氟化铵修饰氮掺杂二氧化钛光催化剂制备及其兰色发光二极管降解甲醛性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了用氟化铵处理氮掺杂二氧化钛半导体光催化剂的制备、性能及其在以蓝色发光二极管为光源的条件下降解甲醛的活性研究,主要分为三个部分:
     一、以Ti(SO4)2为原料,通过氨水水解法制备氮掺杂二氧化钛前驱体,煅烧前驱体制备氮掺杂纳米二氧化钛(N-TiO2)。用X射线衍射(XRD)、紫外-可见吸收光谱(UV-vis)、透射电镜(TEM)、热重-差热分析(TG-DTA)和比表面(BET)等方法对制备的样品进行表征。以蓝色发光二极管为光源,用甲醛降解反应考察了光催化剂的活性。结果表明:制备的样品均为锐钛矿,氮掺杂使二氧化钛在可见光区的光吸收明显增强;低温烘干制备的催化剂相对高温烘干的具有较小的粒子尺寸和较大的比表面。烘干温度显著影响光催化性能,低温烘干的催化剂活性较高。
     二、NH4F浸渍煅烧法处理以第一部分所得N-TiO2制得F-N-Ti02。催化剂(F-N-TiO2)用X射线衍射(XRD)、紫外-可见吸收光谱(UV-vis)、红外吸收(FT-IR)、比表面(BET)和X射线光电子能谱(XPS)等方法进行表征。以蓝色发光二极管(LED)为光源,通过催化剂对甲醛气体的降解作用来考察其光催化活性。结果表明:NH4F的处理能够显著地增加N-TiO2的光催化活性,NH4F处理不仅使得催化剂对可见光的吸收增加,而且也减少了F-N-TiO2的氧空位和比表面积。可见光吸收增强是因为在制备N-Ti02时,N掺杂产生的大量氧空位促成了NH4F处理时N元素的进一步掺入,同时氟掺入能降低催化剂的缺陷。F-N-TiO2的光催化活性取决于对可见光的吸收、样品的比表面积和缺陷。诸如煅烧温度和NH4F与N-TiO2的起始物质的量之比等制备条件都显著影响着光催化活性。
     三、同时本试验还研究了各种外部反应条件对F-N-TiO2光催化降解甲醛性能的影响,包括光照强度、反应的温度和反应湿度。
In this thesis, the preparation and modification of N-TiO2 semiconductor photocatalyst as well as its photocatalytic performance for degradation of formaldehyde were searched. The reseach works is composed of three parts:
     The first part, a nitrogen-doped TiO2 (N-TiO2) photocatalyst consisted of nanoparticles was prepared by the calcination of the hydrolysis product of Ti(SO4)2 with aqueous ammonia. The prepared samples were characterized by XRD, UV-vis diffuse reflectance spectra (DRS), transmission electron microscope (TEM), thermogravimetric and differential thermal analysis (TG-DTA) and BET. Its photocatalytic activity was evaluated by degradation of formaldehyde under visible irradiation using blue light LED as light source. The catalyst is consisted of anatase phase. Nitrogen-doping leads to extend optical absorption to the visible-light region. The photocatalyst prepared at lower drying temperature has smaller particle size and larger specific surface area than that prepared at higher drying temperature. The drying temperature has significant influence on its photoctalytic activity and the photocatalyst dried at lower temperature has higher photocatalyitic activity than that dried at higher temperature.
     In the second part, the nitrogen-doped TiO2 (N-TiO2) photocatalyst prepared by the above method (part 1) was treated with NH4F (F-N-TiO2) by an impregnation-calcination method. The photocatalyst (F-N-TiO2) was characterized by X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR), UV-vis diffusive reflectance spectroscopy (DRS), BET and X-ray photoelectron spectroscopy (XPS). With blue light-emitting diode (LED) as light source, its photocatalytic activity for degradation of formaldehyde was investigated. NH4F treatment increases markedly photocatalytic activity of N-TiO2. The NH4F treatment not only increases its visible absorption but also decreases the oxygen vacancies of F-N-TiO2 and the specific surface area. Increase of the absorption can be attributed to further nitrogen doping due to oxygen vacancies derived from previous nitrogen doping, while fluorine doping can decrease the defects. The photocatalytic activity of F-N-TiO2 depends on the visible absorption, the specific surface area and the defects. The preparation conditions, such as calcination temperature and initial molar ratio of NH4F to N-TiO2, have a great influence on the photocatalytic activity.
