城市生活污泥干化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国污水处理率的逐年提高,污水处理过程中产生的城市生活污泥量日益增加,污水污染问题引发了污泥污染问题。为避免二次污染并有效利用城市生活污泥中的有效成分,污泥处理己经成为全世界关心的问题。目前城市生活污泥处理方式主要有填埋、焚烧、堆肥等。但无论何种方法都必须经过干化这一环节,如何经济、高效地干化城市生活污泥己成为污泥处理的重要课题。论文以研究高效、经济的城市生活污泥干化工艺为目标;利用烘箱加热系统对影响城市生活污泥干化效能的因素进行了研究,探讨了污泥干化的机理;并对干化系统的耗能进行了计算;此外,利用自制的太阳能干化装置对城市生活污泥的太阳能干化影响因素进行了研究,并在此基础上对装置进行了一系列的改进,设计出更合理的污泥太阳能干化装置,并对相关运行参数和干化成本进行了计算。研究得出以下主要结论:
     (1)污泥烘箱干化过程中,干化速率可分为三个阶段:加速阶段、恒速阶段和降速阶段,其中恒速阶段占整个干化时间的50%以上,加速阶段仅占了15%,污泥含水率的去除主要集中在恒速阶段。
     (2)污泥烘箱干化过程中,当干化温度相同时,污泥的厚度越薄、干化速率越快,泥饼厚度为1.0cm时,干化效果最佳;泥团的直径越小,干化速率越快,泥团直径为1.0cm时,干化效果最好。当干化温度不同时,得出直径为1.0cm的泥团在120℃时,最经济,干化效果最好。
     (3)污泥的太阳能干化实验中,温度越高,湿度越低,干化效率越高,以厚度为2.0cm的泥饼为例,在夏季(太阳辐射照度为14.8千卡/平方厘米)和冬季(太阳辐射照度为7.5千卡/平方厘米)的干化速率最大值分别为45g/h和6g/h,夏季干化速率明显高于冬季,达到相同干化效果(含水率60%)所需时间分别为1.2天和7.2天。
     (4)利用烘箱和太阳能-热尾气联合干化装置进行污泥干化,达到相同干化效果(含水率60%)所需成本分别为187.5元/吨,2.4元/吨,污泥的太阳能-热尾气联合干化较烘箱干化有明显的成本优势。
     上述研究结果将对城市生活污泥热干化以及太阳能干化的的工程实践提供科学依据,具有一定的指导意义。
As the ratio of sewage water treatment in our country increases year after year, municipal sludge volume brought by the sewage treatment process grows larger, thus sewage pollution results in the formation of sludge pollution. Sludge treatment and disposal has become one of the most important tasks for environmental protection in order to prevent consequent pollution and make effective use of municipal sludge. There are three sludge disposal methods currently used, which is recycling in agriculture, land filling and incineration. Each of them needs the drying technology. How to dry the municipal sludge economically and efficiently has become an important topic in the science field.
     The paper mainly targets at investigating municipal sludge drying technology which was efficient, economical. Using the drying box heating system studies on the factors influenced over the drying efficiency of municipal sludge drying, explores the mechanism of sludge drying, and calculates the energy consumption of the sludge drying system. In addition, using home-made solar drying device studies on the factors influenced over municipal sludge drying, and which were based on improving a series of equipment for designing more rational solar sludge drying device, and calculates the relevant operating parameters and drying costs. The following is the main conclusion of the research:
     (1) During the course of drying sludge by the drying box, the drying rate can be divided into three phases: acceleration phase, constant rate drying phase and falling rate drying phase, the phase of distinctive characteristics: constant rate drying phase accounts for more than 50 percent of the total drying time, the acceleration phase accounts for only 15 percent, so moisture content removal of the municipal sludge mainly in constant rate drying phase.
     (2) During the course of drying sludge by drying box, when the drying temperature is the same, the thinner thickness of the municipal sludge, the faster drying rate, 1.0cm thickness of the mud cake, the drying effect is best; the smaller diameter of the sludge particle, the faster drying rate, 1.0cm diameter of the sludge particle, the drying effect is best. When the drying temperature is different, come to 1.0cm diameter of the sludge particle on condition that the drying temperature of 120℃, the drying effect is best and the most economical.
