无线自组织网络媒体接入控制机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子技术与无线通信技术的不断发展,无线自组织网络因其特有的自组织、分布式、无需依赖基础设施、鲁棒性好等特性,越来越得到广泛的应用。作为自组网协议中重要的组成部分,媒体接入控制协议是分组在信道上发送和接收的直接控制者,对系统性能起着决定性作用。
     由于自组网的分布式操作特性,缺少一个中心化的控制机制协调节点的信道接入,因此需要通过信令交互预留信道,建立通信连接,并且在通信过程中,采取退避算法协调节点的竞争接入,优化信道资源调度,避免分组冲突,维持良好的通信秩序。
     本文以无线自组网中的媒体接入控制机制为研究对象,着重讨论了信令交互模式和退避算法对网络性能的影响,具体表现在以下几个方面:
     隐终端问题广泛存在于无线自组网中,造成了网络吞吐量下降,降低了信道利用率,增加了分组延迟,对系统性能造成很大影响。传统的MAC协议利用RTS/CTS/DATA/ACK信令交互模式来解决隐终端问题。然而,由于控制信令的通信协调范围有限,使得在单信道条件下,作为隐终端问题的一个常见实例,隐接收终端问题始终无法得到解决。
     MAC协议采用基于竞争窗口的退避策略解析网络中的分组冲突。实际上,分组冲突的产生原因不尽相同,其解析方式也应该有所区别。然而现有退避算法并没有对网络中存在的分组冲突进行深入分析,忽略了不同冲突产生的根本原因,对所有的冲突采取同一种解析策略,影响了冲突解析效果。
     冲突的存在不仅浪费了带宽,消耗了能量,而且增加了延迟,降低了吞吐量,对系统性能造成了很大影响。传统冲突解析算法通过改变节点竞争窗口的大小来增加退避机制的随机性,从概率的角度进行冲突解析。该策略只能从一定程度上缓解冲突,并不能达到理想的冲突解析效果,特别是无法完全消除网络中的分组冲突。
     针对上述问题,本文研究无线自组织网络中的媒体接入控制技术。研究从三个方面展开:(1)隐接收终端问题的分析研究;(2)基于竞争的无线自组织网络中的分组冲突分析与建模;(3)基于冲突分类模型的退避算法研究。以上工作得到国家自然科学基金“可重构MIMO的无线传感器网络信息处理与传输”(No.60572049)和“认知无线电关键技术研究”(No.60602029)的资助。
     本文取得的研究成果包括如下几个方面:
     1.隐接收终端问题解决方案:分析了网络中隐接收终端问题产生的原因,基于传统RTS/CTS/DATA/ACK信令交互模式,提出一个显示阻塞通知机制EBN,通过增加一个控制信令BN,采取RTS/CTS/BN/DATA/ACK握手控制序列,明确隐终端的当前状态,利用查询/等待模式消除盲目的分组发送,从而解决隐接收终端问题。
     2.冲突分类模型的建立:传统退避算法仅仅通过改变竞争窗口的大小来解析分组冲突,并没有对冲突类型进行区分。我们根据冲突节点所处退避阶段的不同,首次提出一个冲突分类模型,将网络中的分组冲突分成两类:交叉冲突和同级冲突,并且针对这两种不同类型的冲突,分别提出了解决方案:利用顺序离散窗口分布机制SDWD实现分布窗口的离散化,避免了网络中占主导地位的交叉冲突;同时通过设置合适的分布窗口大小在同级冲突概率和分组延迟之间取得折衷。
     3.基于冲突分类模型的退避算法:基于冲突分类模型,提出两种冲突解析算法:冲突分类解析算法CCR和无冲突分类解析算法CF-CCR。两个算法均以顺序离散窗口分布机制SDWD为基础,对冲突节点采取离散化分布策略,而对于成功节点则采取了不同的处理方式。CCR将成功节点在当前竞争窗口范围内随机分布,而CF-CCR则通过为成功节点分配独立的分布空间来保证整个网络的无冲突状态。两个算法适用场景不同,同IEEE 802.11 DCF协议相比,均可获得性能的全面提升。
With the rapid advancement in wireless communications and electronics, WirelessAd Hoc Network is gaining more popularity for various applications. Wireless ad hocnetwork is a wireless system without a fixed infrastructure and it operates in a self-organized and distributed manner to offer more robustness. As a chief component ofwireless ad hoc network protocols, Medium Access Control (MAC) protocol directlydetermines both packet reception and delivery and is desisive for system performance.
