagadde, F. K., You, L., Hansen, C. L., Arnold, F. H. & Quake, S. R. Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science, 2005, 309: 137-140.
    [23] Gad-el-Hak M. The MEMS Handbook, Boca Raton: CRC Press, 2001.
    [24] 过增元.国际传热研究前沿——微细尺度传热.力学进展,2000,30(1):1-6.
    [25] GUO Z Y, LI Z X. Size effect on microscale single-phase flow and heat transfer. Int J Heat Mass transfer, 2003, 46(1): 149-159.
    [26] GUO Z Y, LI Z X. Size effect on single-phase channel flow and heat transfer at micro scale. International Journal of Heat and Fluid Flow, 2003, 24: 284-298.
    [27] M. Wautelet. On the physics of micromachines. European Journal of Physics. 1999, 20(6): 601-611.
    [28] Zengerle R, Sandmalerm. H. Microfluidics. in 7th Intern. Symposium on Micro Machine and Human Science, 1996: 13-20.
    [29] I. Hassan. Thermal-fluid MEMS devices: A decade of progress and challenges ahead. Journal of Heat Transfer., 2006, 128 (11): 1221-1233.
    [30] Arkilic E B, Schmidt M A, Breuer K S. Gaseous slip flow in long microchannels. J. MEMS, 1997, 6(2): 167-178.
    [31] Beskok A, Kamiadakis G E, Trimmer W. Rarefaction and compressibility effects in gas microflows. Journal of Fluids Engineering, 1996, 118(5): 448-456.
    [32] Lee T., Lin C. L.. Rarefaction and compressibility effects of the lattice-Boltzmann-equation method in a gasmicrochannel. Phys. Rev. E, 2005, 71, 046706.
    [33] 王沫然,李志信.微尺度气体滑动轴承的数值模拟与性能分析.摩擦学学报,2005,25(1):P.55-60.
    [34] Gad-el-Hak M. gas and liquid transport at the microscale. Heat transfer Engineering. 2006, 27(4): 13-29.
    [35] S. A. Schaff and P. L. Chambre. Flow of rarefied gases. Princeton, New Jersey: Princeton University Press, 1961.
    [36] Gad-el-Hak Mohamed. The fluid mechanics of microdevices-The Freeman Scholar Lecture. Journal of Fluids Engineering. 1999, 121: 5~33.
    [37] Chapman S., T. G. Cowling. The Mathematical Theory of Non-uniform Gases. Cambridge U K: Cambridge University Press, 1961.
    [38] Chapman S., T. G. Cowling.非均匀气体的数学理论,科学出版社,1995, 刘大有等译.
    [39] Pong K C, Ho C M, Liu J Q, and Tai Y C. Nonlinear Pressure Distribution in Uniform Microchannels. Application of Microfabrication to Fluid Mechanics, FDRL, ASME 1994, 197: 51-56
    [40] Arkilic E B. Measurement of the Mass Flow and Tangential Momentum Accommodation Coefficient in Silicon Micromachined Channels. Ph. D Thesis, Cambridge, MIT, 1997.
    [41] Beskok A. Simulation and Models for Gas Flows in Microgeometries. [Ph. D Thesis].Princeton University. 1996,
    [42] Zhong X, MacCormack R W, and Chapman D R.. Stabilization of the Burnett equations and application to high-altitude hypersonic flows, 1991, AIAA paper 91-0770.
    [43] 沈青.稀薄气体动力学.国防工业出版社,北京,2003.
    [44] 吴其芬.高温稀薄气体热化学非平衡流动的DSMC方法.国防科技大学出版,长沙,1999.
    [45] Frisch U, Hasslacher H, and Pomeau Y. Lattice-gas automata for the Navier-Stokes equation. Phys. Rev. Lett. 1986, 56: 1505-1508.
    [46] Sauro S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press. 2001
    [47] Wolf-Gladrow D A. Lattice-Gas Cellular Automata and Lattice Boltzmann Models. Springer-Verlag Berlin Heidelberg. 2000.
    [48] Chen S, Doolen G D. Lattice Boltzmann method for fluid flow. Annu. Rev. Fluid Mech., 1998, 30: 329-364.
    [49] 王兴勇,索丽生,刘德有,程永光.LaRice Boltzmann方法理沦和应用的新进展.河海大学学报,2002,30(6):1-6.
    [50] 刘静,微米/纳米尺度传热学.科学出版社,北京,2001.
    [51] Koplik J, Banavar J R. Continuum Reductions from Molecular Hydrodynamics. Annu. Rev. Fluid Mech. 1995, 27: 257-292.
    [52] Allen M P,, Tildesley D J. Computer Simulation of Liquid. Oxford Uinversity Press. 1987.
    [53] Bird G A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford Science Publications, 1994.
    [54] Oran E S, Oh C K and Cybyk B Z. Direct Simulation Monte Carlo: Recent Advances and Applications. Annual Review of Fluid Mechanics. 1998. 30: 403-441.
    [55] Bird G A. Recent advances and current challenges for DSMC. Computers Math. Applic.1998,35: 1-14
    
    [56] 沈青.DSMC 方法与稀薄气流计算的发展.力学进展. 2002,26(1): 1-13.
    [57] Oran, E. S., Oh, C. K., Cybyk, B. Z., Direct simulation Monte Carlo: Recent advances and applications, Annual Review of Fluid Mechanics, 1998, 30: 403-441.
    [58] Alexander F J , Garcia A L. The direct simulation Monte Carlo method. Computers in Physics, 1997, 11(6): 588-93.
