莲子微波真空干燥工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
莲子干制工艺是莲子加工产业最重要的研究方向。本文将微波真空干燥技术应用于莲子干制加工,较为系统地研究了莲子微波真空干燥特性、品质学特性,并在此基础上通过二次正交旋转组合设计试验,结合响应面法确定莲子微波真空干燥工艺的最优参数组合。通过试验研究结果如下:
     1.莲子微波真空干燥特性的研究
     莲子微波真空干燥原料选择条件:二、三级成熟度鲜莲(果皮呈浅褐色或褐黄色),不需进行异Vc钠护色处理的鲜莲。
     将微波真空干燥应用于莲子干燥,能显著提高干燥速度,降低干燥温度,改善产品品质。微波功率、微波间歇比对莲子微波真空干燥影响较大,分别表现为:微波功率越高,微波间歇比越大,干燥速度越大,干燥用时越短。真空度对莲子微波真空干燥影响不显著,但仍然表现为真空度越高,干燥用时越短。整个干燥过程分为加速期和降速期两个阶段,无明显恒速期。加速期短,微波功率越高、真空度越大、微波间歇比越大降速期越短。干燥过程中,莲子的中心温度和表面温度基本相同,干燥温度远低于单纯微波干燥。
     2.莲子微波真空干燥品质学的研究
     通过观察微波真空干制莲子切片电镜扫描图可知,莲子内部细胞呈现有规则的层叠排列结构,细胞间有大量大小不一的孔隙;部分淀粉糊化,仍有部分淀粉颗粒完整存在;在其内部形成独有旋流冲刷“溶洞”现象,便于干燥时水分排出,也有助于干莲复水后保持原有形态。
     对干燥过程中PPO活性的研究可知,干燥至2min时,PPO活性基本丧失,微波真空干燥能在短时间内控制酶促褐变对外观品质的影响。
     通过微波真空干燥对莲子收缩率、复水率影响的研究得知,增大微波功率、真空度、间歇比,收缩率降低,复水率增加,在-0.08MPa时复水能力最强。但微波功率高达4kW或真空度为-0.09 MPa时,则反之。
     通过微波真空干燥对莲子色泽影响的研究得知,微波功率、真空度、间歇比越大,莲子的色泽白度值越大。当微波功率为3 kW时,WH相当接近于鲜莲的白度值,但当功率高达4 kW时,WH反而变小;当真空度到达-0.09 MPa时,WH基本接近于鲜莲的白度。
     3.莲子微波真空干燥工艺优化的研究
     通过二次正交旋转组合设计试验方案,分别建立微波功率X1、真空度X2、间歇比X3和干燥时间Y1、收缩率Y2、复水率Y3、色泽白度Y4之间的动态数学模型为: Y1=14.08696-3.687769X1-2.020287X2-2.316503X3-1.6875X1X2+1.1875X1X3 Y2= 39.08823-2.97355X2-1.98288X3+4.19479X12 +2.15833X22 +1.65098X32 Y3=154.3661+2.214661X1-0.604753X2+1.780317X3-1.577267X12-1.665654X22- 0.4X2X3-1.488879X32 Y4= 67.82598+1.666092X2-3.704279X22-2.735536X32
     运用响应面法对工艺参数进行优化,并综合考虑各指标重要性及生产成本等因素,得到莲子微波真空干燥工艺的最优参数组合为:微波功率3 kW,真空度-0.086 MPa,间歇比3.5(94s-on/26-off)。
Drying technology is played the most important roles in lotus-seed processing industry. The microwave-vacuum drying (MVD) technology was applied to lotus-seed drying; the drying and quality characteristics of lotus-seed were systematically studied in this paper. On the basis, quadratic rotation-orthogonal combination design was used for experimental design, combined with response surface methodology to determine the optimal procedure parameters of lotus-seed drying. The results as following:
     1. Studied on the drying characteristics of MVD lotus-seed
     Conditions of raw material: Fresh lotus-seed, at second or third stage maturity, with no color protection.