     Due to its distributed operation manner, ad hoc network lacks a centrilized controlscheme to arbitrate contention among active stations. It has to exchange control signalsbefore data communication to reserve channel, and then adopts backoff schemes tocoordinate medium access and allocates system resources reasonablely, which enablesits packet collision resolution and a preferred communication order maintenance.
     This thesis focuses on MAC protocol in wireless ad hoc network and investigatesits inffuence on system performance imposed by signal handshake schemes and backoffalgorithms as shown below:
     Hidden Terminal Problem is pervasive in ad hoc network. It not only degradessystem throughput and channel utilization, but also increases packet delivery la-tency. Traditional MAC protocols utilize RTS/CTS/DATA/ACK access mode tosolve this problem, however, due to the limitation of coordination scope, HiddenReceiver Problem, which is a common instance of hidden terminal problem, cannot be totally resolved under single channel scenario.
     MAC protocol adopts contention window scheme to resolve collisions. Actually,different packet collisions should be dealt with different manners. Existed backoffalgorithms did not take further investigation into the difference of collisions andtreated them in the same way, which impacts the system performance.
     Collision not only wastes scarce bandwidth and exhausts limited node energy, butalso decreases network throughput while increasing packet latency. Traditionalbackoff algorithms attempt to change contention window size to enhance random-ness of backoff process, which in turn contributes to its resolution for collisions.However, such scheme can only resolve collisions to some extent and more specif-ically, the collisions can not be totally removed from network.
     Based on such observations, this thesis addresses medium access control schemein wireless ad hoc network. The research is carried out from four issues: (1) Researchon hidden receiver problem; (2) Analysis and modeling on collisions in contention-based wireless ad hoc network; (3) Research on backoff algorithms based on collision classification model. This work has been supported by the National Science Foundationof China”Information Processing and Transmission on Reconstructable MIMO-basedWireless Sensor Networks”(No.60572049) and”Research on Key Issues on CognitiveRadio Networks”(No.60602029) respectively.
     The contributions of this thesis include:
     1. Solution to Hidden Receiver Problem: This thesis analyzes hidden receiverproblem in detail and proposes Explicit Blocking Notification (EBN) scheme toaddress it. EBN modifies traditional RTS/CTS/DATA/ACK access model toadd a new phase BN (Blocking Notification) as RTS/CTS/BN/DATA/ACK toexplicitly notify the potential sender about the blocked state of hidden terminal. Itadopts Query/Wait mode to eliminate blindly RTS retransmission to solve hiddenreceiver problem.
     2. Collision Classification Model: Traditional backoff algorithms only concen-trate on adjusting contention window size to achieve collision resolution, while in-goring the discrepancy of different packet collisions. Accroding to different backoffstages of collision involvers, this thesis puts forward for the first time the CollisionClassification Model, which classifies collisions in contention-based wireless ad hocnetwork into Cross Collision and Intra Collision. It proposes clearly that the twocollisions should be dealt with different policies. It then proposes Sequential Dis-crete Window Distribution (SDWD) scheme to resolve dominant cross collisions innetworks, while the intra collisions are resolved with an appropriate distributionwindow size to achieve a tradeoff between intra collision probability and packetlatency.
     3. Backoff Algorithms based on Collision Classification Model: This thesisproposes two backoff algorithms based on collision classification model: CollisionClassification Resolution (CCR) algorithm and Collision Free CCR (CF-CCR)algorithm. The two algorithms are both based on SDWD scheme and are differentin their resolutions to succeeded nodes. CCR distributes succeeded senders incurrent contention window while they are allocated a independent distributionwindow in CF-CCR, which enables its convergence to a collision-free state finally.These two algorithms provide comprehensive improvement to IEEE 802.11 DCFand exhibit respective advantages in different scenarios.
引文
[1] D. C. Cox. Wireless personal communication: What is it? IEEE PersonalCommunications, 2(2):20–35, 1995.
