小鼠胚胎干细胞定向诱导分化为胰岛样细胞过程中Kcnq1、Cdkn1c基因印记变化及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     体外诱导小鼠胚胎干细胞SF1-G定向诱导分化为胰岛样细胞,观察诱导分化培养过程中印记基因Kcnq1、Cdknlc印记变化,探讨胚胎干细胞体外诱导分化培养过程中表观遗传学的稳定性。
     方法
     1.从孕小鼠胚胎分离培养小鼠胚胎成纤维细胞,丝裂霉素C处理第3-5代小鼠胚胎成纤维细胞制备饲养层细胞,在饲养层细胞上扩增培养小鼠胚胎干细胞株SF1-G细胞。
     2.参照Shi等人的三阶段法,定向诱导小鼠胚胎干细胞SF1-G向胰岛样细胞分化;细胞免疫荧光染色和RT-PCR检测分化细胞中胰岛细胞特异性标志物的表达。
     3.在诱导分化培养的不同阶段收集细胞,逆转录-聚合酶链式反应/限制性内切酶片段长度多态性(RT-PCR/RFLP)检测印记基因Kcnq1、Cdknlc表达的亲本来源,分析其印记状态。
     结果
     1.SF1-G细胞能在饲养层细胞上保持未分化状态增殖培养。
     2.RT-PCR结果显示,在诱导分化的第三阶段,细胞逐渐出现胰岛细胞特异性基因的表达;细胞免疫荧光结果显示,分化终末细胞可表达胰岛细胞特异性激素蛋白,证实成功将胚胎干细胞诱导分化为胰岛样细胞。
     3.RT-PCR/RFLP分析结果显示,诱导分化后的细胞印记基因Kcnq1、Cdknlc从母源单等位基因表达转变成双等位基因表达,出现印记丢失(LOI),而持续传代培养的ES细胞中Kcnq1、Cdknlc仍表现为母源单等位基因表达,即印记保持(MOI)。
     结论
     1.参照Shi等人的方法,我们能将小鼠胚胎干细胞体外定向诱导培养分化为胰岛样细胞。
     2.是诱导分化培养作用,而不是单纯的细胞传代培养过程导致印记基因表达异常,出现印记丢失,即细胞诱导分化培养过程导致了表观遗传性状的不稳定。
     目的
     观察胚胎干细胞SF1-G在诱导分化前后印记基因Kcnq1、Cdknlc印记调控区(ICR)差异性DNA甲基化区KvDMR1的甲基化状态,以及分化各阶段细胞中DNA甲基转移酶水平变化,以探讨胚胎干细胞在体外诱导分化培养过程中印记基因Kcnq1、Cdknlc表达变化的机理。
     方法
     1.重亚硫酸盐PCR测序法检测分化前后Kcnq1、Cdknlc基因印记调控区KvDMR1的CpG位点甲基化状态:1)收集未分化的细胞及诱导分化终末的细胞,提取基因组DNA,重亚硫酸盐处理DNA,以特异性引物PCR扩增差异性DNA甲基化区KvDMR1;2)将PCR产物连接到氨苄抗性T载体质粒后转入感受态细菌,用不含氨苄的LB培养基摇菌后均匀涂在氨苄琼脂糖平板上,次日挑取阳性细菌克隆,用含氨苄的LB培养基筛选阳性细菌;3)PCR验证细菌中存在目的片段后,将菌液送送上海生工生物工程公司测序,测序结果通过软件进行分析,了解分化前后细胞的KvDMR1的甲基化状态。
     2. Western blot检测诱导分化各阶段细胞中DNA甲基转移酶Dmnt1和Dmnt3b的表达水平。
     结果
     1.测序检测了KvDMR1区23个CpG位点的甲基化状态,在分化前的胚胎干细胞中,9个测序结果显示,有4个表现为1-23个CpG位点全部甲基化,另外5个表现为所有CpG位点都未甲基化,即KvDMR1区的CpG位点表现为全甲基化或全未甲基化,符合印记调控区域差异性DNA甲基化区(DMR)的特点;而在分化后的细胞中,11个测序结果显示,其中5个表现为1-23个CpG位点全部甲基化,4个在第18-23个CpG位点发生甲基化,而其余CpG位点未甲基化,其余2个表现为所有CpG位点都未甲基化,提示原来未甲基化的KvDMR1发生了甲基化。
     2. Western blot结果显示,胚胎干细胞诱导分化后,从第二阶段开始DNA甲基转移酶Dmnt1水平显著升高;DNA甲基转移酶Dmnt3b在第三阶段也显著升高,而同期传代培养的未分化细胞DNA甲基转移酶水平没有明显变化。
     结论
     1.诱导分化过程中印记调控区域的差异性DNA甲基化区KvDMR1的第18-23个CpG位点甲基化状态的改变可能与印记基因Kcnq1、Cdknlc的印记丢失相关。
     2.诱导分化过程中DNA甲基转移酶水平升高,可能介导了KvDMR1区甲基化状态的改变,最终引起基因印记状态发生改变,导致印记丢失。
Chapter one expression of imprinted genes Kcnql, Cdknlc in the course of mouse embryonic stem cells SF1-G induced to differentiate into islet-like cells in vitro
     Objective
     Mouse embryonic stem cells SF1-G were induced to differentiate into islet-like cells in vitro. Epigenetic stability of cells at different stages was observed by testing the parental origin of imprinted gene Kcnq1 and Cdknlc.
     Methods 1. Mouse embryonic fibroblasts (MEFs) was isolated from pregnant mice embryos. Fibroblast feeder cells were prepared by treating 3-5th generations MEFs with Mitomycin C. Embryonic stem cell line SF1-G cells was expanded on feeder cells in vitro.
     2. Refering to a three-phase protocol from Shi, mouse embryonic stem cells were induced into islet-like cells directly. Immunof-luorescence staining and RT-PCR were used to detect the expression of islet cell-specific marker in differentiated cells.