     In the third part, the efects of reaction conditions on photocatalytic performance for degradation of formaldehyde, such as the temperature, humidity and light intensity are investigated.
引文
[1]徐丹,钱敏,袁惠新.室内空气污染及净化[J].化工装备技术,2002,23(5):52~56.
    [2]王国栋,李科林,李德良.室内装修的甲醛污染及防治措施[J].环境科学动态,2004(3):43~45.
    [3]张国荣,张代羿.室内空气中甲醛污染与防治措施[J].丹东纺专学报,2003,10(3)31~32.
    [4]章骅,周述琼,但德忠.室内污染控制技术研究进展[J].中国测试技术,2005,31(6):130~135.
    [5]杨振洲,蔡同建.室内甲醛的危害及其预防[J].中国公共卫生,2003,19(6):765~768.
    [6]蒋耀庭,潘丽娜,金德林,等.人工负离子净化舰艇舱内空气的效果研究[J].环境与健康杂志,1999,16(5):277~279.
    [7]Hoffmann M R, Martin S T, Chai W, et al. Environmental Application of Semiconductor Photo-calysis [J]. Chemical Reviews,1995 (1):69-76.
    [8]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238:37-38.
    [9]郭军.过渡金属离子改性TiO2薄膜上甲醛光催化降解作用研究[J].湘潭师范学院学报:自然科学学报,2005,27(3):39~43.
    [10]刘春丽,章亚东.室内甲醛污染治理的研究进展[J].江苏化工,2007,35(1):15~18
    [11]Li Y H, Wang K, Zhao Q L, et al. Photocatalytic oxidation of low mass concentration formaldehyde with glass beads coated with nano-TiO2[J]. Huaxue Gongcheng (Xi'an, China) 2009,37(1),37~40.
    [12]何俣,朱永法,喻方.玻璃珠负载中孔TiO2纳米薄膜光催化研究[J].无机材料学报,2004,19(2):385~390.
    [13]Pichat P, Disdier J, Hoang-Van C, et al. Purification/deoeorization of indoor air and gaseous effluents by TiO2photocatalysis[J]. Catalysis Today,2000,63:363-369.
    [14]程萍,顾明元,金燕苹,等.TiO2光催化剂可见光化研究进展[J].化学进展,2005,17(1):8~14.
    [15]尹京花,赵莲花,崔胜云,等.掺铁Ti02纳米微粒的制备及光催化活性[J].延边大学学报,2004,30(3):178~181.
    [16]赵德明,金宁人.过渡金属Fe3+离子掺杂改性TiO2的光催化性能研究进展[J].浙江工业大学学报,2005,33(2):165~169.
    [17]杨学昌,周飞,高得力.等离子体放电催化降解甲醛的实验研究[J].高电压技术,2007,33(6):30~32.
    [18]Iwasaki M, Hara M, Kawada K, et al. Cobalt Ion-Doped TiO2 Photocatalyst Response to Visible Light[J]. Journal of Colloid and Interface Science,2000,224:202-204.
    [19]Sakata Y, Yamamoto T, Gunji H, et al. Effect of lead oxide addition to the photocatalytic behavior of TiO2 [J]. Chemistry Letters,1998,2:131~132.
    [20]Radecka M, Zakrzewska K, Wierzbicka M, et al. Study of the TiO2-Cr2O3 system for photoelectrolytic decomposition of water[J]. Solid State Ionics,2003,157:379~386.
    [21]Karvinen S, Lamminmaki R. Preparation and characterization of mesoporous visible-light-active anatase[J]. Solid State Sciences,2003,5:1159~1166.
    [22]李世平,陶冶,刘培英.Ce掺杂纳米TiO2光催化剂的制备及降解甲醛的研究[J].环境污染治理技术与设备,2006,7(4):78~81.
    [23]丁震,陈晓东,林萍,等.金属泡沫镍负载纳米TiO2光催化降解甲醛和VOCs[J].环境学报,2006,9:1814~1819.
    [24]李萌,张志,崔作林.镧掺杂纳米TiO2薄膜的制备及对甲醛的光催化降解[J].青岛科大学学报,2004,25(4):144~148.
    [25]袁颂东,龙毅,田晓辉,等.Fe3+/TiO2纳米薄膜的制备及光催化活性[J].湖北工学院学报,2003,18(5):1~3.