    [59] Liou W W , Fang Y. Heat Transfer in MicroChannel Devices Using DSMC. J. Microelectromech. Syst. 2001,10:274-279.
    [60] Xue H, Fan Q, Shu C. Prediction of micro-channel flows using direct simulation Monte Carlo. Probobilistic Engineering Mechanics, 2000,15:213 - 219.
    [61] Wagner W. A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation. J. Stat. Phys. 1992,66: 1011-1044.
    [62] K. Koura, H. Matsummoto. Variable soft sphere molecular model for inverse-power-law or Lennard-Jones potential. Physics of Fluids A, 1991,3(10): 2459-2465.
    [63] K. Koura, H. Matsummoto. Variable soft sphere molecular model for air species. Physics of Fluids A, 1992,4(5): 1083-1085.
    [64] Hassan H. A., Hash, D. B.. A Generalized Hard-Sphere Model for Monte Carlo Simulation. Phys. Fluids A, 1993, 5(3):738-744.
    [65] M. N. Macrossan. μ-DSMC: A general viscosity method for rarefied flows. J. Comp Phys, 185,612-627(2003).
    [66] Alexander F J, Garcia A L, and Alder B J. A Consistent Boltzmann Algorithm. Phys. Rev. Lett. 1995,74:5212-5215.
    [67] Alexander F J, Garcia A L, and Alder B J. The consistent Boltzmann algorithm for the van der Waals equation of state. Physica A, 1997,240: 196-201.
    [68] Garcia A L, Alexander F J, and Alder B J. A particle method with adjustable Transport properties—The generalized consistent Boltzmann algorithm. J. Stat. Phys., 1997, 89:403-409.
    [69] Kortemeyer G, Daffin F, and Bauer W. Nuclear flow in consistent Boltzmann algorithm models. Phys. Lett. B, 1996, 374: 25-30.
    [70] Hadjiconstantinou N G, Garcia A L, and Alder B J. The surface properties of a van der Waals fluid. Physica A, 2000, 281: 337-347.
    [71] Wang M R and Li Z X. Nonideal gas flow and heat transfer in micro- and nanochannels using the direct simulation Monte Carlo method. Phys. Rev. E., 2003, 68: 046704.
    [72] Nance R P, Hash D B, Hassan H A. Role of Boundary conditions in Monte Carlo Simulation of MEMS devices. Journal of Thermalphysics and Heat Transfer, 1998, 12: 447-449.
    [73] Cai C P, Boyd I D, Fan J. Candler G. Direct simulation methods for low-speed microchannel flows. J Thermophysics and Heat Transfer, 2000,14(3) :368-378.
    [74] Fan J, Shen C. Statistical simulation of low-speed rarefied gas flows. J Comput Phys, 2001, 167:393-412.
    [75] Shen, C, Fan, J., Xie, C. Statistical simulation of rarefied gas flows in micro-channels. Journal of Computational Physics, 2003,189: 512-526.
    [76] Sun Q, Boyd I D, and Candler G V. Numerical Simulation of Gas Flow over Microscale Airfoils. J. Thermophys. Heat Transfer. 2002, 16(2): 171-179.
    [77] M. Ikegawa, J. Kobayashi, M. Maruko, Study on the deposition profile characteristics in the micron-scale trench using direct simulation Monte Carlo method, Trans. ASME Fluids Eng. Div. 120(1998)296-302.
    [78] Markelov G, Ivanov M.. Numerical study of 2D/3D micronozzle flows.In Rarefied Gas Dynamics.eds.T.J.Bartel and M.Galiss, volume AIP,Melville,2001.
    [79] Alexeenko A, Collins R J, Gimelshein S F, Levin D A. Challenges of three-dimensional modeling of microscale propulsion devices with the DSMC method. Proceedings of 22nd Symposium on Rarefied Gas Dynamics,Sydney,Australia,July 2000.
    [80] Wilmoth R G. Adaptive Domain Decomposition for Monte Carlo Simulations on Parallel Processors. In Rarefied Gas Dynamics. Aachen. 1991, 1: 709-716.
    [81] LeBeau G J. A parallel implementation of the direct simulation Monte Carlo method. Comput. Methods Appl. Mech. Engrg. 1999, 174: 319-337.
    [82] Bartel T J, Plimpton S, and Gallis M A. A 2-D Direct Simulation Monte Carlo (DSMC) Code for Multi-processor Computers. Sandia Report, 2001.
    [83] Wu J S, Lian Y Y. Parallel direct simulation Monte Carlo method and its applications. Computer and Fluids. 2003, 32: 1133-1160.
    [84] Garcia A L, Bell J B, and Crutchfield W Y, and et al. Adaptive Mesh and Algorithm Refinement Using Direct Simulation Monte Carlo. J. Comput. Phys.. 1999, 154: 134-155.
    [85] Wijesinghe H S, Garcia A L, and Hornung R, and et al. 3-Dimensinal hybrid continuum-atomistic simulations for multiscale hybrodynamics. In: Proceedings of International Mechanical Engineering Congress and R&D Exp., IMECE2003-41251,2003.
    [86] Macrossan M N. A particle-only hybrid method for near-continuum flows. In AIP Conference Proceedings. 2001, 585(1): 388-395.
    [87] R. Greendyke, S. McCaslin, C. Hedge, C. Hollenshead. Simulation of Aerosol Deposition by Hybrid DSMC/MD Methods. AIAA-2003-1029.