     3.Cells were collected at various stages during differentiation process. Imprinting status of imprinted genes Kcnq1, Cdkn1c was tested by reverse transcription-polymerase chain reaction-restriction fragment length polymorphism (RT-PCR/RFLP)
     Results
     1. SF1-G cells can be cultured and proliferated maintaining the undifferentiated state on the feeder cells.
     2. RT-PCR results showed cells appeared islet cell-specific gene expression; immunofluorescence showed that islet cell-specific hormone protein can be measured at stage 3, confirmed that the embryonic stem cells can be successful inducted into islet-like cells in vitro.
     3. RT-PCR/RFLP analysis showed that imprinted genes Kcnq1, Cdknlc were biallelic expression in the differentiated cells, suggesting that they were loss of imprinting (LOI), while these genes were maternal monoallelic expression in the undifferentiated cells continued subculture, which marked the maintenance of imprinting (MOI).
     Conclusions
     1. Refering to Shi'protocol, mouse embryonic stem cells were induced into islet-like cells in vitro.
     2. Differentiation, not merely the process of cell culture can lead to abnormal expression of some imprinted genes, suggesting that epigenetic instability exist during the process of differentiation in vitro.
     Objective
     To explore the mechanism of expression of imprinted genes Kcnq1, Cdknlc in embryonic stem cells culture and differentiation process in vitro, we observed the differentially DNA-methylated region KvDMRl methylation status in SF1-G cells before and after differentiation, which is a part of the imprinting contol region(ICR) of imprinted genes Kcnql, Cdknlc, as well as the DNA methyltransferase levels in various stages of differentiation.
     Methods
     1. The methylation status of CpG sites of imprinting control region KvDMRl of imprinted genes kcnql, cdknlc in SF1-G cells before and after differentiation was detected with Bisulfite sequencing PCR.1) undifferentiated cells and inducing terminal differentiated cells were collected, extraction of genomic DNA, bisulfite treatment of DNA, with specific primers PCR amplification of the differentially DNA-methylated region KvDMR1,2) PCR product connected to the ampicillin resistance T Vector plasmid was transformed into Competent bacteria, the latter was evenly coated in the ampicillin resistance on agar plate culture. positive bacterial clones were picked the next day, the LB medium containing ampicillin screened positive bacteria,3) PCR was used to verify that the purpose fragment was existence in bacteria, positive bacteria was sent to Shanghai sangon biotechnology services company sequencing, the results were analyzed by software to show the methylation status in KvDMR1 before and after differentiation.