    [26]刘凡新,郭志岩,杨涛,等.掺铈纳米TiO2薄膜制备及光催化降解甲醛甲苯[J].分子催化,2003,17(4):297~301.
    [27]彭绍琴,江风益,李越湘.N掺杂Ti02光催化剂的制备及其可见光降解甲醛[J].功能材料,2005,36(8):1207~1209.
    [28]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light Photocatalysis in Nitrogen-Doped Titanium Oxides[J]. Science,2001,293(5528):269~275.
    [29]Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders[J]. Journal of Physical Chemistry B,2003,107:5483~5488.
    [30]Ihara T, Miyoshi M, Iriyama Y, et al. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping[J]. Applied Catalysis B, Environmental.,2003,42(4):403~409.
    [31]Sakatani Y,Koike H. Japan Patent, P2001-72419A,2001.
    [32]Sato S. Photocatalytic activity of NOx-doped TiO2 in the visible light region[J]. Chemical Physics Letters,1986,123(12):126~128.
    [33]Sato S,Nakamura R,Abe S. Visible-light sensitization of TiO2 photocatalysts by wet-method N doping[J]. Applied Catalysis A:General.,2005,284:131~137.
    [34]Bessekhouad Y, Robert D,Weber J V.,et al. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant[J]. Journal of Photochemistry and Photobiology A,2004,163:569~580.
    [35]Kumar A, Kumar J ain Arvind. Photophysics and photochemistry of colloidal CdS-TiO2 coupled semiconductors—photocatalytic oxidation of indole[J]. Molecular.Catalysis A:Chemical,2001,165:265~273.
    [36]Shih C L, Fang L C, Wu C H, et al. Capability of coupled CdSe/TiO2 for photocatalytic degradation of 4-chlorophenol[J]. Journal Hazardous Materials B,2004,114:183-190.
    [37]Sarah P, Daniel R. Solid-state NMR studies of the adsorption and photooxidation of ethanol on mixed TiO2-SnO2 photocatalysts[J]. Solid State Nuclear Magnetic Resonance,2003,24: 236~253.
    [38]Li X Z, Li F B,Yang C L, et al. Photocatalytic activity of WOx-TiO2 under visible light irradiation[J]. Journal of Photochemistry and Photobiology A:Chemistry,2001,141(2-3): 209~217.
    [39]奚丽荷,朱忠其,江海军,等.掺杂CeO2的TiO2光催化降解甲醛的研究[J].2007,38(11):1762~1765.
    [40]齐红,孙德志,迟国庆.光催化降解甲醛的影响因素及其动力学研究[J].哈尔滨工业大学学报,2006,36(7):1051~1054.
    [41]DIBBLE L A, RAUPP G B. Fluidized-bed photocatalytic oxidation of trichlotoethylene in contaminated air streams[J]. Environmental Science and Technology,1992,26:492~495.
    [42]李文彩,鹿院卫,常梦媛,等.室内污染物甲醛的光催化去除实验[J].城市环境与城市生态,2006,19(3):28~30.
    [43]齐文刚,邹丽霞.光催化降解甲醛的初步研究[J].精细化工中间体,2005,35(5):58~60.
    [44]Okamoto K, Yamamoto Y, Tanaka H. Kinetics of heterogeneous photocatalytic decomposition of phenol over anatase TiO2 power[J]. Bulletin of Chemical Society of Japan,1985,58(7):2023~2027.
    [45]D'oliveira J C,Ghassan A S, Pichat P. Photodegradation of 2-and 3-chlorophenol in TiO2 aqueous suspensions[J]. Environmental Science and Tchnology,1990,24(7):990~996.
    [46]Ollis D F,Pellizzetti E, Serpone N. Photocatalyzes destruction of water contaminants[J]. Environmental Science and Tchnology,1991,25(9):1532~1528.
    [47]Ching W H, Leung M D, Leung YC. Solar photocatalytic degradation of gaseous formaldehyde by sol-gel TiO2 thin film for enhancement of indoor air quality [J]. Solar Energy,2004,77:129~135.
    [48]杨莉萍,刘震炎,施建伟,等.光催化降解室内气相甲醛的光强研究[J].太阳能学报,2007,28(7):689~694.
    [49]Yu H L, Zhang K L, Rossi C. Theoretical study on photocatalytic oxidation of VOCs using nano-TiO2 photocatalyst[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2007,188:65~73.