    [88] A.P. London. A systems study of propulsion technologies for orbit and attitude control of microspacecraft. Massachusetts Institute of Technology, Master's Thesis, 1996.
    [89] A.H. Cpstein. The Inevitability of Small. Aerospace American, 2000, 38: 30-37.
    
    [90] M. Caceres, The emerging nanosatellite market. Aerospace America, Feb 2001,16-18.
    
    [91] D. Collins, K. Kukkonen and S. Venneri. Miniature, low-cost, highly autonomous spacecraft- a focus for the new millennium. In 46th International Astronautical Congress. 1996, IAF-96-U.2.06.
    [92] J. Mueller. Thruster options for microspacecraft: a review and evaluation of existing hardware and emerging technologies. In 33rd AIAA/ASME/SAE/ASEE/ Joint Propulsion Conference and Exhibit. 1997, AIAA 97-3058.
    [93] J. Muller, C. Marrese, J. Polk, et al. An overview of MEMS-based micropropulsion developments at JPL. Acta Astronautics, 2003,52(9-12): 881-895.
    [94] S.W. Janson, H. Helvajian, ST. Amimoto, et al. Microtechnology for space systems. Proceedings of IEEE Aerospace Conference, 1998,1: 409-418.
    [95] S.W. Jason, H. Helvajian. Batch-fabricated microthruster: initial results. In 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference. AIAA 96-2988.
    [96] [S.W. Jason. Batch-fabricated resistojets: initial results. In International Electric Propulsion Conference. Electric Rocket Propulsion Society, 1997, IEPC-97-070.
    [97] D.H. Lewis, S.W. Janson, R.B. Cohen, et al. Digital Micropropulsion. In MEMS'99 Orlando, FL, IEEE, 1999.
    [98] C. Rossi, S. Orieux, B. Larangot, et al. Design, fabrication and modeling of solid propellant. Microrocket-application to micropropulsion. Sensors Actuators, 2002, 99: 125-133.
    [99] C.ROSSI , D.ESTEVE. Micropyrotechnics, a new technology for making energetic microsystems: review and prospective. Sensors and Actuators A, 2005, 120: 297-310.
    [100] C. Rossi, D. Briand, M. Dumonteuil, et al. Matrix of 10 × 10 addressed solid propellant microthrusters: Review of the technologies. Sensors and Actuators A, 2006,126:241-252.
    [101] D. M. Gibbon, I. Coxhill, D. Nicolini, et al. The Design, Development and In-Flight Operation of a Water Resistojet Micropropulsion System. AIAA 2004-3798.
    [102] T.A. Grisnik, S.P. Smith and L.E. Saltz. Experimental study of low Reynolds number nozzles. In 19~(th) AIAA/DGLR/JSASS International Electric Propulsion Conference. AIAA 87-0992, 1987.
    [103] J.R. Hammel. Development of an unstructured 3D Direct Simulation Monte Carlo/Particle-in-cell code and the simulation of microthruster flow. Worcester Polytechnic Institute, Master's thesis, 2002.
    [104] XY Ye, F Tang, HQ Ding, et al. Study of a vaporizing water micro-thruster. Sensors and Actuator A-Physical, 2001, 89(1-2): 159-165.
    [105] MR Wang, ZX Li. Numerical simulations on performance of MEMS-based nozzles at moderate or low temperatures. Microfluidics and Nanofluidics, 2004, 1: 62-70.
    [106] 尤政,龚克,陆建华.微小卫星技术的发展思路.科技导报,2001,3:43-47.
    [107] 张先锋,刘明侯,张根烜,陈义良.微喷管流场及其推力性能数值模拟.宇航学报,2006,27(4):720-725.
    [108] G. A. Kuluva and N. M. Hosack. Supersonic nozzle discharge coefficients at low Reynolds numbers. AIAA Jouranl, 1971, 9(9): 1876-1877.
    [109] D. Rothe. Electron-beam studies of viscous flow in supersonic nozzles. AIAA Journal, 1971, 9(5): 804-811.
    [110] W. Rae. Some numerical results on viscous low-density nozzle flows in the slender-channel approximation. AIAA Journal, 1971, 9(5): 811-821.
    [111] Ivanov S. M., Markelov N. G., Kashkovsky V. A., Giordano D.. Numerical Analysis of Thruster Plume Interaction Problems. ESPC 97-A5/3, 2nd European Space Propulsion Conference, Noordwijk, NL, May, 1997.
    [112] T. A. Grisnik, S. P. Smith and L. E. Saltz. Experimental study of low Reynolds number nozzles. In 19th AIAA/DGLR/JSASS International Electric Propulsion Conference. AIAA 87-0992, 1987.
    [113] Ahsan R. Choudhuri, Benjamin Barid, S. R. Gollahalli, Effects Geometry and Ambient Pressure on Micronozzle flow. 37th AIAA Joint Propulsion Conference, AIAA paper 2001-3331.
    [114] Brain Reed, Decomposing Solid Micropropulsion Nozzle Performance Issues. 39th AIAA Joint Propulsion Conference, AIAA paper 2003-0672.
    [115] Zelesnik D, Micci M M, Long L N. Direct simulation Monte Carlo model of low Reynolds number nozzle flows. Journal of Propulsion and Power, 1994, 10(4):546-553.
    [116] S. C. Kim. Calculations of low-Reynolds-number resistojet nozzles. J. Spacecratt and Rockets, 1994, 31(4): 259-264.