     The MVD was resulted in substantial saving of processing time, lower of drying temperature, and improved quality of lotus-seed. The effects of microwave power, on/off ratio were significant: the higher the power and the on/off ratio were, the bigger the drying rate was, the shorter the drying time was; The vacuum was higher, then the drying time was shorter, but the effect was inconspicuousness.Two drying periods, namely accelerated drying and decelerated drying were found in MVD lotus-seed, with no significant constant drying period. The accelerated drying period was short, and when the microwave power, vacuum and on/off ratio were higher, the decelerated drying period was shorter. In MVD lotus-seed, the central and surface temperatures were basically similar, and far lower than microwave drying simply.
     2. Studied on the quality of MVD lotus-seed
     The results of electrical microscope slice showed that the cells were single regularly stacked, and a mass of pores were existed in intercellular. The starch was partly gelatinized, and still some starch granules integrated existed. The unique phenomenon“cave”was formed, easy for water migration and good quality keeping when rehydration.
     The results of PPO activity research showed that PPO activity was inhibited within 2 min. That means the effect of enzymatic browning could be effectively controlled by MVD in a short time.
     The results of shrinkage and rehydration research showed that lower shrinkage and higher rehydration could be achieved by increasing microwave power, vacuum pressure and on/off ratio. But when the power reached 4 kW, the shrinkage rage was no longer lower and the rage got lower. While vacuum pressure was -0.08MPa, the rehydration was the biggest, but when it reached -0.09 MPa, the rehydration rage was no longer bigger.
     The results of color research showed that higher WH could be achieved by increasing microwave power, vacuum pressure and on/off ratio. When microwave power was at 3 kW, WH was quite close to the fresh, but it reached 4 kW, WH got lower. When the vacuum pressure was -0.09 MPa, WH was quite similar to the fresh.
     3. Studied on the process optimization of MVD lotus-seed
     The quadratic rotation-orthogonal combination design was used for experimental design, and the dynamic mathematical model was established as follows:(microwave powerX1, vacuum pressureX2, on/off ratioX3, drying time Y1, shrinkage Y2, rehydration Y3, whiteness Y4) Y1=14.08696-3.687769X1-2.020287X2-2.316503X3-1.6875X1X2+1.1875X1X3 Y2= 39.08823-2.97355X2-1.98288X3+4.19479X12 +2.15833X22 +1.65098X32 Y3=154.3661+2.214661X1-0.604753X2+1.780317X3-1.577267X12-1.665654X22- 0.4X2X3-1.488879X32 Y4= 67.82598+1.666092X2-3.704279X22-2.735536X32
     The response surface methodology and weight value analysis was used to determine the optimal procedure parameters of MVD lotus-seed. When comprehensively considering the costs and the quality of MVD lotus-seed, the optimal parameters of microwave power, vacuum pressure and on/off ratio should be kept at 3 kW, -0.086 MPa, 3.5 (94s-on/26-off).
引文
[1]王喜鹏.微波真空干燥过程的特性及应用领域[D].辽宁:东北大学.2006.
    [2] Wall R, Howard J, Bindu J. Flies, fish and food[J]. Biologist. 2002, 49(3):123~126.
    [3] Mansell R, Suite B, Roswell, G A. Engineering a“fish-dry”[J]. Food Engineering. 2002(11):30.
    [4] Ichsani D, Dyah W A. Design and experimental testing of a solar dryer combined with kerosene stoves to dry fish [R]. ASAE Annual International Meeting. 2002,7,USA.
    [5] Bala B K, Mondol M R A. Experimental investigation on solar drying of fish using solar tunnel dryer[J]. Drying Technology. 2001,19(2):427~436.
    [6] Wall R, Howard J J, Bindu J. The seasonal abundance of blowflies infesting drying fish in south-west lndia, Journal of Applied Ecology. 2001, 38:339~348.
    [7]樊军庆,张宝珍.太阳能干燥技术在农产品加工中的利用[J].工艺与备装.2009,5:68~70.
    [8]刘伟涛,李汴生,俞裕明等.太阳能干燥设备在食品原料干燥中的应用[J].包装与机械.2008,29(10):203~236.