     (3) During the municipal sludge Solar drying experiment, the higher the drying temperature and the lower the humidity, the higher the efficiency of drying. To the 2.0cm thickness of the mud cake for example, the summer (solar radiation intensity of 14.8 kcal per square centimeter) and the winter (solar irradiance of 7.5 kcal per square centimeter) of the maximum rate of drying were respectively 45g per hour and 6g per hour, the drying rate in summer was significantly higher than it in winter, achieving the same effect of drying (moisture content 60%) time were respectively 1.2 days and 7.2 days.
     (4) Using drying box and solar-hot exhaust joint drying sludge device, to achieve the same effect of drying (60% of moisture content), respectively the cost is 187.5 Yuan per ton, 2.4 Yuan per ton, the cost of solar-hot exhaust joint drying sludge far less than the drying box drying.
     Results above provided scientific basis for engineering practice of sludge heat-drying and solar energy drying, and has some guided significance.
引文
[1] http://www.77520.cn/html/guihuajihua/200809/26-137800.html
    [2]唐小辉,赵力.污泥处置国内外进展[J].环境科学与管理, 2003, 30(3): 68-70
    [3]王宝贞.水污染控制工程[M].高等教育出版社, 1994
    [4] EPA. Process design manual for sludge treatment and disposal [M]. Center for environmental research information technology transfer USA, 1979: 10-74
    [5]赵庆祥.污泥资源化技术[M].化学工业出版社, 2002
    [6]张守君,杜永林.污水处理中污泥处理技术分析[J].云南环境科学, 2001, 20(4)
    [7] Scott S A, Davidson J F, Dennis J S. The devolatilisation of Particles of a complex fuel (dried sewage sludge) in a fluidized bed. Chemical Engineering Science, 2007, 62(l-2): 584-598
    [8] Jiayin DAI, Ling CHEN, Jianfu ZHAO. Characteristics of sewage sludge and distribution of heavy metal in plants with amendment of sewage sludge. Journal of Environmental Sciences, 2006, 18(6): 1094-1100
    [9] Sujeet K, DiPak K B. Speciation of metals in sewage sludge and sludge-amended soils. Water Air and Soil Pollution, 2004, 152: 219-232
    [10] Steven T S, Paul R A, Glenn D M. Kretschmann aquaculture sludge removal and stabilization within created wetlands. Water Science and Technology, 1999, 19: 81-92
    [11]刘洪波.污泥处理技术与污泥规划中的多元化处置设想[J].化工出版社, 2003
    [12]余兰兰.污泥吸附剂的制备及应用研究[D].南京理工大学, 2006
    [13]张峥嵘,黄少斌.污水处理中污泥减量化技术的研究与应用概况[J].广州环境科学, 2006, 21(3)
    [14]侯凤云.城市下水污泥流化床干化特性研究[D].中国科学院研究生院, 2007
    [15]谷晋川,蒋文举,雍毅.城市污水厂污泥处理与资源化[M].化学工业出版社, 2008
    [16] Vesilind, Hartman. Sludge Management and Disposal for the Practicing Engineer. Lewis Publishers, LNC, 1986
    [17]李季,吴为中.城市生活污泥处理处置综述[J].城市生活污泥处理处置技术及装置,化工出版社, 2003
