聚苯醚微胶囊的合成及其在双马来酰亚胺树脂中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双马来酰亚胺(BMI)是高性能树脂的典型代表,其突出的综合性能(耐热性、介电性能、吸湿性能等)得到了人们的广泛关注。但是,作为一种热固性树脂,BMI树脂也存在固化物脆性大的问题,因此增韧改性一直是BMI树脂研究的重要研究内容。近年来,微胶囊增韧热固性树脂引起了人们的关注,同时可以赋予材料自修复等多功能,因此微胶囊在树脂体系中的应用日益受到重视。但是现有微胶囊的耐热性较低,限制了其在BMI树脂中的应用,因此开发具有优良耐热性的微胶囊并将其用于BMI树脂的增韧是一项有意义的研究工作。
     本论文通过原位聚合法,以2,6-二甲基苯酚(DMP)为囊壁材料,环氧树脂(DGEBPA)为囊芯,成功合成了一种新型的聚苯醚包覆环氧树脂微胶囊(PPO-MC),考察了不同参数对微胶囊形貌、尺寸、热稳定性及耐溶剂性的影响。研究结果表明最佳的合成PPO-MC的工艺为:以十二烷基硫酸钠(SDS)为乳化剂,反应温度为30℃,囊壁与囊芯的质量比为1:1.2。以最佳条件制得的PPO-MC具有良好的耐溶剂性和热稳定性,其初始分解温度在258℃左右。
     将PPO-MC应用于BMI/二烯丙基双酚A(BA)树脂体系中,研究了不同粒径、含量的微胶囊对BMI/DBA树脂反应性、力学性能、热性能、介电性能及吸湿性能的影响。研究结果表明,PPO-MC的加入能促进树脂的固化,PPO-MC含量越高,催化作用越明显,但与微胶囊粒径大小关系不大。树脂体系的力学性能随PPO-MC含量的增加先升高后降低,并且PPO-MC的粒径越小,增韧效果越明显。当加入5wt%粒径为80μm的微胶囊时,改性体系具有最佳的力学性能,即改性树脂的冲击强度和弯曲强度分别达到14.8KJ/m2和170MPa,是BMI/BA树脂相应性能的1.15和1.2倍。改性树脂体系的分解温度随微胶囊含量的增加而降低,但玻璃化转变温度有所提高。此外,微胶囊含量和粒径对树脂的介电常数、介电损耗与吸湿率产生相似的影响,即均随PPO-MC含量的增加而降低,但当含量达到一定值后,上述性能又有所升高;在相同含量下,PPO-MC的粒径越小,体系的介电常数、介电损耗和吸水率越小。
Being a typical representative of high performance thermosetting resins, bismaleimide (BMI) resins have gained wide attention due to its outstanding integrate properties (such as thermal, dielectric and mechanical properties as well as water absorption). However, as a thermosetting resin, the biggest drawback of BMI resins is their brittleness. Recently, microcapsules can endow materials multi-functions such as toughening and self-healing, and thus have been employed to enhance the performance of polymer. But present microcapsules usually have low thermal-degradation temperature, and can not be applied in developing high performance resins including BMI resins. Hence, synthesizing new microcapsules with better thermal stability, and then discussing its modification of BMI resins is of great interesting.
     A novel kind of polyphenylene oxide (PPO) microcapsules filled with epoxy resin (PPO-MC) was synthesized by in situ polymerization, of which 2,6-dimethyl-1, 4-phenylene oxide (DMP) is the shell and diglycidyl ether of bisphenol A (DGEBPA) epoxy resin is the core. The effect of different process parameters on surface morphology, size distribution, thermal stability and solvent resistance of microcapsules was investigated. Results illustrate that the optimum synthesizing parameters for microcapsules are:sodium dodecyl sulphate (SDS) is used as the surfactant, the reaction temperature is 30℃, the weight ratio of DMP to DGEBPA is 1:1.2. With the optimum parameters, the synthesized PPO-MC exhibits good thermal stability, its initial degradation temperature is about 258℃.