     2. Western blot was performed to detect methyltransferase Dmnt1 and Dmnt3b level at various stages of cells differentiation.
     Results
     1.We totally sequenced 23 CpG methylation sites of KvDMR1 region. Among 9 DNA sequencing results from embryonic stem cells before differentiation, there were 4 showed 1-23 CpG sites were methylation, the remaining 5 showed unmethylated, so KvDMR1 region showed all CpG methylation or no methylation in all, which is consistent with the characteristic of differentially DNA-methylated region(DMR). In differentiated cells,11 DNA sequencing results showed that 5 of them have methylation of all CpG sites,4 samples have methylation in the first 18-23 CpG sites, while the remaining CpG sites did not methylate, and the other 2 showed none of all CpG sites methylation, suggesting the methylation occurred in unmethylated KvDMR1.
     2. Western blot results showed that after the induction of cells differentiation from the second stage, DNA methyltransferase Dmnt1 level significantly increased, DNA methyltransferase Dmnt3b significantly higher in the third stage, while simultaneously subcultured undifferentiated cells have no significant change.
     Conclusions
     1. In the course of differentiation, the changes in the first 18-23CpG sites methylation status of differentially DNA-methylated region KvDMR1 in imprinting control region may relate to imprinted genes Kcnq1, Cdknlc loss of imprinting.
     2. In the course of differentiation, the increase of DNA methyltransferase level may mediate KvDMR1 methylation status changes, ultimately lead to changes in imprinted gene activity, as well as leading to loss of imprinting.
引文
[1]. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature,1981,292(5819):154-156.
    [2]. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA,1981,78(12):7634-7638.
    [3]. Matsui Y, Zsebo K, Hogan BL. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell,1992,70(5):841-847.
    [4]. Rossant J. Stem cells from the Mammalian blastocyst. Stem Cells.2001, 19(6):477-482.
    [5]. Pal R.Embryonic stem (ES) cell-derived cardiomyocytes:a good candidate for cell therapy applications. Cell Biol Int,2009; 33(3):325-36.
    [6]. Hipp J, Atala A.Sources of stem cells for regenerative medicine. Stem Cell Rev,2008,4(1):3-11.
    [7]. Shi Y, Hou L, Tang F,et al. Inducing embryonic stem cells to differentiate into pancreatic β cells by a novel three-step approach with activin A and All-Trans retinoic acid. Stem Cells,2005,23(5):656-662.
    [8]. Marenah L, McCluskey JT, Abdel-Wahab YH, et, al. A stable analogue of glucose-dependent insulinotropic polypeptide, GIP(LysPAL16), enhances functional differentiation of mouse embryonic stem cells into cells expressing islet-specific genes and hormones. Biol Chem,2006,387(7):941-47.
    [9]. Guo T, Hebrok M.Stem cells to pancreatic beta-cells:new sources for diabetes cell therapy. Endocr Rev.2009,30(3):214-27.
    [10]. Isles AR, Wilkinson LS. Epigenetics:what is it and why is it important to mental disease? Br Med Bull.2008;85:35-45.
    [11]. Morison IM, Reeve AE. A catalogue of imprinted genes and Parent-of-origin effects in humans and animals. Hum Mol Genet,1998,7:1599-609.
    [12]. Walter J, PaulsenM. Imprinting and disease. Semin Cell Devl Biol,2003,14 (1):101-110.
    [13]. Yatsuki, H., Watanabe, H., Hattori, M., et al. Sequence-based structural features between Kvlqtl and Tapal on mouse chromosome 7F4/F5 corresponding to the Beckwith-Wiedemann syndrome region on human 11p15.5:Long-stretches of unusually well conserved intronic sequences of kvlqtl between mouse and human. DNA Res,2000,7:195-206.
    [14]. Onyango P, Miller W, Lehoczky J, et al. Sequence and comparative analysis of the mouse 1-megabase region orthologous to the human 11p15 imprinted domain. Genome Res.2000.10:1697-1710.