    [50]邹丽霞,钟秦,刘庆成.TiO2纳米线阵列膜的制备及其光催化降解气相甲醛动力学[J].化工学报,2006,57(2):311~317.
    [51]钱昱,李梅,陆庆华.纳米二氧化钛光催化降解空气中甲醛影响因素的研究[J].实验研究与探索,2004,23(12):12~16.
    [52]Yoneyama H. Effect of adsorbents used as supports for titanium dioxide loading on photocatalytic degradation of propyzamide[J]. Eviron Sa Technol,1996,30 (4):41~44.
    [53]Ichiura H, Kitaoka T, Tanaka H. Removal of indoor pollutants under UV irradiation by a composite TiO2-zeolitesheet p repared using a papermaking technique [J]. Department of Forest and Products Sciences,2003,50:79~83.
    [54]Carpioa E, Zunigaa P, Poncea S, et al. Photocatalytic degradation of phenol using TiO2 nanocrystals supported on activated carbon[J]. Journal ofMolecular Catalysis A:Chemical, 2005,228:293~298.
    [55]古政荣,陈爱平,戴智铭,等.活性炭-纳米二氧化钛复合光催化空气净化网的研制[J].华东理工大学学报,2000,26(4):367~371.
    [56]侯一宁,王安,王燕,等.二氧化钛-活性炭纤维混合材料净化室内甲醛污染[J].四川大学学报:工程科学版,2004,36(4):41~44.
    [57]张小良,陈建华,刘英学,等.光催化防火涂料的制备及其对甲醛气体降解的研究[J].2005,5(2):120~124.
    [58]田福祯,郭敏杰,倪丽琴,等.室内甲醛吸附-反应降解复合纳米材料的制备与应用[J].应用化工,2005,39(9):576~579.
    [59]徐红艳.纳米Ti02改性内墙乳胶漆的甲醛降解机理及制备[J].化学推进剂与高分子材料,2008(5):13~17.
    [60]Yu J C, Yu J G, Ho W, et al. Effects of F doping on the photocatalytic activity and powders microstructures of nanocrystalline TiO2[J]. Chemistry of Materials,2002,14:3808~3816.
    [61]Chen J, Poon C S. Photocatalytic construction and building materials:From fundamentals to applications[J]. Building and Environment,2009,44(9):1899~1906.
    [62]Kobayakawa K, Murakami Y, Sato Y. Visible-light active N-doped TiO2 prepared by heating of titanium hydroxide and urea[J]. Photochem. Photobiol. A:Chem.2005,170:177~179.
    [63]Burda C, Lou Y B, Chen X B, et al. Enhanced nitrogen doping in TiO2 nanoparticles[J]. Nano Letters,2003,3:1049~1051.
    [64]Yin S, Ihara K, Komatsu M, et al. Low temperature synthesis of TiO2-xNy powders and films with visible light responsive photocatalytic activity[J]. Solid State Communications,2006, 137:132~137.
    [65]Li D, Haneda H, Hishita S,et al. Visible-light-driven nitrogen-doped TiO2 photocatalysts: effect of nitrogen precursors on their photocatalysis for decomposition of gas-phase organic pollutants[J]. Journal of Materials Engineering B,2005,117:67~75.
    [66]Fang X M, Zhang Z G, Chen Q L, et al. Dependence of nitrogen doping on TiO2 precursor annealed under NH3 flow[J]. Journal of Solid State Chemistry,2007,180:1325~1332.
    [67]Wu Z B, Dong F, Zhao W R, et al.Visible light induced electron transfer process over nitrogen doped TiO2 nanocrystals prepared by oxidation of titanium nitride[J]. Journal of Hazardous Materials,2008,157:57~63
    [68]Dong F. Band structure and visible light photocatalytic activity of multi-type nitrogen dopedTiO2 nanoparticles prepared by thermal decomposition[J]. Journal of Hazardous Materials,2008,05(099):1-8.
    [69]Chen C, Bai H, Chang S M, et al. Preparation of N-doped TiO2 photocatalyst by atmospheric pressureplasma process for VOCs decomposition under UV and visible light sources [J]. Journal of Nanoparticle Research,2007,9:365-375.
    [70]Valentin C D, Finazzi E, Pacchioni G, et al. N-doped TiO2:Theory and experiment [J]. Chemical Physics,2007,339:44~56.