     PPO-MC with various diameters and contents was added into BMI/BA resin to develop high performance modified BMI/BA/PPO-MC systems, and the effects of diameter and content of PPO-MC on the processing characteristics, mechanical properties, thermal stability, dielectric properties and water resistance of BMI/BA/PPO-MC resins were investigated in detail. The reactivity of BMI/BA can be catalyzed by the addition of PPO-MC, and the effect becomes pronounced with more PPO-MC content, while the diameter of PPO-MC does not affect the curing of BMI/BA. With increasing the content of PPO-MC, both the impact and flexural strengths increase firstly and then decrease; with the same content of PPO-MC, the smaller the mean diameter of PPO-MC, the better mechanical properties are. The modified BMI/BA resin containing 5wt% PPO-MC with a mean diameter of 80μm has the optimum mechanical properties, specifically, its impact and flexural strengths are about 14.8KJ/m2 and 170MPa, respectively, about 1.15 and 1.20 times of those of original BMI/BA resin. Modified BMI/BA resins have higher glass transition temperature than original BMI/BA resin, while the former has slightly lower thermal-degradation temperature than the later. In addition, the diameter and content of PPO-MC has similar effect on the dielectric constant and loss as that on water absorption, the dielectric constant and loss as well as water absorption initially decrease with the increasing of PPO-MC content, and then increase with further increased PPO-MC content; with the same content of PPO-MC, the smaller the mean diameter of PPOMC, the smaller dielectric constant and loss as well as water absorption are.
引文
[1]Blaiszi B J, Caruso M M, McIlroy D A, Moore J S, White S R, Sottos N R. Microcapsules filled with reactive solutions for self-healing materials.Polymer,2009, 50 (2009):990-997
    [2]Sottos N R, White S R, Bond I P. Self-healing polymers and composites. Journal of The Royal Society Interface,2007,4(13):347
    [3]Benita S. Washingron Acs Book & Journals Division,1996
    [4]梁治齐.微胶囊技术及其应用.北京:中国轻工业出版社,2001
    [5]Song Y J, Patricia S, Henry L L. Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process.Journal of Membrane Science,2005,251 (1):67
    [6]Yoji Y, Michael V S. Reaction of poly(acrylamide-co-vinylamine) with tresyl-PEG in the presence of PC12 cells.Biomaterials,2003,24 (3):435
    [7]Qiao R, Zhang X L, Qiu R, Kang Y S. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2008,313-314:347
    [8]Luo W J, Yang W, Jiang S, Feng J M, Yang M B. Microencapsulation of decabromodiphenyl ether by in situ polymerization:Preparation and characterization. Polymer Degradation and Stability,2007,92(7):1359
    [9]Javed S, Rajesh B, Rekha S. Microencapsulation of black pepper oleoresin. Food Chemistry,2006,94(1):105
    [10]Turchiuli C, Fuchs M, Bohin M. Oil encapsulation by spray drying and fluidised bed agglomeration. Innovative Food Science & Emerging Technologies, 2005,6(1):29
    [11]Sergio F, Hans P M, Bruno G. Microencapsulation by solvent extraction/evaporation:reviewing the state of the art of microsphere preparation process technology. Journal of Controlled Release,2005,102 (2):313
    [12]Shin J S, Kenji K, Tsutomu O. Biomaterials,2005,26(23):4786
    [13]Rajan N, Padmakar J, Shubhangi U. Polystyrene encapsulation of manganese porphyrins:highly efficient catalysts for oxidation of olefins. Catalysis Communication,2005,6(2):125
    [14]Keller M W, Sottos N R. Mechanical Properties of Microcapsules Used in a Self-Healing Polymer. Experimental Mechanics,2006,6 (46):725
    [15]White S R, Sottos N R, Geubelle, Moore J S, Kessler M R, Sriram S R, Brown E N, Viswanathan S. Autonomic healing of polymer composites. Nature,2001, 409:794
    [16]Yuan L, Liang G Z, XieJQ, Li L, Guo J. Preparation and characterization of poly(urea-formaldehyde) microcapsules filled with epoxy resins. Polymer,2006, 47(15):5338
    [17]Yang R, Xu H, Zhang Y. Preparation, physical property and thermal physical property of phase change microcapsule slurry and phase change emulsion. Solar Energy Materials and Solar Cells,2003,80(4):405-416.
    [18]Hong K, Park S. Preparation of polyurethane microcapsules with different soft segments and their characteristics. Reactive and Functional Polymers,1999,42(3): 193-200.
    [19]Kessler M R, Sottos N R, White S R. Self-healing structural composite materials. Composites Part A:Applied Science and Manufacturing,2003,34(8): 743-753.