    [15]. Lee MP, Hu RJ, Johnson LA, et al. Human KvLQTl gene shows tissue-specific imprinting and encompasses Beck-with-Wiedemann syndrome chromosomal rearrangements. Nat Genet,1997,15(2):181-185.
    [16]. Paulsen M, El-Maari O, Engemann S, et al. Sequence conservation and variability of imprinting in the Beckwith-Wiedemann syndrome gene cluster in human and mouse. Hum Mol Genet 2000,9:18291-841.
    [17]. Schatten G, Smith J, Navara C, et al. Culture of human embryonic stem cells. Nat Methods.2005,2 (6):455-463.
    [18].周菂.维持人胚胎干细胞不分化的鼠饲养层细胞标准化操作的建立与残留的丝裂霉素C对人胚胎干细胞基因组稳定性影响的研究:[博士学位论文].长沙:中南大学,2009.
    [19]. Li T, Vu TH, Ulaner GA, et al. IVF results in de novo DNA methylation and histone metylation at an Igf2-H19 imprinting epigenetic switch. Mole Hum Repro,2005,11(9):631-40
    [20]. Doetschman TC, Eistetter H, Katz M, et al.The in vitro development of blastocyst-derived embryonic stem cell lines:formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol.1985 Jun;87:27-45.
    [21]. Smith AG, Hooper ML. Buffalo rat liver cells produce a diffusible activity
    which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells. Dev Biol,1987,121(1):1-9.
    [22]. Piedrahita JA, Anderson GB, Bondurant RH. Influence of feeder layer type on the efficiency of isolation of porcine embryo-derived cell lines. Theriogenology,1990,34(5):865-877.
    [23]. Lim JW, Bodnar A. Proteome analysis of conditioned medium from mouse embryonic fibroblast feeder layers which support the growth of human embryonic stem cells. Proteomics.2002 Sep;2(9):1187-1203.
    [24]. Xie CQ, Lin G, Luo KL, et al. Newly expressed proteins of mouse embryonic fibroblasts irradiated to be inactive. Biochem. Biophys.Res. Commun,2004, 315(3):581-588.
    [25]. Chen H, Qian K, Zhang SM, et al. Effect of mouse embryonic fibroblasts of Kunming white mice of diferent inoculating densities on human embryonic stem cells. Zhong guo Zu zhi Gong cheng Yanjiu yu Lin chuang Kang fu, 2007, 11(3):443-446.
    [26]. Amit M, Shariki C, Margulets V, et al. Feeder layer-and serum-free culture of human embryonic stem cells. Biol Reprod.2004 Mar;70(3):837-45.
    [27]. Suemr H, Nakatsjui N. Establishment of the embryo-derived stem (ES) cell lines from mouse blastocysts:effects of the feeder cell layer. Development Growth and Differ,1987,29 (2):133-139.
    [28]. Sukoyan MA, Vatolin SY, Golubitsa AN, et al. Embryonic stem cells derived from morulae, inner cell mass, and blastocysts of mink:comparisons of their pluripotencies. Mol Reprod Dev.1993 Oct;36(2):148-58.
    [29].熊吉信,,刘小春,杨春江,等。小鼠胚胎干细胞饲养层的制备及两种不同饲养层的比较。江西医学院学报2006,6(4):5-8.
    [30].张怡,赵连三,汪成孝,等。小鼠胚胎成纤维细胞的分离和培养。四川大学学报(医学版),2003,34(2):344-346.
    [31]. Heng BC, Liu H, Cao T. Feeder cell density-a key parameter in human embryonic stem cell culture. In Vitro Cell. Dev BioL-Animal,2004, 40:255-257.
    [32]. Niwa H. Molecular mechanism to maintain stem cell renewal of ES cells. Cell Struct Funct.2001 Jun; 26(3):137-48.
    [33]. Mitsui K, Tokuzawa Y, Itoh H, et al.The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells.Cell,2003, 113(5):631-642.
    [34]. Loh YH, Wu Q, Chew JL, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet,2006, 38(4):431-440.
    [35]. Hemmati-Brivanlou A, Melton D. Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell.1997 Jan 10; 88(1):13-17.
    [36]. Li M, Pevny L, Lovell-Badge R, Smith A. Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr Biol.1998 Aug 27;8(17):971-4.