    [2]李建东,杨家玮.个人通信.人民邮电出版社,北京, 1998.
    [3] Charles E. Perkins. Ad Hoc Networking. Addison-Wesley, Upper Saddle River,NJ, USA, 2001.
    [4] Jing Deng Sunil Kumar, Vineet S. Raghavan. Medium access control protocolsfor ad hoc wireless netwroks: a survey. Ad Hoc Networks, pages 326–358, 2004.
    [5] N. Abramson. The aloha system - another alternative for computer communica-tions. In Fall Joint Computer Conference, volume 37, pages 281–285, NJ, USA,1970.
    [6] Jubin J D and Tornow J. The darpa packet radio network protocols. In Proceed-ings of the IEEE, volume 15, pages 21–32, 1987.
    [7] McQuillan J. M C and Walden D. The arpa network design decisions. ComputerNetworks, 8:243–289, 1977.
    [8] A. Nilson Gra?, W. Chou, and C. J. Packet radio communication system archi-tecture in a mixed tra?c and dynamic environment. In Computer NetworkingSymposium, pages 51–60, 1980.
    [9] A. Ephremides Baker, J. E. Wieselthier, and D. J. A design concept for reliablemobile radio networks with frequency hopping signaling. In Proceeding of IEEE,volume 75, pages 56–73, 1987.
    [10] David A. Beyer. Accomplishment of the darpa survivable adaptive networks suranprogram. In IEEE MILCOM, 1990.
    [11]何非常,周吉,李振邦.军事通信-现代战争的神经网络.国防工业出版社, 2000.
    [12] Dennis J. Baker. Data/voice communication over a multihop, mobile, high fre-quency network. In IEEE MILCOM, Monterey, CA, 1997.
    [13] James P. Hauser. Service model and cell multiplexing for the data and voiceintegration advanced technology demonostration. In IEEE MILCOM, Monterey,CA, 1997.
    [14] Ambatipudi R. Sastry Barry M. Leiner, Robert Ruth. Goals and challenges ofthe darpa glomo program. IEEE Personal Communications, 3(6), 1996.
    [15] C. R Finke. Tps quarterly report. Technical report, February 1992.
    [16] M. Hata Jones G, G. Knezek. Packet radio prospects for educational data commu-nications. In Ninth International Conference on Technology in Education, pages218–219, Paris, France, 1992.
    [17] Travis Russell John Agosta. CDPD: Cellular Digital Packet Data Standards andTechnology. McGraw-Hill COmputer Communications Series, New York, 1996.
    [18] Simon Buchingham. Data on GPRS. Mobile Lifestreams, 1999.
    [19] S. Gupta H. S. Chhaya. Performance of asynchronous data transfer methods ofieee 802.11 mac protocol. IEEE Personal Communications, 3(5):8–15, 1996.
    [20] N. J. Muller. Wireless Data Network. Artech house, 1995.
    [21] Ten-Yeng Hsieh Tseng Y. C, Hus C. S. Power-saving protocols for ieee 802.11-based multi-hop ad hoc networks. In IEEE INFOCOM, 2002.
    [22] Heidemann J. Ye W. An energy-e?cient mac protocol for wireless sensor net-works. In IEEE INFOCOM, 2002.
    [23] Jamieson K. Chen B. Span: An energy-e?cient coordination algorithm for topol-ogy maintenance in ad hoc wireless networks. In ACM MOBICOM, 2001.
    [24] Sheu J P Wu S L, Tseng Y C. Intelligent medium access for mobile ad hocnetworks with busy tones and power control. IEEE Journal on Selected Areas inCommunications, 18(9):1647–1647, 2000.
    [25] Jinhua Zhu Wang, Chunming Qiao, and Xin. On accurate energy consumptionmodels for wireless ad hoc networks. IEEE Transactions on Wireless Communi-cations, 5(11):3077–3086, 2006.
    [26] Wicker S B Goldsmith A J. Design challenges for energy-constrained ad hocwireless networks. IEEE Wireless Communications, 9(4):8–27, 2002.