    [18]张宁生,周强泰,丙新红.污泥的焚烧处理技术.能源研究与利用[J].2003, (l): 35-37
    [19]张辰.污泥处理处置技术研究进展[M].化学工业出版社. 2005, 80-81
    [20]李志刚.城市污水厂污泥微波干化效能研究[D].重庆大学, 2007
    [21] Derek C W, Sercombe. The control of septicity and odors in sewerage systems and at sewage treatment works operated by Anglian water services limited [J]. Sci. Tech, 1995, 31(1): 283-292
    [22] Couillard G M. Optimum residence time (in CSTR and Airlife treator) for bacterial leaching of metals from anaerobic sewage sludge. Water Resource, 1991, 25: 211-218
    [23] Cortes A, Tapias J. Wastewater sludge quality for agricultural purposes comparison. Fresenius Environmental Bull, 1996, l: 262-267
    [24] Vanni A, Gennar M, Petruzzelli G. Leachability of heavy metals in municipal sludge particulate. Environmental Technology, 15: 71-78
    [25]庞金华.污泥对区域生态环境的影响.热带亚热带土壤科学, 1994, 3(l): 41-47
    [26]李媛.焚烧工艺在污水厂污泥处理中的应用[J].中国环保产业, 2004, 1: 32-34
    [27]甘海军.浙江省城市生活污泥的处置对策与资源化利用研究[D].浙江大学, 2006
    [28] Anton Seiler. Wet oxidation as a complementary variant to conventional processes for wastewater and sewage sludge disposal,Green Chemistry, 2000, 54(9): 517-523
    [29] Patterson D A, Stenmark L, Hogan F. Pilot-scale supercritical water oxidation of sewage sludge, P. Lowe. The 6th European Biosolids and Organic Residuals Conference, Wakefield: Aqua Environ Consultancy Services, 2001, 11-15
    [30]杨玉廷.超声波预处理对污泥干化特性的影响[D].沈阳航空工业学院, 2008
    [31]刘媛媛,张芹芹.城市生活污泥基本特性与安全处置[J].水科学与工程技术, 2008, 4: 63-65
    [32]张新华,朱维斌,张龙江.污泥处置技术探讨[J].四川环境, 2003, 22(2): 35-37
    [33] Okazawand M, Sota K. Energy Saving in Sewage Sludge In acieration with indirect threat drying. Proceedings of 1986 National Waste Processing Conference, Denver, ASME, 1986, 177-194
    [34]张微尘.超声波处理改善污泥干化特性方法的探索[D].天津大学, 2006
    [35]李艳霞,陈同斌,罗维.中国城市生活污泥有机质及养分含量与土地利用[J].生态学报, 2003, 23(11): 2464-2474
    [36]李竺,方萍,陈玲.快速高效堆肥处理城市生活污泥微生物多样性研究[J].同济大学学报(自然科学版), 2005, 33(5): 649-653
    [37]王新,陈涛,梁仁禄.污泥土地利用对农作物及土壤的影响研究[J].应用生态学报, 2002, 13(2): 163-166
    [38]甘义群.城市生活污泥热解特性及资源化利用新方法试验研究[D].中国地质大学, 2005
    [39]周立祥,胡霭堂,戈乃扮.城市生活污泥土地利用研究[J].生态学报, 1999, 19(2): 185-193
    [40]薛东森.美国污水污泥的研究和利用概况[J].国外农业环境保护, 1991, 1: 31-33
    [41]宋敬阳.城市污水污泥的农田施用[J].国外环境科学技术, 1983, 2: 36-39
    [42]唐小辉.污泥处置国内外进展[J].环境科学与管理. 2005, 6
    [43]薛澄泽,张增强.复合污泥堆肥适用于高速公路绿化带的研究[J].农业环境保护, 2000, 19(5): 263-266, 281
    [44]李艳霞,赵莉,陈同斌.城市生活污泥堆肥用作草皮基质对草坪草生长的影响[J].生态学报, 2002, 22(6): 797-801
    [45]王新,周启星,陈涛.污泥土地利用对草坪草及土壤的影响[J].环境科学, 2003, 24(2): 50-53
    [46]陈同斌,李艳霞,金燕.城市生活污泥复合肥的肥效及其对小麦重金属吸收的影响[J].生态学报, 2002, 22(5): 643-648
    [47]赵莉,李艳霞,陈同斌.城市生活污泥专用复合肥在草皮生产中的应用[J].植物营养与肥料学报, 2002, 8(4): 501-503
    [48]吴海梅,赵继峰.张家口地区污水处理厂的污泥处置[J].河北建筑工程学院学报, 2005, 23(2): 8-10