    [71]Huang D G, Liao S J, Quan S Q,et al. Preparation of anatase F-doped TiO2 soland its performance for Photodegradation of formaldehyde[J]. Journal of Materials Science,2007, 42:8193-8202
    [72]Yuan J, Chen M X, Shi J W. et al. Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride[J]. International Journal of Hydrogen Energy,2006,31:1326~1331.
    [73]柏源,孙红旗,金万勤.pH值对氮掺杂TiO2物化性质和光催化活性的影响[J].无机材料学报,2008,2(3):387~392.
    [74]秦晓峰,陈玉清,侯和峰,等.不同煅烧时间的纳米N-TiO2粉体制备及表征[J].硅酸盐通报,2007,8(26):667-669.
    [75]Ihara T, Miyoshi M, IriyamaY,etal. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping[J].Applied.Catalysis.B,2003,42(4): 403~409.
    [76]"Air quality-determination of formal dehyde-acetylacetone spectrophotometric method' Chinese national standard GB/T 15516-1995D.
    [77]Mi L, Hari B, Lv X, et al. Direct synthesis of monodispersed ZnO nanoparticles in an aqueous solution [J]. Journal of Materials Science Letters,2007,61:690~693.
    [78]潘高峰,李越湘,彭绍琴,等.铍、氮共掺杂TiO2的制备及其可见光下光解水制氢性能研究[J].功能材料,2008,4(39):632-635.
    [79]Dl VALENTIN C, PACCHIONI G, SELLONI A. Origin of the diffe-rent photoactivity of N-doped anatase and rutile TiO2 [J]. Physical Reviews B:Solid State,2004,70:085116-1-4.
    [80]何代平.干燥法对纳米Ti02晶相及其光催化活性的影响[J].应用化工,2007,36(8):751-754.
    [81]周利民,刘峙嵘,黄群武.可控形貌金红石型纳米TiO2的低温水热制备与表征[J].半导体光电,2009,30(4):562~565.
    [82]孙超,黄浪欢,刘应亮.TiO2光催化剂失活与再生的研究[J].功能材料,2005,36(9):1412-14153.
    [83]Djerad S, Tifouti L, Crocoll M, et al. Effect of vanadia and tungsten loadings on the physical and chemical characteristics of V2O5-WO3/TiO2 catalysts [J]. Journal of Molecular Catalysis A:Chemical,2004,208:257~265.
    [84]Yu J Q, Zhang Y, Kudo A. Synthesis and photocatalytic performances of BiVO4 by ammonia co-precipitation process [J]. Journal of Solid State Chemistry,2009,182:223~228.
    [85]Yang Z Y, Zhou A N.[J]. Journal of Wuhan University of Technology-Materials Science ED, 2007,22:457~461.
    [86]Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis [J]. Photochemistrty Photobiology C,2000,1:1-21.
    [87]Zhou M H, Yu J G. Preparation and enhanced daylight-induced photocatalytic activity of C,N,S-tridoped titanium dioxide powders[J]. Journal of Hazardous Materials,2008,152: 1229~1236.
    [88]Li Y X, Ma G F, Peng S Q, et al. Photocatalytic H2 evolution over basic zincoxysulfide (ZnS1-x-0.5yOx (OH)y) under visible light irradiation[J].Applied Catalysis A,2009,363: 180~187.
    [89]Li Y X, Ma G F, Peng S Q, et al. Boron and nitrogen co-doped titania with enhanced visible-light photocatalytic activity for hydrogen evolution[J]. Applied Surface Science, 2008,254:6831~6836.
    [90]Lv K L, Zuo H S, Sun J, et al. (Bi, C and N) codoped TiO2 nanoparticles[J]. Journal of Hazardous Materials,2009,161:396~401.
    [91]Liu S W, Yu J G, Mann S. Synergetic codoping in fluorinated Ti1-xZrxO2 hollow microspheres[J]. Journal of Physical Chemistry C,2009,113:10712~10717.
    [92]Ohno T, Akiyoshi M, Umebayashi T, et al. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light[J]. Applied Catalysis A,2004,265: 115~121.
    [93]Valentin C D, Finazzi E, Pacchioni G, et al. N-doped TiO2:Theory and experiment[J]. Chemical Physics,2007,339:44~56.