    [27] Papadimitratos P J and Hass Z. Secure data communication in mobile ad hocnetworks. IEEE Journal on Selected Areas in Communications, 24(2):343–356,2006.
    [28] Omahony D. Argyroudis P. G. Secure routing for mobile ad hoc networks. IEEECommunications Surveys and Tutorials, pages 2–21, 2005.
    [29] Perrig A Yih-Chun Hu. A survey of secure wireless ad hoc routing. IEEE Securityand Privacy Magazine, 2(3):28–39, 2004.
    [30] Srikanta P. Kumar Chee-Yee Chong. Sensor networks: Evolution, opportunities,and challenges. Proceedings of the IEEE, 91(8):1247–1256, 2003.
    [31] Y. Sankarasubramaniam E. Cayirci I. F. Akyildiz, W. Su. Wireless sensor net-works: a survey. Computer Networks(38):393–422, 2002.
    [32] Anna Hac. Wireless Sensor Network Designs. John Wiley and Sons, Ltd, 2003.
    [33] John A. Stankovic Hou, Tarek F. Abdelzaher, ChenYang Lu, Lui Sha, and Jen-nifer C. Real-time communication and coordination in embedded sensor networks.Proceedings of the IEEE, 91(7):1002–1022, 2003.
    [34] Jr Edgar H. Callaway. A Communication Protocol for Wireless Sensor Networks.PhD thesis, Florida Atlantic University, 2002.
    [35] Jr Edgar H. Callaway. Wireless Sensor Networks - Architectures and Protocols.CRC Press, 2004.
    [36] Yogesh Sankarasubramaniam Erdal Cayirci Ian F. Akyildiz, Weilian Su. A surveyon sensor networks. IEEE Communications Magazine, pages 102–114, August2002.
    [37] Malik Tubaishat Madria and Sanjay. Sensor networks: An overview. IEEE Po-tentials, pages 20–23, 2003.
    [38] Leonard Kleinrock Ranjit Iyer. Qos control for sensor networks. In IEEE ICC,pages 517–521, 2003.
    [39] Mohamed Younis Kemal Akkaya. An energy-aware qos routing protocol for wire-less sensor networks. In 23rd International Conference on Distributed ComputingSystems Workshops (ISDCSW’03), 2003.
    [40] Catherine Rosenberg Vivek Mhatre. Design guidelines for wireless sensor net-works: Communication, clustering and aggregation. Ad Hoc Networks, 2:45–63,2003.
    [41] Yan Yu Deborah Estrin Deepak Ganesan, Alberto Cerpa. Networking issuesin wireless sensor networks. Journal of Parallel and Distributed Computing,64(7):799–814, 2004.
    [42] Bonnet P P, Gehrke J, and Seshadri. Querying the physical world. IEEE PersonalCommunication, 7(5):10–15, 2000.
    [43] Mainwaring A Culler D Polastre J, Szewczyk R. Analysis of wireless sensornetworks for habitat monitoring. Wireless Sensor Networks, pages 399–423, 2004.
    [44] Noury N E, Herve T, Rialle V, Virone G, and Mercier. Monitoring behavior inhome using a smart fall sensor. In IEEE EMBS Special Topic Conference onMicrotechnologies in Medicine and Biology, 2000.
    [45] Ickes N Min R Sinha A Wang A Chandrakasan A Shih E, Cho S. Physical layerdriven protocol and algorithm design for energy-e?cient wireless sensor networks.In ACM MobiCom, 2001.
    [46] Andrew S. Tanenbaum. Computer Network. Prentice Hall, 4 edition, 2003.
    [47]郑少仁,王海涛,赵志峰,米志超,黎宁. Ad Hoc网络技术.人民邮电出版社,北京, 2005.
    [48] Tobagi F A Kleinrock and Leonardo. Packet switching in radio channel: Partii– the hidden terminal problem in carrier sense multiple access mode and thebusy-tone solution. IEEE Transactions on Communications, 23(12):1417–1433,1975.
    [49] Pierre Baldi Raja Jurdak, Cristina Videria Lopes. A survey, classification andcomparative analysis of medium access control protocols for ad hoc networks.IEEE Communications Surveys and Tutirials, 6(1), 2004.