    [49] Penyong E K. Utilization of dried activated sludge as a feed supplement for pigs’resource. Recycling, 1989: 22-27
    [50]王志新,孙家瑛.城市污水污泥固结体重金属浸出毒性及路用性能研究[J].环境污染治理技术与设备, 2005, 6(12): 86-59
    [51]李淑展,施周,谢敏.城市污水处理厂污泥烧制地砖的生产试验研究[J]. 2005, 31(7): 12-15
    [52] Okuno N, Takahashi S. Full scale application of manufacturing bricks from sewage. Water Science and Technology, 1997, 36(l1): 243-250
    [53]陆在宏,吴今明,戴婕.水厂排泥水的处理技术一分离水回用、泥饼综合利用及铝盐回收[J].上海环境科学, 1992, 11(4): 11-13
    [54]严捍东.生活污泥改性烧制超轻陶粒的研究.环境污染与防治, 2005, 27(l): 63-66
    [55]汪靓,朱南文,张善发.污泥建材利用现状及前景探讨. 2005, 31(3): 40-44
    [56] Khanbilvardi R. Sludge ash as fine aggregate for concrete mix. Journal of Environment Engineering, 1995, 101(9): 63-638
    [57] Endo H. Production of glass ceramics from sewage sludge. Water Science and Techno1ogy, 1997, 36(11): 235-241
    [58]王世梅,梁剑茹,周立祥.利用城市生活污泥生产苏云金杆菌生物农药.中国环境科学, 2006, 26(l): 77-81
    [59]田宁宁,王凯军,柯建明.剩余污泥好氧堆肥生产有机复混肥的肥分及效益分析.城市环境与城市生态, 2001, 14(1): 9-11
    [60]田宁宁,王凯军,曹从荣.污泥好氧堆肥产品(复合肥)的农田试验.中国给水排水, 2003, 19(l): 37-39
    [61]赵莉,李艳霞,陈同斌.城市生活污泥专用复合肥在草皮生产中的应用.植物营养与肥料学报, 2002, 8(4): 501-503
    [62] Bagreev A, Locke D C, Bandoze T J. Adsorption of SO2 on sewage sludge-derived materials. Environment Science Technology, 200l, 35: 3263-3269
    [63] Bagreev A, Bashkova S, Locke D C. Sewage sludge-derived material as efficient adsorbent for removal of hydrogen sulfide. Environment Science Technology, 2001, 3: 1537-1543
    [64] Thawornchaisit U, Pakulanon K. Application of dried sewage sludge as phenol biosorbent Bioresource Technology, In Press, Corrected Proof
    [65] Cambell H W. Sewage sludge treatment and use: new development. Applied Science, 1989: 281-290
    [66] Bridle T R. Control of heavy metals and organchlorines using the oil from sewage process. Water Science and Technology, 1990, 22(12): 249-258
    [67] De ona J, Osorio F. Application of sludge from urban wastewater treatment plants in road’s embankments. Journal of Hazardous Materials, 2006, 131(l-3): 37
    [68] Trevor Bridle.污泥的热处理技术:迈向新世纪的有机废弃物管理与利用策略.有机废弃物管理与利用国际学术研讨会论文集, 2000
    [69] Reimann D O. Thermische schlammk onditionierung thermal conditioning of sludge. In: Klarschlamment-Sorgung [J]. Du¨sseldorf: VDI-Bildungswerk, 1989: 12–26
    [70] Kassner W. Qualita¨tskriterien fu¨r getrockneten Kla¨rschlamm [Quality criteria for dried sludge[J]. Korrespondenz Abwasser 1993, 40(4): 474–480
    [71] Won P C, Lee K W. Sludge drying Characteristics on Combined System of Contact drying and Fluidized Bed Dryer [A]. D drying 2004-Proceedings of the 14th international Drying Symposium. Brazil, 2004, 1055-1061