    [37]. Okabe S, Forsberg-Nilsson K, Spiro AC, et al. Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev.1996 Sep;59(1):89-102.
    [38]. Schwitzgebel VM, Scheel DW, Conners JR, et al. Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development,2000 Aug;127(16):3533-42.
    [39]. Lumelsky N, Blondel O, Laeng P, et al. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 2001, 292(5520):1389-1394.
    [40]. Rajagopal J, Anderson WJ, Kume S, et al. Insulin staining of ES cell progeny from insulin uptake. Science.2003 Jan 17; 299(5605):363.
    [41]. Blyszczuk P, Czyz J, Kania G, et al. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc Natl Acad Sci USA.2003 Feb 4; 100(3): 998-1003.
    [42]. Stafford D, Prince VE. Retinoic acid signaling is required for a critical early
    step in Zebra fish pancreatic development. Curr Biol,2002,12:1215-1220.
    [43]. Micallef SJ, Janes ME, Knezevic K et al. Retinoic acid induces pdx1-positive endoderm in di fferentiating mouse embryonic stem eel Is. Diabetes, 2005;54:301-305.
    [44]. Lefebvre P, Martin P J, Flajollet S, et al. Transcriptional activities of retinoic acid receptors. Vitam Horm,2005,70:199-264.
    [45]. Johansson BM, Wiles MV. Evidence for involvement of Activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol Cell Biol,1995,15:141-151.
    [46]. Lowe LA, Yamada S, Kuehn MR. Genetic dissection of Nodal function in patterning the mouse embryo. Development,2001,128:183-1843.
    [47]. Kim S K, Hebrok M.Intercellular signals regulating pancreas development and function. Genes Dev,2001,15:111-127.
    [48]. Kubo A, Shinozaki K, Shannon JM, et al. Development of definitive endoderm from embryonic stem cells in culture. Development.2004, 131:1651-1662.
    [49]. D' Amour KA,Bang AG, Eliazer S, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol,2006,24(11):1392-1401.
    [50]. Paoloni-Giacobino A. Epigenetics in reproductive medicine.Pediatr Res,2007, 61(5pt2):51R-57R.
    [51]. Cutfield WS, Hofman PL, Mitchell MY, et al. Could epigenetics play a role in the developmental origins of health and disease? Pediatr Res,2007,61(5): 68-75.
    [52]. Humpherys D, Eggan K, Akutsu H, et al. Epigenetic instability in ES cells and cloned mice. Science,2001,293(5527):95-97.
    [53]. Chellappan SP, Giordano A, Fisher PB. Role of cyclin-dependent kinases and their inhibitors in cellular differentiation and development. Curr Top Microbiol Immunol,1998,227:57-103.
    [54]. Reid LH, Crider-miller SJ, West A, et al. Genomic organization of the human p57kip2 gene and its analysis in the G401 Wilms tumor assay. Cancer Res, 1996,56:1214-1218
    [55]. Vlachos P, Nyman U, Hajji N, Joseph B. The cell cycle inhibitor p57(Kip2) promotes cell death via the mitochondrial apoptotic pathway. Cell Death Differ.2007 Aug; 14(8):1497-507.
    [56]. Kassem SA, Ariel I, Thornton PS,et al. p57(KIP2) expression in normal islet cells and in hyperinsulinism of infancy. Diabetes,2001,50:2763-2769.
    [57]. Wang Q, Curran ME, Splawski I, et al. Postitional cloning of a novel polassium channel gene:KVLQT1 mulations cause cardiac arrhythmias. Nat Genet,1996,12(1):17-23.
    [58]. Jespersen T, Grunnet M, Olesen SP. The KCNQ1 potassium channel:from gene to physiological function. Physiology (Bethesda).2005,20:408-16.
    [59]. Yasuda K, Miyake K, Horikawa Y, et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet,2008,40:1092-1097.
    [60]. Unoki H, Takahashi A, Kawaguchi T et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet,2008,40:1098-1102.
    [61]. Tan JT, Nurbaya S, Gardner D, et al. Genetic variation in KCNQ1 associates with fasting glucose and beta-cell function:a study of 3,734 subjects comprising three ethnicities living in Singapore. Diabetes.2009 Jun;58(6):1445-1449.