    [117] R. L. Bayt, A. A. Ayon and K. S. Breuer. A performance Evaluation of MEMS-base Micronozzles. 33rd AIAA Joint Propulsion Conference, AIAA paper 97-3169.
    [118] R. L. Bayt and K. S. Breuer. Viscous effects in supersonic MEMS-fabricated micronozzles. In: Proceedings of the 3rd ASME Microfluids Symposium, Anaheim, 1998, CA: 117-123.
    [119] R. L. Bayt and K. S. Breuer. Systems design and performance of hot and cold supersonic microjets. 37th AIAA Joint Propulsion Conference, AIAA paper 2001-0721.
    [120] Boyd I. D., Jafry Y., Vanden Beukel J.. Investigation of Nozzle and Plume Expansions of a Small Helium Thruster. Proceedings of the Eighteenth International Symposium on Rarefied Gas Dynamics, Washington, D. C., 1994.
    [121] M. S. Ivanov, G. N. Markelov, A. D. Ketsdver, et al. Numerical study of cold gas micronozzle flows. In 37th Aerospace Sciences Meeting and Exhibit. AIAA 99-0166.
    [122] M. S. Ivanov, G. N. Markelov and S. F. Gimelshein. Statistical Simulation of reactive rarefied flows: numerical approach and applications. 34th AIAA Joint Propulsion Conference, AIAA paper 98-2669, 1998.
    [123] A. A. Alexeenko, R. J. Collins, S. F. Gimeishein, et al. Challenges of three-dimensional modeling of microscale propulsion devices with the DSMC method. In Proceedings of 22nd Symposium on Rarefied Gas Dynamics, Sydney, Australia, 464-471, 2001.
    [124] J. Kohler, J. Bejhed, H. Kratz, et al. A hybrid cold gas microthruster system for spacecraft. Sensors Actuators A, 2002, 97-98: 587-598.
    [125] 王沫然,陈泽敬,李志信.微喷管内流动和换热的数值模拟与分析.微纳电子技术,2003,40(7):61-64.
    [126] Beebe D. J., Mensing G. A., Walker G. M.. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 2002, 4: 261-286.
    [127] K. V. Sharp. EXPERIMENTAL INVESTIGATION OF LIQUID AND PARTICLE-LADEN FLOWS IN MICROTUBES. [Ph.D. Thesis], UIUC, 2001.
    [128] T. M. Squires, S. R. Quake. Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys., 2005, 77: 977-1026.
    [129] Mann J A, Romero L, Rye R R, Yost F G.. Flow of sireple liquids down narrow V grooves. Phys. Rev. E, 1995, 52: 3967-3972
    [130] 关艳霞,戴敬,方肇伦.以毛细和蒸发作用为驱动力的微泵的研制.分析化学,200533(03):423-427.
    [131] Kim C. J.. Microfluidics using the surface tension force in microscale. Proc. SPIE 2000, 4177: 49-55.
    [132] Zhao et al.. Surface-Directed Liquid Flow Inside Microchannels. Science, 2001, 291 (5506): 1023-1026.
    [133] Mala G M, LID Q, Werner C, et al. Flow characteristics of water in microtubes. International Journal of Heat and Fluid Flow, 1999, 20: 142-148.
    [134] I. Papautsky and T. A. Ameel, A Review of Laminar Single-phase Flow in Microchannnels. ASME Int. Mechanical Engineering Congress and Exposition, New York, Nov. 2001.
    [135] Koo, J. Kleinstreuer, C. Liquid flow in microchannels: experimental observations and computational analyses of microfluidics effects. JOURNAL OF MICROMECHANICS AND MICROENGINEERING. 2003, 13: 568-579.
    [136] A. Mosyak, E. Pogrebnyak, L. P. Yarin. Fluid flow in micro-channel. Int. J. Heat Mass Transfer, 2005, 48: 1982-1998.
    [137] X. F. Peng and G. P. Peterson, Convective heat transfer and friction for water flow in micro-channel structures, Int. J. Heat Mass Transfer, 1996, 33:2599-2608.
    [138] X.F. Peng, B.X. Wang, Forced convection and boiling characteristics in micro-channels, in: Heat Transfer 1998 Proceedings of 11th IHTC, vol. 11, Kyongju, Korea, 23-28 August 1998, pp. 371-390.
    
    [139] L.G. Loitsianskii, Mekhanika Zhidkostei i Gasov, Nauka, Moskow (1973).
    [140] L.I. Sedov, Similarity and dimensional methods in mechanics (10th ed.), CRC Press, Boca Raton, FL (1993).
    [141] D. Brutin and L. Tadrist, Experimental friction factor of a liquid flow in micro-tubes, Phys. Fluids, 2003, 15:653-661.
    [142] L. Ren, W. Qu and D. Li, Interfacial electrokinetic effects on liquid flow in micro-channels, Int. J. Heat Mass Transfer, 2001, 44:3125-3134.
    [143] I. Papautsky, J. Brazzle, T. Ameel and B. Frazier, Laminar fluid behavior in micro-channels using micro-polar fluid theory, Sensors Actuators, 1999, 73:101-108.
    [144] Li, D.X. Du and Z.Y. Guo, Experimental study on flow characteristics of liquid in circular micro-tubes, Microscale Thermophys. Eng., 2003,7:253-265.
    [145] Z.X. C.Y Yang, J.C. Wu, H.T. Chien and S.R. Lu, Friction characteristics of water, R-134a, and air in small tubes, Microscale Thermophys. Eng., 2003,7:335-348.