    [72] Cree C N L. The evolution of thermal drying as a sludge treatment process stage. Seminar on the Drying of sewage sludge. Wakefield, 1993
    [73]朱南文,徐华伟.国外污泥热于燥技术[J].给水排水, 2002, 28(1): 16-19
    [74] Hirst G. Drying sewage sludge at Halifax. Ibid
    [75] EPA. Process design manual for sludge treatment and disposal. Center for environmental research information technology transfer. USA, 1979
    [76] Ldris A, Khalid K, Omar W. Drying of silica sludge using microwave heating. Applied Thermal Engineering, 2004, 24: 905-918
    [77]曲艳丽,李爱民,李润东,秦四强.饼状污泥干化特性的研究[J].燃烧科学与技术, 2005, 11(1): 97-99
    [78]朱南文,土亚林,祝李兴.燃气红外干化污泥对肥效及农用安全性的影响.上海环境科学, 2002, 21(1): 247
    [79]李志刚.城市污水厂污泥微波干化效能研究[D].重庆大学, 2007
    [80]郭淑琴,胡大卫,卢心虹.国外城市污水处理厂污泥干化技术及设备[J].天津市政设计, 2003, (4): 3-35
    [81]王立彤.陈君宏,张春敏.污水污泥干化工艺安全性的理论和实践[J].机械给排水, 2005, (2): 32-36
    [82]胡龙,何晶晶.城市污水厂污泥热干化处理技术及其应用分析[J].重庆环境科学, 1999, 21(l): 51-53
    [83] Chubrier J P, Haywood S. Buss sludge drying. Seminar on the drying of sewage sludge, Wakefield, 1993
    [84] UtVik A O. Thermal drying of municipal sludge in an indirect drier. Europautorun. Infean Conference on Sludge and Organic Waste. Wakefield, 1994
    [85]尹军,谭学军.污水污泥处理处置与资源化利用[M].化学工业出版社, 2005
    [86]薛文源.城市污水污泥处理与处置的途径[J].中国给水排水, 1992, 8(1): 41-46
    [87] Trevor Bridle.污泥的热处理技术.有机废弃物管理与利用国际学术研讨会, 2000: 15-40
    [88] Wiseman J. Zurich’s search for the ideal solution to sewage sludge disposal.Water Quality Interaction, 1994, (2): 14-16
    [89] Boyles E The vomm turbo-dryer system. Seminar on the drying of sewage sludge. Wakefield, 1993
    [90] Vaxelaire J. Puiggali J R. Analysis of the Drying of Residual Sludge: From the Experiment to the Simulation of a Belt Dryer. Drying Technology, 2002, 20(4-5): 989-1008
    [91]沈萍.微生物学实验.高等教育出版社, 1999, 6: 90-92
    [92]周立祥.重金属及养分元素在城市生活污泥主要组分中的分配及其化学形态.环境科学学报, 2000, 20(3): 269-274
    [93]王兴润.国内外污泥热干化工艺的应用进展及技术要点[J].中国给水排水, 2007, 23(8): 5-8
    [94]周少奇.城市生活污泥处理处置与资源化[M].华南理工大学出版社, 2002
    [95]钱易.现代废水处理新技术[M].中国科学技术出版社, 1993
    [96]杨玉廷.超声波预处理对污泥干化特性的影响[D].沈阳航空工业学院, 2008
    [97] Kasakura T, Hasatani M. Needs-Drying of Sludge. Drying Technology, 1996, 14(6): 1390-1392
    [98] Lowe P. Developments in the Thermal Drying of Sewage Sludge, J. Inst. Waste&Environ. Mangt, 1995, 9(6): 306-310
    [99]谭天恩.化工原理.化学工业出版社, 1998, 3: 201-263
    [100]易浩勇.污泥干化特性及干化过程研究[D].东南大学, 2006
    [101]高峰.我国太阳能开发利用的现状及建议[J].能源工程, 2000, 5, 8-11
    [102]张壁光.太阳能干化技术概况及应用前景[J].太阳能, 2007, 7, 21-25
    [103]杨启岳.国内太阳能热利用现状与发展[J].能源技术, 2001, 4(22): 162-166

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700