    [20]Su Jun-feng, Wang Li-xin, Ren Li. Preparation and characterization of double-MF shell microPCMs used in building materials. Journal of Applied Polymer Science,2005,97(5):1755-1762.
    [21]Lamprecht A, Schafer U F, Lehr C-M. Characterization of microcapsules by confocal laser scanning microscopy:structure, capsule wall composition and encapsulation rate. European Journal of Pharmaceutics and Biopharmaceutics,2000, 49(1):1-9.
    [22]Keyang Xu,David M. Hercules, Igor Lacik. Atomic force microscopy used for the surfacecharacterization of microcapsule immunoisolation devices. Journal of Biomedical Materials Research.1998,41(3):461-467.
    [23]Yadav S K, Kartic C Khilar. Release rates from semi-crystalline polymer microcapsules formed by interfacial polycondensation. Journal of Membrane Science, 1997,125:213-218.
    [24]Sun G, Zhang Z. Mechanical strength of microcapsules made of different wall materials. International Journal of Pharmaceutics,2002,242:307-311
    [25]Sheba D, Bergman, Fred Wudl. Springer,2007
    [26]Hucker M, Bond I, Bleay S, Haq S. Experimental evaluation of unidirectional hollow glass fibre/epoxy composites under compressive loading. Composites Part A: Applied Science and Manufacturing,2003,34 (10):927
    [27]Li V C, Lim Y M, Chan Y W. Feasibility study of a passive smart selfhealing
    cementitious composite. Composites Part B:Engineering,1998,29(6):819
    [28]Kessler M R, Sottos N R, White S R. Self-healing structural composite materials. Composite Part A:Applied Science and Manufacturing,2003,34(8): 743
    [29]Kessler M R, White S R. Self-activated healing of delamination damage in woven composites. Composites Part A:Applied Science and Manufacturing,2001, 32 (5):683
    [30]Yuan L, Liang G Z, Xie J Q, He S B. Colloid & Polymer Science,2007, 285 (7):781
    [31]Wilson G O, Moore J S, White S R, Sottos N R, Andersson. Evaluation of Ruthenium Catalysts for Ring-Opening Metathesis Polymerization-Based Self-Healing Applications. Advanced Functional Materials,2008,18 (1):44
    [32]Keller M W, White S R, Sottos N R. A self-healing poly(dimethyl siloxane) elastomer. Advanced Functional Materials,2007,17,2399
    [33]Jung D, Hegeman A, Sottos N R, et al. Self-healing composites using embedded microspheres. Composites and Functionally Graded Materials,1997,80: 265-275.
    [34]Yin T, Rong M Z, Zhang M Q, Yang G C. Preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent.Composites Science and Technology,2007.64 (2):201
    [35]Yang H T, Fang Z P, Fu X Y, Tong L F. A Novel Glass Fiber-Supported Platinum Catalyst for Self-healing Polymer Composites:Structure and Reactivity. Chinese Journal of Catalysis,2007,28 (11):947
    [36]梁国正,顾嫒娟.双马来酰亚胺.北京:化学工业出版社,1997
    [37]Takao Iijima, Noriyuki Yuasa, Masao Tomoi. Modification of three-component bismaleimide resin by poly (phthaloyl diphenyl ether) and related copolymers[J]. Journal of Applied Polymer Science,2001,82(12):2991
    [38]Takao Iijima, Hidehiko Shiono, Wakichi Fukuda, Masao Tomoi. Toughening of bismaleimide resin by modification with poly (ethylene phthalate) and poly (ethylene phthalate-co-ethylene isophthalate). Journal of Applied Polymer Science, 1997,65 (7):1349
    [39]Eunate Goiti, Frank Heatley, Malcolm B Huglin, Jose M. Rego. Kinetic aspects of the Diels-Alder reaction between poly (styrene-co-furfuryl methacrylate) and bismaleimide. European Polymer Journal,2004,40 (7):1451
    [40]Aijuan Gu. Novel high performance RTM bismaleimide resin with low cure temperature for advanced composites. Polymers for Advanced Technologies,2005, 16 (7):563
    [41]Hongfei Zheng, Zhihong Li, Yumei Zhu. Bismaleimide Modified by Allyl Novolak for Superrabrasives. Chinese Journal of Chemical Engineering,2007,15(2): 302-304
    [42]Haihu Qin, Patrick T, Mather, Jong-Beom Baek, Loon-Seng Tan. Mofification of bisphenol-A based bismaleimide resin (BPA-BMI) with ally-terminated hyperbranched polyimide (AT-PAEKI). Polymer,2006,47(8):2813-2821
    [43]Aijuan Gu, Guozheng Liang, Dan Liang, Miao Ni. Bismaleimide/carbon nanotube hybrids for potential aerospace application:I. Static and dynamic mechanical properties. Polymers for Advanced Technologies,2007,18(10):835-840
    [44]Chun-Shan Wang, Hann-Jang Hwang. Synthesis and properties of novel naphthalene-containing bismaleimides. Journal of Applied Polymer Science,1996,60 (6):857-863
    [45]王洪波,周浩然,徐双平.二元胺/环氧树脂增韧BMI树脂的研究[J].哈尔滨理工大学学报,2005,10(5):88
    [46]Naffakh M, Dumon M, Gerard J F. Study of a reactive epoxy-amine resin enabling in situ dissolution of thermoplastic films during resin transfer moulding for toughening composites. Composites Science and Technology,2006,66 (10): 1376-1384.