    [146] D. Maynes and A.R. Webb, Velocity profile characterization in sub-diameter tubes using molecular tagging velocimetry, Exp. Fluids, 2002,32:3-15.
    [147] K.V. Sharp and R.J. Adrian, Transition from laminar to turbulent flow in liquid filled microtubes, Exp. Fluids, 2004, 36:741-747.
    [148] B. Xu, K.T. Ooi, N.T. Wong and W.K. Choi, Experimental investigation of flow friction for liquid flow in micro-channels, Int. Comm. Heat Transfer, 2000, 27:1165-1176.
    [149]D. Pfund, D. Rector and A. Shekarriz, Pressure drop measurements in a micro-channel, AIChE J., 2000,46:1496-1507.
    [150] Gh.M. Mala and D. Li, Flow characteristics of water in micro-tubes, Int. J. Heat Fluid Flow, 1999,20:142-148.
    [151]Zeiqhami R, Laser D, Zhou P, et al. Experimental investigation of flow transition in microchannels using microresolution particle image velocimetry. In: Kromann G B.Culham J R, Ramakrishna K, et al, eds. 7th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic System-ITherm 2000, Las Vegas, 2000-05-23-26. New York: IEEE, 2000. 148-153.
    [152] MANZ A, GRABER N, WIDMER H M. Miniaturized Total chemical analysis systems: A novel concept for chemical sensing. Sensors and Actuators B, 1990, 1:244-248.
    [153] N.T. Nguyen.Z. Wu. Micromixer - a review. Journal of Micromechanics and Microengineering, 2005, 15:R1-R16.
    [154] V. Hessel, Holger L., Friedhelm S., Micromixer: a Review on Passive and Active Mixing Principle, Chemical Engineering Science, 2005,60:2479-2501.
    [155] Gobby, D., Angeli, P., Gavriilidis, A.. Mixing characteristics of T-type microfluidic mixers. J. Micromech. Microeng., 2001,11:126-132.
    [156] MENGEAUD V., JOSSERAND J., GIRAULT N.H. Mixing Processes in a zigzag microchannel: finite element simulation and optical study. Anal. Chem., 2002, 74(16): 4279-4286.
    [157] H.Wang, P. Iovenitti, E. Harvey, and S. Masood. Optimizing layout of obstacles for enhanced mixing in microchannels. Smart Materials and Structures, 2002, 11(5):662-667.
    [158] Veenstra T T. Characterization method for a new diffusion mixer applicable in micro flow injection analysis systems. J. Micromech. Microeng., 1999, 9: 199-202.
    [159] Jackman R J, et al. Microfluidic systems with on-line UV detection fabricated in photodefineable epoxy. J. Micromech. Microeng., 2001,11:263-269.
    [160] Mobius et al. A sensor controlled process in chemical microreactors. Proc. Transducers '95, 8th Int. Conf. on Solid-State Sensors and Actuators (Stockholm, Sweden) pp 775-778,1995.
    [161] Koch M et al. Improved characterization technique for micromixers, J. Micromech. Microeng., 1999,9:156-158.
    [162] Haverkamp V et al, The potential of micromixers for contacting of disperse liquid phases Fresenius', J. Anal. Chem., 1999, 364:617-624.
    [163] Branebjerg J et al. Fast mixing by lamination. Proc. MEMS'96, 9th IEEE Int. Workshop Micro Electromechanical System (San Diego, CA), 441-446, 1996.
    [164] Gray B L et al. Novel interconnection technologies for integrated microfluidic systems. Sensors Actuators A, 1999, 77:57-65.
    [165] Munson M S and Yager P. Simple quantitative optical method for monitoring the extent of mixing applied to a novel microfluidic mixer. Anal. Chim. Acta, 2004, 507:63-71
    [166] He B, Burke B J, Zhang X, et al. A picoliter-volume mixer for microfluidic analytical systems. Anal Chem, 2001,73:1942-1947.
    [167] Miyake R et al. Micro mixer with fast diffusion. Proc. MEMS'93, 6th IEEE Int. Workshop Micro Electromechanical System (San Diego, CA), 248-253, 1993.
    [168] Miyake R et al. A highly sensitive and small flow-type chemical analysis system with integrated absorbtionmetric micro-flowcell. Proc. MEMS'97, 10th IEEE Int. Workshop Micro Electromechanical System (Nagoya, Japan), 102-107,1997.
    [169] Seidel R U et al. Capilary force mixing device as sampling module for chemical analysis. Proc. Transducers'99, 10th Int. Conf. on Solid-State Sensors and Actuators (Sendai, Japan) pp438-441, 1999.
    [170] Voldman J, Gray M L, Schmidt M A. An integrated liquid mixer/valve. J. Microelectromech. Syst. 2000, 9:295-302.
    [171] Ottino J M The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge, New York: Cambridge University Press, 1989.
    [172] Wang H et al. Optimizing layout of obstacles for enhanced mixing in microchannels. Smart Mater. Struct., 2002, 11:662-667.
    [173] Lin Y et al, Ultrafast microfluidic mixer and freeze-quenching device. Anal. Chem., 2003, 75:5381-5386.
    [174] Liu R H et al. Passive mixing in a three-dimensional serpentine microchannel. J. Microelectromech. Syst., 2000, 9:190-197.
    [175] Vijiayendran et al. Evaluation of a three-dimensional micromixer in a surface-based biosensor. Langmuir, 2003,19:1824-1828.
    [176] Chen H., Meiners J C. Topologic mixing on a microfluidic chip. Appl. Phys. Lett., 2004, 84:2193-2195.