    [50] LAN MAN Standards Committee of the IEEE Computer Society. Wireless LANMedium Access Control (MAC) and Physical Layer (PHY) Specifications. Insti-tute of Electronical and Electronics Enginners, Inc, New York, 1999.
    [51] Giuseppe Anastasi Gregori, Eleonora Borgia, Marco Conti, and Enrico. Ieee802.11b ad hoc network performance measurements. Cluster Computing, 8:135–145, 2005.
    [52] Giuseppe Bianchi. Performance analysis of the ieee 802.11 distributed coordina-tion function. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICA-TIONS, 18(3):535–547, 2000.
    [53] Qifei Zhang, Wei Liu, Zongkai Yang, and Zhen Feng. Ebn: A new mac schemefor hidden receiver problem in wireless ad hoc networks. In IEEE CHINACOM,Beijing, China, 2006.
    [54]张棋飞,刘威,程文青,杨宗凯.基于显式阻塞通知的自组织网络MAC协议.小型微型计算机系统.已录用.
    [55] Qifei Zhang, Wei Liu, Bo Cheng, and Wenqing Cheng. Improve ieee 802.11mac performance with collision sequential resolution algorithm. In IEEE WCNC,HongKong, China, 2007.
    [56] Qifei Zhang, Wei Liu, and Zongkai Yang. Design of mac protocols with collisionclassification resolution in ieee 802.11 wlan. In ACM MobiHoc, 2007. (underreview).
    [57] Qifei Zhang, Wei Liu, Zhiqiang Xiong, and Wenqing Cheng. A novel mac protocolwith collision classification resolution for ieee 802.11 wireless networks. In IEEEGLOBECOM, 2007. (under review).
    [58]张棋飞,刘威,程文青,杨宗凯.利用冲突分类解析算法改进IEEE 802.11协议.软件学报.审稿中.
    [59]张棋飞,刘威,程文青,杨宗凯. IEEE 802.11无线网络中的冲突顺序解析算法.计算机学报.审稿中.
    [60] IEEE Standards for Local Area Networks. Carrier sense multiple access withcollision detection (csma/cd) access method and physical layer specification, 1985.
    [61] Karn P. Maca: A new channel access method for packet radio. In ARL/CRRLAmateur Radio 9th Computer Networking Conference, 1990.
    [62] Scott Shenker Lixia Zhang Vaduvur Bharghavan, Alan Demers. Macaw: A mediaaccess protocol for wireless lan’s. In ACM SIGCOMM, pages 212–225, London,1994.
    [63] Jing Deng Zygmunt J. Haas. On optimizing the backo? interval for random accessschemes. IEEE TRANSACTIONS ON COMMUNICATIONS, 51(12), 2003.
    [64] Fullmer C Garcia-Luna-Aceves J. Floor acquisition multiple access (fama) in sin-gle channel wireless networks. ACM Mobile Networks and Applications Journal,Special Issue on Ad Hoc Networks, 4:157–174, 1999.
    [65] Luigi Fratta Fabrizio Talucci, Mario Gerla. Maca-bi (maca by invitation) a re-ceiver oriented access protocol for wireless multihop networks. In IEEE PIMRC,Helsinki, Finland, 1997.
    [66]黎宁,韩露.无线自组织网络退避算法综述.计算机应用, 25(6):1244–1250, 2005.
    [67] Byung-Jae Kwak Miller, Nah-Oak Song, and Leonard E. Performance analy-sis of exponential backo?. IEEE/ACM TRANSACTIONS ON NETWORKING,13(2):343–355, 2005.
    [68] Chadi Barakat Thierry Turletti Imad Aad, Qiang Ni. Enhancing ieee 802.11 macin congested environments. In 4th Workshop on Applications and Services inWireless Networks, 2004.
    [69] Yong Peng Keping Long Jian Ma Haitao Wu, Shiduan Cheng. Ieee 802.11 dis-tributed coordination function(dcf): Analysis and enhancement. In IEEE ICC,pages 605–609, New York, 2002.
    [70] Nah-Oak Song Miller, Byung-Jae Kwak, Jabin Song, and Leonard E. Enhance-ment of ieee 802. 11 distributed coordination function with exponential increaseexponential decrease backo? algorithm. In IEEE VTC, Orlando Florida, 2003.