    [9] Jaishrce Prasad,Vijay V K,Tiwari G N,eta1. Study on performance evaluation of hybrid drier forturmeric (Curcuma longa L.) drying at village scale [J]. Journal of Food Engineering. 2006,75:497~502.
    [10] M.A. Hossain, B.K. Bala.Drying of hot chilli using solar tunnel drie[J]. Solar Energy. 2007,81:85~92.
    [11]杨启岳.国内太阳能热利用现状与发展[J].能源技术.2001,22(4):163~164.
    [12] Bellagha S, Amami E, Farht A, et al. Drying kinetics and characteristic drying curve of lightly salted sardine[J]. Drying Technology. 2002, 20(7):1527~1538.
    [13] Sankat C K, Mujaffar S, Modeling the drying behavior of salted shark fillets[J]. ASAE Annual International Meeting. 2003,7:503~507.
    [14]娄永江.龙头鱼热风干燥的数学模型及优化参数组合[J].食品科技.2000,1:30~31.
    [15]康鹏.裙带菜干燥技术[J].南京林业大学学报.1997,219(增刊):176~177.
    [16]张建军,王海霞,马永昌.辣椒热风干燥特性的研究[J].农业工程学报.2008,24(3):298~301.
    [17]李珂,王蒙蒙,沈晓萍等.熟化甘薯热风干燥工艺参数优化及数学模型研究[J].食品科学.2009,29(8):363~368.
    [18]诸爱土,成忠.西芹热风干燥动力学研究[J].农机化研究.2007,3:139~142.
    [19] Barbara G. Dehydrated Goods[J].Food Manufacture.1998,73(6):30~31.
    [20]潘永康,王喜忠.现代干燥技术[M].北京:化学工业出版社.1998:5~520,695~699.
    [21]高福成.微波食品[M].北京:中国轻工业出版社.1999:1~10.
    [22]王绍林.微波能在食品加工中的应用[J].食品与机械.1992,32(6):32~34.
    [23]康健.微波加热技术及其在农副产品加工中的应用[J].西北农业学报.1998,8(4):110~112.
    [24]张静,袁惠新.几种食品干燥技术的进展与应用[J].包装与食品机械.2003, 21(1):29~32.
    [25]张立彦,丙汉明.微波干燥食品技术[J].食品工业.1999(1):45~47.
    [26]刘海新,叶玫.调味海带脆片生产工艺[J].福建水产.2002,93(6):71~73.
    [27]郭文川,朱新华.微波干燥技术在食品工业中的应用[J].食品科技.1997(2):13~14.
    [28] Mallikarjunan P, Hung Y C, Gundavarapu S. Modeling microwave cooking of cocktail shrimp[J].Food Process Eng.1996,19:97~111.
    [29]陈仲仁.微波干燥在食品干燥裂程之应用[J].食品工业.2002,34(7):31~45.
    [30]何佳偷.微波干燥脱水蔬果加工产品的品质探讨[J].食品工业.2002,34(7):47~57.
    [31]黄金忠.微波在脱水蒜片、洋葱加工中的应用研究[J].石河子大学学报(自然科学版).1999,3(1):31~35.
    [32]郑春明.热泵在农副产品干燥中的应用[J].农机与食品机械.1997(2):26~28.
    [33]薛志成.热泵特点及在农副产品干燥中的应用[J].农业机械化与电气化.2002,(5):19.
    [34]潘永康,王喜忠.现代千燥技术[M].北京:化学工业出版社.1998:505~520,695~699.
    [35]张绪坤,胡文伟,张进疆等.国内外热泵干燥的现状与展望[J].江西科学.2009,27(4):629~633.
    [36]陈依水.热泵在水产品干燥中的应用[J].渔业机械仪器.1992,19(98):35~37.
    [37]李旭东,马军.热泵干燥技术简捷[J].化工设计.1997(6):40~41.
    [38] Kudra T,Mujumder A S,李占勇(译).先进干燥技术[M].北京:化学工业出版社.2005.
    [39] Chau K J,Chou S K,Ho J C,et a1.Heat pump drying:recent developments and future trends[J].Drying Technology.2002,20:1579~1610.