    [177] Park S J et al. Rapid three-dimensional passive rotation micromixer using the breakup process. J. Micromech. Microeng., 2004,14:6-14.
    
    [178] Stroock A D et al. Chaotic mixer for microchannels. Science, 2002, 295:647-651.
    [179] Kim D S et al. A barrier embedded chaotic micromixer J. Micromech. Microeng., 2004, 14:798-805.
    [180] Hosokawa K, Fujii T, Endo I. Droplet-based nano/picoliter mixer using hydrophobic microcapillary vent. Proc the IEEE International Workshop Micro Electromechanical System (Piscataway, NJ, USA), 388-393, 1999.
    [181] Handique K, Burns M A. Mathematical modeling of drop mixing in a slit-type microchannel J. Micromech. Microeng., 2001, 11:548-554.
    [182] B. Penth. New Non-Clogging Microreactor for Chemical Processing and Nano Materials. In: Micro.tec 2000, VDE World Microtechnologies Congress Expo 2000,Germany, 401-405, 2000.
    [183] J. Ducree et al.. Ultrafast Micromixing by Coriolis-Induced Multi-Lamination of Centrifugal Flow. Proc. 9th Int. Conf. New Actuators (ACTUATOR 2004), Bremen, Germany, 533-536, 2004.
    [184] Deshmukh A A, Liepmann D, Pisano A P. Continuous micromixer with pulsatile micropumps. Technical Digest of the IEEE Solid State Sensor and Actuator Workshop (Hilton Head Island, SC), 73-76, 2000.
    [185] Bau H H, Zhong J, Yi M. A minute magneto hydro dynamic (MHD) mixer. Sensors Actuators B, 2001, 79:207-215.
    [186] Lu L H, Ryu K S and Liu C. A magnetic microstirrer and array for microfluidic mixing. J. Microelectromech. Syst., 2002, 11:462-469.
    [187] Lettieri G L et al. Consequences of opposing electrokinetically and pressure-induced flows in microchannels of varying geometries. Proc. Micro Total Analysis Systems (Enschede, NL), 351-354,2000.
    [188]Oddy M H, Santiago J G, Mikkelsen J C. Electrokinetic instability micromixing. Anal. Chem., 2001, 73:5822-5832.
    [189] Tang Z et al. Electrokinetic flow control for composition modulation in a microchannel. J. Micromech. Microeng., 2002,12 870-877.
    [190] Deval J, Tabeling P, Ho C M. A dielectrophoretic chaotic mixer. Proc. MEMS'02, 15th IEEE Int. Workshop Micro Electromechanical System (Las Vegas, Nevada), 36-39, 2002.
    [191] Lee Y K et al. Chaotic mixing in electrokinetically and pressure driven micro flows Proc. MEMS'01, 14th IEEE Int. Workshop Micro Electromechanical System (Interlaken, Switzerland), 483-486,2001.
    [192]Moroney R M, White R M, Howe R T. Ultrasonically induced microtransport Proc. MEMS'91, 3th IEEE Int. Workshop Micro Electromechanical System (Nara, Japan), 277-282, 1991.
    [193] Zhu X , Kim E S. Acoustic-wave liquid mixer Microelectromechanical Systems (MEMS). American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC (ASME, Fairfield, NJ, USA) 1997, 62:35-38.
    [194] Yasuda K. Non-destructive, non-contact handling method for biomaterials in micro-chamber by ultrasound. Sensors Actuators B, 2001,64:128-135.
    [195] Liu RHet al. Hybridization enhancement using cavitation microstreaming. Anal. Chem., 2003,75:1911-1917.
    [196] Woias P, Hauser K, Yacoub-George E. An active silicon micromixer for mTAS applications. Micro Total Analysis Systems 2000 (Boston, MA), 277-82, 2000.
    [197] Tsai J H, Lin L.. Active microfluidic mixer and gas bubble filter driven by thermal bubble pump. Sensors Actuators A, 2002, 97-98:665-671.
    [198] P. Paik, V. K. Pamula, R B. Fair. Rapid droplet mixers for digital microfluidic systems. Lab on a Chip, 2003, 3:253-259.
    [199] Voldman J., Gray M.L., Schmidt M.A. Liquid mixing studies using an integrated mixer/valve. Micro Total Analysis Syst. '98. (eds. D. Harrison & A. van den Berg), 181-184.
    [200] G.K. 巴切勒. 流体力学导论. 科学出版社,北京 , 1997.
    [201] B.T. Porodnov, P.E. Suetin, S.F. Borisov, et al. Experimental investigation of rarefied gas flow in different channels. J. Fluid Mech., 1974, 64: 417-437.
    [202] L. B. Thomas and R. G. Lord. Comparative measurements of tangential momentum and thermal accommodations on polished and on roughened steel spheres. In: Rarefied Gas Dynamics, Vol. 8, Academic Press, New York, 1974.
    [203] O. I. Vinogradova, Slippage of water over hydrophobic surfaces, Int. J. Miner. Process., 1999, 56: 31-60.
    [204] L. Eric, B. P. Michael, Stone H. A.. Microfluidics: The no-slip boundary condition. To appear as Ch. 15 in Handbook of Experimental Fluid Dynamics. Editors J. Foss, C. Tropea and A. Yarin, Springer, New-York (2005).
    [205] J. Eijkel. Liquid slip in micro- and nanofluidics: recent, research and its possible implications. Lab on a Chip, 2007, 7: 299-301.