    [71] Jack Y. B. Lee Victor C. M. Leung Qixiang Pang, Soung C. Liew. Performanceevaluation of an adaptive backo? scheme for wlan. WIRELESS COMMUNICA-TIONS AND MOBILE COMPUTING, 4:867–879, 2004.
    [72] Zygmunt J. Haas Jing Deng, Pramod K. Varshney. A new backo? algorithmfor the ieee 802. 11 distributed coordination function. In CNDS, San Diego,California, USA, 2004.
    [73] Lemin Li Chonggang Wang, Bo Li. A new collision resolution mechanism toenhance the performance of ieee 802.11 dcf. IEEE TRANSACTIONS ON VE-HICULAR TECHNOLOGY, 53(4):1235–1246, 2004.
    [74] H. Koubaa F. Naid-Abdesselam. Enhanced routing-aware adaptive mac withtra?c di?erentiation and smoothed contention window in wirelss ad hoc networks.In ICDCS Workshops, pages 690–695, Tokyo, Japan, 2004.
    [75] Kang G. Shin Daji Qiao. Achieving e?cient channel utilization and weightedfairness for data communications in ieee 802. 11 wlan under the dcf. In IEEEInt’l Workshop on QoS, pages 227–236, Miami Beach, USA, 2002.
    [76]彭泳,程时端.一种自适应无线局域网协议.软件学报, 15(4):604–615, 2004.
    [77] Yu Wang Bensaou and Brahim. Achieving fairness in ieee 802. 11 dfwmac withvariable packet lengths. In IEEE GLOBECOM, pages 3588–3593, San Antonio,Texas, USA, 2001.
    [78] Younggoo Kwon Latchman, Yuguang Fang, and Haniph. Design of mac protocolswith fast collision resolution for wireless local area networks. IEEE TRANSAC-TIONS ON WIRELESS COMMUNICATIONS, 3(3):793–807, 2004.
    [79] Haniph Latchman Younggoo Kwon, Yuguang Fang. Medium access control pro-tocols with fast collision resolution: Supporting real-time and data services inwireless lans. In The 27th Annual IEEE Conference on Local Computer Networks(LCN), pages 187–196, Tampa, FL, USA, 2002.
    [80] Younggoo Kwon Latchman, Yuguang Fang, and Haniph. A novel mac protocolwith fast collision resolution for wireless lans. In IEEE INFOCOM, pages 853–862, 2003.
    [81] Anthony Ephremides Yalin Evren Sagduyu. Energy-e?cient collision resolutionin wireless ad hoc networks. In IEEE INFOCOM, pages 492–502, San Francisco,California, USA, 2003.
    [82] ESTI TC-RES. Radio Equipment and systems (RES): HIgh PErformance RadioLocal Area Network (HIPERLAN): Type 1: Functional Specifications. EuropeanTelecommunicaions Standards Institute, 1996.
    [83] Nitin H. Vaidya Xue Yang. Dscr: A wireless mac protocol using implicit pipelin-ing. In ACM MOBIHOC, Poster Session, volume 7, pages 35–36, 2003.
    [84] IEEE Working Group. IEEE 802.11e draft/D4.0,Part 11:Wireless Medium AccessControl (MAC) and Physical Layer (PHY) Specifications:Medium Access Control(MAC) Enhancements for Quality of Service (QoS). Institute of Electrical andElectronics Enginners, Inc, New York, 2002.
    [85] Lamia Romdhani Turletti, Qiang Ni, and Thierry. Adaptive edcf: Enhancedservice di?erentiation for ieee 802.11 wireless ad hoc networks. In IEEE WCNC,pages 16–20, New Orleans, Louisiana, 2003.
    [86] Ahmed Mehaoua Abdelhamid Nafaa, Adlen Ksentini. Scw: Sliding contentionwindow for e?cient service di?erentiation in ieee 802.11 networks. In IEEEWCNC, pages 1626–1631, New Orleans, LA, USA, 2005.
    [87] Wireless lan medium access control (mac) and physical layer (phy) specifications:Higher-speed physical layer in the 5 ghz band, 1999.