    [40] Ho J C,Chou S K,Mujumdar A S,et a1..An optimization framework for drying of heat-sensitive products[J].Applied Thermal Engineering.2001,21:1779~1798.
    [41]李浙.水产品热泵干燥装置的设计计算[J].冷藏技术.1998,2:36~39.
    [42] Chua K J, Chou S K, Ho JC, et al Heating pump drying: recent developments and future trends[J].Drying Technology.2002,20(8):1579~1610.
    [43] Klticker K, Schmidt L, Steimle F. A drying heat pump using carbon dioxide as working fluid[J].Drying Technology.2002,20(8):1659~1671.
    [44]马国远,郁永章.热泵微波联合干燥系统研究[J].化学工程.2000,28(2):27~30.
    [45]叶京生,张翠宣,李文曲.热泵干燥装置中绿色热泵工质的优选[J].化学工业与工程.2001,18(4):228~231.
    [46]陈坤杰,李娟玲,张瑞合.热泵干燥技术的应用现状与展望[J].农业机械学报.2000,31(3):109~111.
    [47]许韩山,张憨,孙东风等.真空冷冻干燥在食品中的应用[J].干燥技术与设备.2008(2):102.
    [48]周恒良,秦红平.浅谈食品的真空冷冻干燥[J].中国科技信息.2009(05):1~14.
    [49]王益强,孙萍,刘鲁建.真空冷冻干燥对食品质量的影响[J].莱阳农学院学报.2003,20(2):149~153.
    [50]高福成,刘志胜,李修渠.冻干食品[M].北京:中国轻工业出版社.1998.
    [51]张俊艳,谢春阳,都凤华等.真空冷冻干燥蕨菜的理化特性分析[J].吉林农业大学学报.2004,26(6):687~689.
    [52]施明恒,祝涛,王朝晖.蜂王浆微波冷冻干燥特性的实验研究[J].东南大学学报.l998,28(11):l~6.
    [53]孙恒,朱鸿梅,张洁等.微波加热冷冻干燥过程中热电耦合的研究[J].真空与低温.2004,l0(4):22l~224.
    [54]《地理标志产品建莲》(GB/T 22777-2008).
    [55]梁静.莲子微波干燥特性及干燥工艺的研究[D].福建:福建农林大学.2007.
    [56] Anon. New drying technology makes dried fruits taste like fresh[J]. Chilton's Food Engineering.1988,7:81~82,84.
    [57] Wadsworth J I, Velupillai L, Verma L R. Microwave-vacuum drying of parboiled rice[J].Trans.ASAE.1990,33(1):199~210.
    [58]崔正伟,许时婴,孙大文.微波真空干燥技术的进展[J].粮油加工与食品机械.2002,7:28~30.
    [59] Gunasekaran S. Pulsed microwave-vacuum drying of food materials[J]. Drying Technology.1999,17(3):395~412.
    [60] Yongsawatdgul J, Gunasekaran S. Microwave vacuum drying of cranberries: part II quality evaluation[J].Food Processing and Preservation.1996,20:145~156.
    [61] Farkas I, Rendik Z. Intermittent thin layer corn drying[J].Drying technology.1997,15(6-8):1951~1960.
    [62] Lin T M, Durance T D, Scaman C H. Characteriztion of vacuum microwave, air and freeze dried carrot slices[J]. Food Research International. 1998,31(2):115~117.
    [63] Kiranoudis C T, Tsami E, Maroulis Z B. Microwave vacuum drying kinetics of some fruits[J].Drying Technology. 1997,15(10):2421~2440.
    [64]梅成.微波真空低温干燥技术[R].第十届全国微波能应用学术会议.2001,78.
    [65]杨世铭编.传热学(第二版)[M].北京:高等教育出版社.1987.
    [66]常虹,李远志,刘清化等.微波真空干燥技术及其在农产品加工中的应用[J].农业工程技术:农产品加工.2007,7:52~54,59.
    [67] Drouzas A E, Tsami E, Saravacos G D. Miceowave/vacuum drying of model fruit gels[J]. Journal of Food Engineering.1999,39:117~122.