    [47]Yongqing Ling, Shengfang Li, Heqing Tang. Curing behavior and properties of the cured resin based on bismaleimide, bisoxazoline, and oleic acid ternary copolymer. Journal of Applied Polymer Science,2008,108 (4):2321
    [48]Haoyu Tang, Naiheng Song, Zihong Gao, Xiaofang Chen, Xinghe Fan, Qian Xiang, Qifeng Zhou. Synthesis and properties of 1,3,4-oxadiazole-containing high-performance bismaleimide resin. Polymer,2007,48(1):129-138
    [49]Xiaoyun Liu, Guozhu Zhan, Zhewen Han, Shanjun Li, Yingfeng Yu. Phase morphology and mechanical properties of a poly (ether sulfone)-modified bismaleimide resin. Journal of Applied Polymer Science,2007,106(1):77-83
    [50]Qunfeng Cheng, Zhengping Fang, Xiao-su Yi, Xuefeng An, Bangming Tang, Yahong Xi. "Ex situ" concept for toughening the RTMable BMI matrix composites Part I:Improving the interlaminar fracture toughness. Journal of Applied Polymer Science,2008,109 (3):1625
    [51]Zhuxia Rong, Funei Huang, Xuening Shen, Farong Huang. Preparation and properties of dipropargyl ether of bisphenol A-modified bismaleimide resins and composites. Polymer Composites,2008,29(5):483
    [52]刘刚,宁荣昌,叶保民.聚醚酸亚胺改性双马来酸亚胺树脂体系的研究.塑 料工业,2007,35:168
    [53]Qin Haihu, Patrick T. Mather, Jong-Beom Baek. Modification of Bisphenol-A Based Bismaleimide Resin(BPA-BMI) with an Allyl-Terminated Hyperbranched Polyimide(AT-PAEKI). Polymer,2006,47(8):2813-2821.
    [54]吴培,张留城.聚合物共混改性.北京:中国轻工业出版社,1998
    [55]雷勇,荆晓东,江璐霞.橡胶增韧双马来酰亚胺树脂的研究.化工新型材料,2001,29(2):26
    [56]Hongwei Cao, Riwei Xu, Dingsheng Yu. Thermal and dielectric properties of bismaleimide-triazine resins containing octa (maleimidophenyl) silsesquioxane. Journal of Applied Polymer Science,2008,109(5):3114-3121
    [57]Jing Fan, Xiao Hu, Chee Yoon Yue. Static and dynamic mechanical properties of modified bismaleimide and cyanate ester interpenetrating polymer networks. Journal of Applied Polymer Science,2003,88 (8):2000-2006
    [58]袁莉,马晓燕,贾巧英.晶须改性二苯甲烷型双马来酰亚胺树脂体系复合材料的研.化工新型材料,2003,31(11):34-36.
    [59]Li Yuan, Aijuan Gu, Guozheng Liang. Preparation and properties of poly (urea-formaldehyde) microcapsules filled with epoxy resins[J]. Materials Chemistry and Physics,2008,110(2-3):417-425
    [60]Tiu Q, Shentu B Q, Zhu JH, Weng ZX.J Application Polymer Science.2007, 104 (6):3649-53.