    [88] Wireless lan medium access control (mac) and physical layer (phy) specifications:Higher-speed physical layer extention in the 2.4 ghz band, 2000.
    [89] Wireless lan medium access control (mac) and physical layer (phy) specifications,2003.
    [90] Wireless lan medium access control (mac) and physical layer (phy) specificationsamendment: Medium access control (mac) quality of service enhancements, 2005.
    [91] Hadzi Velkov L. G. Zoran. Performance of the ieee 802.1 1 wireless lans andin?uence of hidden terminals. In IEEE TELSIKS, Yugoslavia, 1999.
    [92] Jayasumana A. P Khurana S, Kahol A. E?ect of hidden terminals on the per-formance of ieee 802.11 mac protocol. In IEEE Local Computer Networks, pages12–20, 1998.
    [93] J. L. Sobrinho Brazio, R. de Haan, and J. M. Why rts-cts is not your idealwireless lan multiple access protocol. In IEEE WCNC, New Orleans, Louisiana,2005.
    [94] J.J. Garcia-Luna-Aceves Chane L. Fullmer. Floor acquisition multiple access(fama) for packet-radio networks. In ACM SIGCOMM, Cambridge, MA, 1995.
    [95] J.J. Garcia-Luna-Aceves Chane L. Fullmer. Solutions to hidden terminal prob-lems in wirless networks. In ACM SIGCOMM, Cannes, France, 1997.
    [96] Chris Blondia Sylwia Van den Heuvel Romaszko. A survey of mac protocols forad hoc networks and ieee 802.11. In 4th National Conference MiSSI, pages 23–33,Poland, 2004.
    [97] Dimitris Vassis Kormentzas and George. Throughput analysis for ieee 802.11 adhoc networks under the hidden terminal problem. In 3rd Consumer Communica-tions and Networking Conference (CCNC), 2006.
    [98] V. Bharghavan. Performance analysis of a medium access protocol for wirelesspacket networks. In IEEE Performance and Dependability Symposium, Raleigh,NC, 1998.
    [99] Shaoren Zheng Zhifeng Zhao. Dual channel based ad hoc network channel accessprotocol. In IEE EPMCC, 2003.
    [100] Zygmunt J. Hass Deng and Jing. Dual busy tone multiple access (dbtma) -a multiple access control scheme for ad hoc networks. IEEE Transactions onCommunications, 50(6):975–985, 2002.
    [101] Saadawi T Xu Shugong. Does the ieee 802.11 mac protocol work well in multihopwireless ad hoc networks? IEEE Communication Magazine, 39(6):130–137, 2001.
    [102] Saikat Ray Starobinski, Je?rey Carruthers, and David. Evaluation of the maskednode problem in ad hoc wireless lans. IEEE Transactions on Mobile Computing,4(5):430–442, 2005.
    [103] Kannan Varadhan Kevin Fall. The ns Manual. 2002.
    [104] David Starobinski Saikat Ray, Je?rey Carruthers. Rts/cts-induced congestion inad hoc wireless lans. In IEEE WCNC, New Orleans, USA, 2003.
    [105] Norio Shiratori Apichet Chayabejara, Salahuddin Muhammad Salim Zabir. Anenhancement of the ieee 802.11 mac for multihop ad hoc networks. In IEEE 58thVehicular Technology Conference, 2003.
    [106] David A. Maltz David B. Johnson. Dynamic source routing in ad hoc wirelessnetworks. In Mobile Computing, pages 153–181. Kluwer Academic Publishers,1996.
    [107]王庆辉,拱长青,王光兴.一种MANET网络的位置辅助路由协议.小型微型计算机系统, 26(11):1890–1893, 2005.
    [108]谢希仁.计算机网络.电子工业出版社,北京, 2版, 1999.
    [109] Leonard E. Miller Byung-Jae Kwak, Nah-Oak Song. Analysis of the stability andperformance of exponential backo?. In IEEE WCNC, 2003.
    [110] S. Jamaloddin Golestani. A self-clocked fair queueing for broadband applications.In IEEE INFOCOM, pages 636–646, Toronto, Canada, 1994.