    [68] Yousif A N, Scaman C H, Durance T D, et al. Flavor volatiles and physical characteristics of vacuum-microwave -and air-dried sweet basil(Ocimnm basilicum L.) [J]. Journal of Agricultural and Food Chemistry.1999, (47):4777~4781.
    [69] Yousif A N, Durance T D, Scaman C H, et al. Headspace volatiles and physical characteristics of vacuum-microwave, air and freeze-dried Oregano(Lippia berlandieri Schauer) [J]. Food Sci.2000,65(6):926~930.
    [70]李瑜,许时婴.大蒜干燥工艺的研究[J].食品与发酵工业.2004,(30):54~58.
    [71]姜元欣,许时婴,王璋.南瓜渣的微波真空干燥[J].食品与发酵工业.2004:58~62.
    [72]韩清华,李树君,马季战等.微波真空干燥膨化苹果脆片的研究[J].农业机械学报.2006,(37):156~158.
    [73]李远志,土娟,陈人人等.微波真空干燥速溶香蕉粉的工艺研究[J].食品科学.2005,(36):31~34.
    [74]孙日娟,崔政伟.微波真空干燥法生产同体蜂蜜[J].食品研究与开发.2007,12(8):104~109.
    [75] Lin T M, Timothy D D, Scaman C H. Physical and sensory properties of vacuum microwave dehydrated shrimp[J]. Journal ofAquatic Food Product Technology. 1999,8(4):41~53.
    [76]张国琛,毛志怀,牟晨晓等.微波真空干燥扇贝柱的物理和感观特性研究[J].农业工程学报.2004,20(3):141~144.
    [77]化春光,任广跃,朱文学.微波真空组合干燥技术的研究[J].干燥技术与设备.2009,7(1):57~62.
    [78] Gunasekaran S.Pulsed microwave-vacuum drying of food materials[J]. Drying Technology.1999,17(3):395~412.
    [79] Yongsawatdgul J,Gunasekaran S.Microwave vacuum drying of cranberries:partII quality evaluation[J].Food Processing and Preservation.1996,20:145~156.
    [80] Song H,Mao Z,Lian G.Effect of drying on the physical characteristics of black leaf tea.ASAE:036110.
    [81]陈燕,陈羽白,周学成.荔枝微波干燥的试验研究[J].中国农机化.2003,(5):28~31.
    [82]曾绍校,林鸳缘,郑宝东.莲子淀粉糊的特性研究[J].中国农学通报. 2009,25(18):74~78.
    [83]张国琛.扇贝柱微波真空干燥机理及品质研究[D].北京:中国农业大学.2004.
    [84] Krokida M K, Maroulis Z B. Effect of microwave drying on some quality properties of dehydrated products[J].Drying Technology.1999,17(3): 449-466.
    [85] Lin T M, Durance T D, Scaman C H. Characterization of vacuum microwave, air and freeze dried carrot slices[J].Food Research International.1998.31(2):111~117.
    [86] Venkatachalapathy K, Raghavan G S V. Microwave drying of whole, sliced and pureed strawberries[J].Agricultural Engineering.2000,9(1):29~39.
    [87]郭素枝编著.扫描电镜技术及其应用[M].厦门大学出版社.2006:1~12.
    [88]张国琛,毛志怀,牟晨晓.微波真空干燥扇贝柱的物理和感观特性研究[J].农业工程学报.20(3):141~144.
    [89]宁正祥主编.食品成分分析手册[M].中国轻工业出版社.2001:753~754.
    [90]曾绍校,梁静,郑宝东.不同干燥工艺对莲子品质的影响[J].农业工程学报.2007,23(5):227~231.
    [91]王惠,吴兆亮,童应凯等.应用二次回归正交旋转组合设计优化黄霉素发酵培养基[J].食品研究与开发.2006,27(6):19~22,64.
    [92] Myers WR. Response surface methodology[J]. Encyclopedia Biopharm Statistics.2003,858~869.
    [93]惠大丰,姜长鉴.统计分析系统SAS软件实用教程[M].北京:北京航空航天大学出版社.1996:180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700