    [62]. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet,2007 Apr;8(4):253-262.
    [63]. Miller RL, Ho SM. Environmental epigenetics and asthma:current concepts and call for studies. Am J Respir Crit Care Med.2008,177(6):567-573.
    [64]. Hill CS. TGF-β signalling pathways in early Xenopus development. Curr Opin Genet Dev,2001,11:533-540.
    [65]. D'Amour KA, Agulnick AD, Eliazer S, et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol,2005 Dec;23(12):1534-1541.
    [66]. Kumar M, Jordan N, Melton D et al. Signals from lateral plate mesoderm instruct endoderm toward a pancreatic fate. Dev Biol 2003;259:109-122.
    [67]. Maden M. Role and distribution of retinoic acid during CNS development. Int Rev Cytol,2001,209:1-77.
    [68]. Hsu SL, Cheng CC, Shi YR, et al. Proteolysis of integrin alpha5 and beta1 subunits involved in retinoic acid-induced apoptosis in human hepatoma Hep3B cells. Cancer Lett,2001,167(2):193-204.
    [69].方洪波,米洋,张业等.全反式维甲酸对SH-SY5Y细胞全基因组启动子区组蛋白H3乙酰化修饰的影响.科学通报,2009,54(1):46-52。
    [70]. Dean W, Bowden L, Aitchison A,et, al. Altered imprinted gene methylation and expression in completely ES cell-derived mouse fetuses:association with aberrant phenotypes. Development,1998,125(12):2273-2282.
    [1]. Walter J, Paulsen M. Imprinting and disease. Semin Cell Dev Biol.2003, 14(1):101-110.
    [2]. Verona RI, Mann MR, Bartolomei MS. Genomic imprinting:intricacies of epigenetic regulation in clusters. Annu Rev Cell Dev Biol,2003, 19:237-2359.
    [3]. Delaval K, Feil R. Epigenetic regulation of mammalian genomic imprinting. Curr Opin Genet Dev,2004,14(2):188-95.
    [4]. Spahn L, Barlow DP. An ICE pattern crystallizes. Nat Genet,2003, 35(1):11-12.
    [5]. Beechey CV, Cattanach BM, Blake A, Peters J. World wideweb site-mouse imprinting data and references. MRC Mamm Genet Unit 2004(2003).
    [6]. Cattanach BM, Beechey CV, Peters J. Interactions between imprinting effects:summary and review. Cytogenet Genome Res,2006; 113(1-4):17-23.
    [7]. Peters J, Holmes R, Monk D, et, al. Imprinting control within the compact Glocus. Cytogenet Genome Res,2006,113(1-4):194-201.
    [8]. Fitzpatrick GV, Soloway PD, Higgins MJ.Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat Genet, 2002,32(3):426-31.
    [9]. Mancini-DiNardo D, Steele SJ, Ingram RS, et, al. A differentially methylated region within the gene Kcnq1 functions as an imprinted promoter and silencer. Hum Mol Genet,2003,12(3):283-294.
    [10]. Margot JB, Cardoso MC, Leonhardt H. Mammalian DNA methyltransferases show different subnuclear distributions.J Cell Biochem, 2001,83(3):373-379.
    [11]. Ratnam S, Mertineit C, Ding F, et, al. Dynamics of Dnmt1 methyltransferase expression and intracellular localization during oogenesis and preimplantation development. Dev Biol.2002;245(2):304-14
    [12]. Okano M, Bell DW, Haber DA, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell,1999,99(3):247-57.
    [13]. Chen T, Ueda Y, Dodge JE, et al. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol Cell Biol,2003 Aug;23(16):5594-605.
    [14]. Biniszkiewicz D, Gribnau J, Ramsahoye B, et al. Dnmtl overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality. Mol Cell Biol,2002,22(7):2124-2135.
    [15]. Yatsuki H, Joh K, Higashimoto K, et al. Domain regulation of imprinting cluster in Kip2/Litl subdomain on mouse chromosome 7F4/F5:large-scale DNA methylation analysis reveals that DMR-Litl is a putative imprinting control region. Genome Res,2002,12(12):1860-1870.