    [206] Wadsworth D C, VanGilder D B, and Dogra V K. Gas-Surface Interaction Model Evaluation for DSMC Applications. In AIP Conference Proceedings. 2003, 663(1): 965-972.
    [207] Sazhin O V, and Borisov S F. Surface composition influence on internal gas flow at large Knudsen numbers. In: AIP Conference Proceedings 2001, 585(1): 911-915.
    [208] Maxwell J C. Scientific papers, 1890, 2: 704.
    [209] Cereignani C, and Lampis M. Kinetic models for gas-surface interactions, Transport Theory. Statist. Phys., 1971, 2: 505.
    [210] Lord R G. Application of the C-L scattering kernel to DSMC calculation. In Rarefied Gas Dynamics, Ed. ByA. E. Beylich, VCH, 1991, 1427-1433.
    [211] Ikegawa M, and Kobayashi J. Development of a rarefied flow simulator using the direct-simulation Monte Carlo method. JSME International Journal, 1990, 30: 463-467.
    [212] Nance R P, Hash D B, and Hassan H A. Role of Boundary conditions in Monte Carlo Simulation of MEMS devices. J. Thermophys. Heat Transfer. 1998, 12: 447-449.
    [213] Liou W W, and Fang Y C. Implicit Boundary Conditions for Direct Simulation Monte Carlo Method in MEMS Flow Predictions. Computer Model. Engin. Sci. 2000, 4: 119-128.
    [214] J.-S. Wu, Fred Lee, S.-C. Wong. Pressure Boundary Treatment In Micromechanical Devices Using The Direct Simulation Monte Carlo Method. JSME International, Series B, 2001, 44(3): 439-450.
    [215] 秦丰华,孙德军,尹协远.微管道气体流动的蒙特卡罗直接模拟.计算物理,2001,18(1):507-510.
    [216] 王沫然,王金库,李志信.DSMC方法的压力边界条件实现.计算物理,2004,21(3):48-52.
    [217] H. David, J. R. Lewis, S. W. Janson, et al. Digital micropropulsion. Sensors and Actuators, 80: 143-154, 2000.
    [218] D. Teasdate. Solid propellant microrockets. Berkeley, Master's thesis, 2000.
    [219] D. L. Hitt, C. M. Zakrzwski, M. A. Thomas. MEMS-based satellite micropropulsion via catalyzed hydrogen peroxide decomposition. Smart Mater. Struck, 10: 1163-1375, 2001.
    [220] R. J. Cassady and W. A. Hoskins. A micro pulsed plasma thruster(PPT) for the "Dawgstar" spacecraft. IEEE, 2000.
    [221] D. R. Bromaghim, J. R. LeDuc, R. M. Salasovich, et al. Review of the electric propulsion space experiment (ESEX) program. Journal of Propulsion and Power, 18(4): 723-730, 2002.
    [222] JJ Xiong, ZY Zhou, et al. A colloid micro-thruster system. Microelectronic Engineering, 2002, 61-62: 1031-1037.
    [223] 毛根旺,韩先伟,杨涓等.电推进研究的技术状态和发展前景,推进技术,2000,21(5):1-5.
    [224] 童秉纲等.气体动力学.高等教育出版社,北京,1996.
    [225] 方杰,田辉,蔡国飙.N_2O单组元微推进系统及其喷管流场的初步研究.推进技术,2005,26:495-498.
    [226] Alexeenko, A. A., Levin, D. A., Gimelshein, S. F. et al., Numerical simulation of high-temperature gas flow in a millimeter-scale thruster. Journal of Thermophysics and Heat Transfer, 2002, 16: 10-16.
    [227] Alexeenko, A. A., Fedosov, D. A., Gimelshein, S. F., Levin, D. A., and Collins, R. J., Transient heat transfer and gas flow in a MEMS-based thruster. Journal of MEMS, 2006, 15: 181-194.
    [228] 王平阳,亓雪芹,程惠尔.壁面条件对微喷管流动的影响.2003空气动力学前沿研究学术研讨会,455-461.
    [229] W. Bacher, Wolfgang, Menz et al. The LIGA technique and its potential for microsystems-a survey industrial electronics. IEEE transactions, 1995 42 (5): 431-441.
    [230] 李永海,丁桂甫,毛海平,张永华.LIGA/准LIGA技术微电铸工艺研究进展.电子工艺技术,2005,26:1-5,34.
    [231] 张永华,丁桂甫,彭军,蔡炳初.LIGA相关技术及应用.传感器技术,2003,22(3):60-64.
    [232] 孔祥东等.LIGA的发展及应用.微纳电子技,2004,5:13-18,27.
    [233] 林炳承,秦建华.微流控芯片实验室.色谱,2005,23(5):456-463.
    [234] Chen H, Fang Q, Yin XF, Fang ZL. Microfluidic chip-based liquid-liquid extraction and preconcentration using a subnanoliter-droplet trapping technique. Lab on a Chip, 2005, 5: 719-725.
    [235] Vilkner T, Janasek D, Manz A. Micro total analysis systems, Recent Development. Anal. Chem., 2004, 76: 3373-3386.
    [236] R.B.Bird et al.传递现象.化学工业出版社.北京,2004,戴干策等译。
    [237] Volpert M., Meinhart C., Mezic, I., Dahleh M.. An actively controlled micromixer. American Physical Society, Division of Fluid Dynamics Meeting, November 21-23, 1999.
    [238] Ottino, J. M., Wiggins, S. Introduction: mixing in microfluidics. Phil. Trans. R. Soc. Lond. A, 2004, 362: 23-935.