    [61]Poncet S, Boiteux G, Pascault J P, Sautereau H, Seytre G, Rogozinski J, Kranbuehl, D. Polymer,1999,40 (24):6811-20.
    [62]Gonzalez M, Kadlec P, Stepanek P, Strachota A, Matejka L. Polymer 2004; 45 (16):5533-41.
    [63]Cabanelas JC, Serrano B, Gonzalez MG, Baselga J. Polymer 2005; 46 (17):6633-9.
    [64]Cabanelas JC, Serrano B, Gonzalez MG, Baselga J. Polymer 2005; 46 (17):6633-9.
    [65]Yuan L, Liang GZ, Xie JQ, Guo J, Li L. Polym Degrada Stabil 2006; 91 (10):2300-6.
    [66]Li Yuan, Aijuan Gu, Guozheng Liang, Zengping Zhang. Microcapsule-modified bismaleimide (BMI) resins. Composites Science and Technology,2008, 68 (9):2107-2113.
    [67]F Y C Boey, X L Song S K Rath. Cure reaction for modified diallylbisphenol A/diaminodiphenylsulfone/bismaleimide. Journal of Applied Polymer Science, 2002,.85 (2):227-235.
    [68]Kim DS, Han MJ, Lee JR, Chang JY. Curing behaviour and thermal stability of an epoxy:new bismaleimide blends for composite matrices. Polymer Advance Technology,1994,5(5):287-91.
    [69]Xiaoyun Liu, Yingfeng Yu, Shanjun Li. Study on cure reaction of the blends of bismaleimide and dicyanate ester. Polymer,2006,47 (11):3767-3773.
    [70]Bernd Wetzel, Patrick Rosso, Frank Haupert, Klaus Friedrich. Epoxy nanocomposites-fracture and toughening mechanisms. Engineering Fracture Mechanics,73 (2006):2375-2398.
    [71]Sun G, Zhang Z. Mechanical strength of microcapsules made of different wall materials. Int J Pharm,2002,242 (1-2):307-311.
    [72]S.P. Wilkinson, T.C. Ward, J.E. McGrath. Effect of thermoplastic modifier variables on toughening a bismaleimide matrix resin for high-performance composite materials. Polymer,1993,34 (4):870-884.
    [73]Brown EN, White SR, Scottos NR. Microcapsule induced toughening in a self-healing polymer composite. Journal of Material Science,2004,39 (5): 1703-1710.
    [74]C. Gouri, C. P. Reghunadhan Nair, R. Ramaswamy, K. N. Ninan. Thermal decomposition characteristics of Alder-ene adduct of diallyl bisphenol A novolac with bismaleimide:effect of stoichiometry, novolac molar mass and bismaleimide structure. European Polymer Journal,2002,38 (3):503-510.
    [75]Hann-Jang Hwang, Chun-Hung Li, Chun-Shan Wang. Dielectric and thermal properties of dicyclopentadiene containing bismaleimide and cyanate ester. Part IV. Polymer,2006,47 (4):1291-1299.
    [76]Hann-Jang Hwang, Su-Wen Hsu, Chia-Lung Chung, Chun-Shan Wang. Low dielectric epoxy resins from dicyclopentadiene-containing poly (phenylene oxide) novolac cured with dicyclopentadiene containing epoxy. Reactive and Functional Polymers,2008,68 (8):1185-1193.
    [77]J. Fan, X.Hu, C.Y. Yue, J. Dielectric properties of self-catalytic interpenetrating polymer network based on modified bismaleimide and cyanate ester resins. Journal of Polymer Science. Part B:Polymer Physics.2003,41 (200):1123.
    [78]Taigyoo Park, Emmett O'Brien, Jeremy R. Lizotte, Thomas E. Glass, Thomas C. Ward, Timothy E. Long, Donald J. Leo. Dielectric relaxation behavior of poly (acrylonitrile-co-methacrylonitrile) microcapsules dispersed in a silicone matrix. Polymer,2006,47 (11):4218-4229.
    [79]A. Chaplin, I. Hamerton, H. Herman, A. K. Mudhar, S. J. Shaw. Studying water uptake effects in resins based on cyanate ester/bismaleimide blends. Polymer, 2000,41 (11):3945-3956.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700