    [16]. Chaillet JR, Bader DS, Leder P. Regulation of genomic imprinting by gametic and embryonic processes. Genes Dev,1995,9(10):1177-87.
    [17]. Delaval K, Feil R. Epigenetic regulation of mammalian genomic imprinting. Curr Opin Genet Dev,2004,14(2):188-95.
    [18]. O'Neill MJ. The influence of non-coding RNAs on allele-specific gene expression in mammals. Hum Mol Genet,2005,14 Spec No 1:R113-120.
    [19]. Beechey CV, Cattanach BM, Selley RL. Mouse imprinting data and references. MRC Mammalian Genetics Unit, Harwell, Oxfordshire.2005.
    [20]. Bell AC, Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 2000;405:482-490.
    [21]. Delaval K, Feil R. Epigenetic regulation of mammalian genomic imprinting. Curr Opin Genet Dev,2004,14(2):188-195.
    [22]. Royo H, Cavaille J. Non-coding RNAs in imprinted gene clusters. Biol Cell. 2008,100(3):149-66.
    [23]. Takada S, Paulsen M, Tevendale M, et al. Epigenetic analysis of the Dlkl-Gtl2 imprinted domain on mouse chromosome 12:implications for imprinting control from comparison with Igf2-H19. Hum Mol Genet,2002, 11(1):77-86.
    [24]. Turek-Plewa J, Jagodzinski PP. The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol Biol Lett, 2005,10(4):631-647.
    [25]. Horike S, Mitsuya K, Meguro M, et al. Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith-Wiedemann syndrome. Hum Mol Genet 2000,9:2075-83
    [26]. Williamson CM, Turner MD, Ball ST, et al. Identification of an imprinting control region affecting the expression of all transcripts in the Gnas cluster. Nat Genet.2006; 38(3):350-355.
    [27]. Cleary MA, van Raamsdonk CD, Levorse J, et al. Disruption of an imprinted gene cluster by a targeted chromosomal translocation in mice. Nat Genet,2001,29(1):78-82.
    [28].顾婷婷,张忠明,郑鹏生。DNA甲基化研究方法的回顾与评价。中国妇幼健康研究,2006,17(6):555-559.
    [29]. Frommer M, McDonald LE, Millar DS, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA.1992,9(5):1827-1831.
    [30]. Ko YG, Nishino K, Hattori N, Arai Y, et al. Stage-by-stage Change in DNA methylation status of Dnmtl locus during mouse early development. J Biol Chem,2005,280(10):9627-9634.
    [31]. Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell.1992 Jun 12;69(6):915-26.
    [32]. Kaneda M, Okano M, Hata K, et, al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature,2004 Jun 24;429(6994):900-3.
    [33]. McCabe MT, Low JA, Daignault S, et al. Inhibition of DNA methyltransferase activity prevents tumorigenesis in a mouse model of prostate cancer. Cancer Res,2006,66(1):385-392.
    [34]. Jackson M, Krassowska A, Gilbert N, Chevassut T, For-rester L, Ansell J, Ramsahoye B. Severe global DNA hy-pomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells. Mol Cell Biol, 2004,24(20):8862-8871.
    [35]. Cirio MC, Ratnam S, Ding F, et al.Preimplantation expression of the somatic form of Dnmtl suggests a role in the inheritance of genomic imprints. BMC Dev Biol,2008,8:9.
    [36]. Dodge JE, Okano M, Dick F, et al. Inactivation of Dnmt3b in mouse embryonic fibroblasts results in DNA hypomethylation, chromosomal instability, and spontaneous immortalization. J Biol Chem,2005,280(18): 17986-17991.
    [37]. Karpf AR, Matsui S. Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells. Cancer Res, 2005 Oct 1;65(19):8635-8639.
    [38]. Kato Y, Kaneda M, Hata K, Kumaki K, et al. Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum Mol Genet,2007,16(19):2272-2280.
    [1]Barton SC, Surani MA, Norris ML. Role of paternal and maternal genomes in mouse development,1984,311(5984):374-6.