    [94]Hattori A, Shimota K, Tada H, et al. Photoreactivity of sol-gel TiO2 films formed on soda-lime glass substrates:Effect of SiO2 underlayer containing fluorine[J]. Langmuir, 1999,15:5422~5425.
    [95]Yu J G, Zhao X J, Du J C, et al. Preparation, microstructure and photocatalytic activity of the porous TiO2 anatase coating by sol-gel processing [J]. Journal of Sol-Gel Science and Technology,2000,17:163~171.
    [96]Li Y X, Du J, Peng S Q, et al. Enhancement of photocatalytic activity of cadmium sulfide for hydrogen evolution by photoetching[J]. International Journal of Hydrogen Energy,2008, 33:2007-2013.
    [97]Liu S, Chen X Y, Chen X. N-doped visible light response nanosize TiO2 photocatalyst prepared by acid catalyzed hydrolysis method[J]. Chinese Journal of Catalysis,2006,27: 697~702.
    [98]Li Y X, Xie C F, Peng S Q, et al. Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution[J]. Journal of Molecular Catalysis A:Chemical, 2008,282:117~123.
    [99]Matsumoto T, Iyi N, Kanedo Y, et al. High visible-light photocatalytic activity of nitrogen-doped titania prepared from layered titania/isostearate nanocomposite [J].Catalysis Today,2007,120:226~232
    [100]Zhang D, Hu X, Li T, et al. Study on the microstructure and the optical capability of the nano-TiO2 film[J].Acta Photonica Sinica,2004,33(8):982~985.
    [101]Romero-Gomez P, Rico V, Borras A, et al. Chemical state of nitrogen and visible surface and schottky barrier driven photoactivities of N-doped TiO2 Thin Films[J]. Journal of Physical Chemistry C,2009,113:13341~13351
    [102]Gong B, Pigram P J, Lamb R N. Tdentification of inorganic nitrogen in an Australian bituminous coal using x-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry [J]. International Journal of Coal Geol,1997,34: 53~68.
    [103]Chen X Q, Su Y L, Zhang X W,et al. Fabrication of visible-light responsive S-F-codoped TiO2 nanotubes[J. Chinese Science Bulletin 2008,53:1983~1987.
    [104]Lin Z, Orlov A, Lambert R M, et al. New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO2 [J]. Journal of Physical Chemistry B,2005,109:20948~20952.
    [105]Li Y X, Lu G X, Li S B. Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO2[J]. Applied Catalysis A,2001,214:179~185.
    [106]Li D, Ohashi N, Hishita S,et al. Origin of visible-light-driven photocatalysis:A comparative study on N/F-doped and F-N-codoped TiO2 powders by means of experimental characterizations and theoretical calculations[J]. Journal of Solid State Electrochemistry, 2005,178:3293-3302.
    [107]Sathish M, Viswanathan B, Viswanath R P, et al. Synthesis, characterization and photocatalytic activity of nitrogen doped TiO2 nanocatalyst[J]. Chemistry of Materials, 2005,17:6349~6353.
    [108]Zhang S. Liu C Y, Liu Y. Room tempera-ture synthesis of nearly monodisperse rodlike rutile TiO2 nanocrystals[J]. Materials Letters,2009,63:127~129.
    [109]Sayilkan F, Asilturk M. Photocatalytic antibacteri-al performance of Sn4+- doped TiO2 thin films on glasssubstrate[J]. Journal of Hazardous Materials.2009,162:1309~1316.
    [110]Liang H C, LI Xiangzhong. Effects of structure of anodic TiO2 nanotube arrays on photocatalytic activity for the degradation of 2,3-dichlorophenol in aqueous solu-tion[J]. Journal of Hazardous Materials,2009,162:1415~1422.
    [111]Mozia S, Toyoda M. Application of carbon-coated TiO2 for decomposition of methylene blue in a photocata-lytic membrane reactor[J]. Journal of Hazardous Materi-Als,2007,140: 369~375.
    [112]Tryba B. Immobilization of TiO2 and Fe,C-TiO2 photocatalysts on the material for application in a flow photocatalytic reactor for decomposition of phenol in water[J].Journal of Hazardous Materials,2008,151:623~627.
    [113]Okamoto K, Yamamoto Y, Tanaka H.Kinetics of heterogeneous photocatalytic decomposition of phenol over anatase TiO2 power [J]. Bulletin of the Chemical Society of Japan,1985,58(7):2023~2027.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700