    [111] Enrico Gregori Frederico Cali, Marco Conti. Dynamic tuning of the ieee 802.11protocol to achieve a theoretical throughput limit. IEEE/ACM TRANSAC-TIONS ON NETWORKING, 8(6):785–799, 2000.
    [112]盛骤,谢式千,潘承毅.概率论与数理统计.高等教育出版社,北京, 2版, 1989.
    [113] Michele Garetto Chiasserini and Carla-Fabiana. Performance analysis of the802.11 distributed coordination function under sporadic tra?c. In IFIP Net-working, Waterloo, Ontario, Canada, 2005.
    [114] Natt Smavatkul Ivan N. Vukovie. Saturation throughput analysis of di?erentbacko? algorithms in ieee 802.11. In IEEE Conference on Personal, Indoor andMobile Radio Communications (PIMRC), volume 3, pages 1870–1875, Barcelona,Spain, 2004.
    [115] Juki Wirawan Tantra Chuan Heng Foh. Comments on ieee 802.11 saturationthroughput analysis with freezing of backo? counters. IEEE COMMUNICA-TIONS LETTERS, 9(2):130–132, February 2005.
    [116] Yongkang Xiao Ren, Xiuming Shan, and Yong. Game theory models for ieee802.11 dcf in wireless ad hoc networks. IEEE Radio Communications, pages22–26, 2005.
    [117] Yawen Barowski Agrawal, Saad Biaz, and Prathima. Towards the performanceanalysis of ieee 802.11 in multihop ad hoc networks. In IEEE Wireless Commu-nications and Networking Conference (WCNC), volume 1, pages 100–106gu, NewOrleans, LA, USA, 2005.
    [118] Mahmoud Taifour Simplot-Ryl, Farid Nait-Abdesselam, and David. Neighbour-hood backo? algorthm for optimizing bandwidth in single hop wireless ad hocnetworks. In International Conference on Wireless Networks, Communicationsand Mobile Computing, pages 336–341, 2005.
    [119] Jen-Yi Pan I-Hung, Lin. Throughput analysis of a novel backo? algorithm for ieee802.11 wlans. In Wireless Telecommunications Symposium, pages 85–90, 2005.
    [120] Hai L. Vu Sakurai and Taka. Accurate delay distribution for ieee 802.11 dcf.IEEE COMMUNICATIONS LETTERS, 10(4):317–319, April 2006.
    [121] Nitin H. Vaidya Xue Yang. Explicit and implicit pipelining for wireless mediumaccess control (invited paper). In IEEE Vehicular Technology Conference (VTC),Orlando, Florida, USA, 2003.
    [122] Giuseppe Bianchi. Ieee 802.11 - saturation throughput analysis. IEEE COMMU-NICATIONS LETTERS, 2(12):318–320, December 1998.
    [123] Srikant Kuppa Prakash and Ravi. Adaptive ieee 802.11 dcf scheme with kowledge-based backo?. In IEEE Wireless Communications and Networking Conference(WCNC), pages 63–68, New Orleans, LA, USA, 2005.
    [124] Haniph Latchman Younggoo Kwon, Yuguang Fang. Fast collision resolution (fcr)mac algorithm for wireless local area networks. In IEEE GLOBECOM, pages2250–2254, Taipei, Taiwan, 2002.
    [125] G. Babic R. Jain, A. Durresi. Throughput fairness index: An explanation. ATMForum/99-0045, 1999.
    [126] Misha Rudnev. Cauchy-schwartz inequality and geometric incidence problems.Technical report.
    [127] Domenico Ferrari. Delay jitter control scheme for packet-switching internetworks.Computer Communication, 15(6):367–373, 1992.
    [128] Hideki Tode Toshihiro Masaki Koso Murakami Rie Fujita, Hiroki Shimabara. Qoscontrol scheme guaranteeing the delay, jitter and throughput in the ip router. InProceedings of the 29th Annual IEEE International Conference on Local Com-puter Networks (LCN), Dublin, Ireland, 2004.
    [129] Yunkai Zhou Sethu and Harish. A simulation study of relationships betweendelay jitter and properties of a swithching network. In Proceedings of the AppliedTelecommunication Symposium (part of the Advanced Simulation TechnologiesConference), Washington, D.C., USA, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700