    [239] Wiggins S, Ottino JM., Foundations of chaotic mixing, Philos. Trans. R. Soc. London A, 2004, 362: 937-970.
    [240] Lee Y. K., Shih C. et al. experimental study and nonlinear dynamic analysis of time periodic micro chaotic mixer. J. Fluid Mech., 2007, 575: 425-448.
    [241] S. D. Muller, I. Mezi, J. H. Walther, P. Koumoutsakos. Transverse momentum micromixer. optimization with evolution strategies. Computers & fluids, 2004 33: 521-531.
    [242] 黄润生.混沌及其应用.武汉大学出版社,武汉,2000.
    [243] Mautner T. Application of the synthetic jet concept to low Reynolds number biosensor microfluidic flows for enhanced mixing: a numerical study using the lattice Boltzmann method. Biosensors and Bioelectronics, 2004, 19(11): 1409-1419.
    [244] 李闯,陈天宇.基于格子Boltzmann方法的混沌混合器仿真研究.系统仿真学,2004,16(7):1369-1371,1391.
    [245] Smith B. L, Glezer A.. The formation and evolution of synthetic jet. Phys. Fluid, 1998, 10: 2281-2297.
    [246] Glezer A., Amitay M.. Synthetic Jet. Annu. Rev. Fluid Mech., 2002, 34: 503-529.
    [247] 罗振兵,夏智勋.合成射流技术及其在流动控制中应用的进展.力学进展,2005,35(2):221-234.
    [248] M. Engler, N. Kockmann, et al. Numerical and experimental investigations on liquid mixing in static micromixers. Chemical Engineering Journal, 2004, 101: 315-322.
    [249] S. J. Wang, S. Devahastin, A. S. mujumdar. A numerical investigation of some approaches to improve mixing in laminar confined impinging streams. Applied Thermal Engineering 2005, 25: 253-269.
    [250] 夏光榕等.传递现象相似.中国石化出版社,北京,1997.
    [251] S. J. Wang, S. Devahastin, A. S. mujumdar, Effect of temperature difference on flow and mixing characteristics of laminar confined opposing jets. Applied Thermal Engineering, 2006, 26: 519-529.
    [252] D. Bothe, C. Stemich, H. J. Warnecke. Fluid mixing in a T-shaped micro-mixer. Chemical Engineering Science, 2006, 61: 2950-2958.
    [253] Fedele F., Hitt D. L., and Prabhu R. D.. Revisiting the linear stability of pulsatile pipe flow. Eur J Mech B-Fluids, 2005, 24(2): 237-254.
    [254] C. Loudon, A. Tordesillas. The use of the. dimensionless Womersley number to characterize. the unsteady nature of internal flow. Journal of theoretical biology, 1998, 191: 63-78.
    [255] M. Simion, A. Angelescu, et at, Micro fluidic biochip for bio-medical application, Microelectronics, ICM 2004 Proceedings, December, 2004, 80-83.
    [256] Singhal, V., Garimella, S. V., Raman, A.. Microscale Pumping Technologies for Microchannel Cooling Systems. Applied Mechanics Reviews, 2004, 5: 191-221.
    [257] Soper SA, Ford SM, Qi S, McCarley RL, Kelly K, Murphy MC. Polymetr c Microelectromechanical Systems, Anal Chem, 2000, 72643A-651A.
    [258] 殷学锋,微流控分析芯片的加工技术.现代科学仪器,2001(4),pp8-12.
    [259] Han A, Wang O, Mason G, et al. Multi-layer Plasic/glass Microfluidic Systems Contatning Electrical and Mechanical Functionality. Lab on a Chip, 2003, 3: 150-157.
    [260] McDonald J C, Duffy D C, Anderson J R, et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis, 2000, 21: 27-40.
    [261] Oliver G, Henning K., Pieter T.. Microsystem Engineering of Lab-on-a-chip Devices. Weinheim: Wiley-VCH; c2004.
    [262] Wolfgang Ehrfeld et al. Microreactors: new technology for modem chemistry. Weinheim: Wiley-VCH, 2000.
    [263] 马立人,蒋中华.生物芯片.化学工业出版社,北京,2003.
    [264] 朱学林,郭育华等.PMMA面键合的热压法工艺研究.中国机械工程,2005,16Z:451-453.
    [265] 温敏,王晓东等.PMMA微流控芯片微通道热压成形与键合工艺研究.光学精密工程,2004,12(z1):272-276.
    [266] 王昊利,王元.Micro-PIV技术-粒子测速技术的新进展.力学进展,2005,35:77-90.
    [267] Kling K., Mewes D.. Quantitative Measurements of Micro-and Macromixing in Stirred Vessels using Planar Laser Induced Fluorescence. Journal of Visualization, 2003, 6: 165-173.
    [268] Tseng WK, Lin JL et al. Active Micro-Mixers using Surface Acoustic. Waves on Y-cut 128° LiNbO3. J. Micromech. Microeng., 2006, 16: 539-548.
    [269] Yang HQ, NT Nguyen and XY Huang. Micromixer based on Taylor dispersion. J. Phys.: Conf. Ser. 2006, 34: 136-141.
    [270] M Koch, H Witt et al. Improved characterization technique for micromixers. J. micromech. Microeng. 1999, 9: 156-158.
    [271] H. Suzuki, C. M. Ho, N. Kasagi. A chaotic mixer for magnetic bead-based micro cell sorter. J. MEMS, 2004, 5: 779-790.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700