    [2]Morison IM, Reeve AE. A catalogue of imprinted genes and Parent-of-origin effects in humans and animals. Hum Mol Genet,1998,7:1599-609.
    [3]Walter J, Paulsen M. Imprinting and disease. Semin Cell Devl Biol,2003,14(1): 101-110.
    [4]Tang WY, Ho SM. Epigenetic reprogramming and imprinting in origins of disease. Rev Endocr Metab Disord.2007,8(2):173-82.
    [5]Wu CT, Morris JR. Genes, genetics, and epigenetics:a correspondence. Science. 2001,293(5532):1103-5.
    [6]Isles AR, Wilkinson LS. Epigenetics:what is it and why is it important to mental disease? Br Med Bull.2008,85:35-45.
    [7]Delaval K, Feil R. Epigenetic regulation of mammalian genomic imprinting. Curr Opin Genet Dev,2004,14(2):188-95.
    [8]Ferguson-Smith AC, Moore T, Detmar J, et al. Epigenetics and imprinting of the trophoblast-a workshop report. Placenta,2006; 27 Suppl A:S 122-6.
    [9]Myatt L. Placental adaptive responses and fetal programming. J Physiol,2006, 572(Ptl):25-30.
    [10]Constancia M, Angiolini E, Sandovici I, et al. Adaptation of nutrient supply to fetal demand in the mouse involves interaction between the Igf2 gene and placental transporter systems. Proc Natl Acad Sci USA,2005,102(52):19219-24.
    [11]Ideraabdullah FY, Vigneau S, Bartolomei MS. Genomic imprinting mechanisms in mammals. Mutat Res,2008,647(1-2):77-85.
    [12]Munshi A, Duvvuri S. Genomic imprinting-the story of the other half and the conflicts of silencing. Genet Genomics.2007,34(2):93-103.
    [13]Beechey CV, Cattanach BM, Blake A. World wide web site-mouse imprinting data and references. MRC Mamm Genet Unit 2003; 2004.
    [14]Mitwally MF, Casper RF. Single-dose administration of an aromatase inhibitor for ovarian stimulation. Fertil Steril,2005,83(1):229-31.
    [15]Horike S, Mitsuya K, Meguro M, et al. Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith-Wiedemann syndrome. Hum Mol Genet,2000,9:2075-83
    [16]Williamson CM, Turner MD, Ball ST, et al. Identification of an imprinting control region affecting the expression of all transcripts in the Gnas cluster. Nat Genet.2006,38(3):350-5.
    [17]Thorvaldsen JL, Bartolomei MS. CTCF binding sites promote transcription initiation and prevent DNA methylation on the maternal allele at the imprinted H19/Igf2 locus. Hum Mol Genet,2006,15(19):2945-54.
    [18]Murayama A, Sakura K, Nakama M, et al. A specific CpG site demethylation in the human interleukin 2 gene promoter is an epigenetic memory. Enge EMBO J. 2006,25(5):1081-92.
    [19]Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev,2002, 16(1):6-21
    [20]Swales AK, Spears N. Genomic imprinting and reproduction. Reproduction, 2005,130(4):389-399.
    [21]Ko YG, Nishino K, Hattori N, et al. Stage-by-stage change in DNA methylation status of Dnmtl locus during mouse early development. J Biol Chem,2005, 280(10):9627-34.
    [22]Ding F, Chaillet JR. In vivo stabilization of the Dnmt1 (cytosine-5)-methyltransferase protein. Proc Natl Acad Sci USA,2002,99(23):14861-6.
    [23]Glickman JF, Pavlovich JG, Reich NO. Peptide mapping of the murine DNA methyltransferase reveals a major phosphorylation site and the start of translation. J Biol Chem,1997,272(28):17851-17857.
    [24]Hsieh CL. The de novo methylation activity of Dnmt3a is distinctly different than that of Dnmt1. BMC Biochem,2005,6:6.
    [25]Chung YG, Ratnam S, Chaillet JR, et al. Abnormal regulation of DNA methyltransferase expression in cloned mouse embryos. Biol Reprod,2003, 69,146-153.
    [26]Doherty AS, Mann MR, Tremblay KD. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod, 2000,62(6):1526-1535.
    [27]Xie S, Wang Z, Okano M, et al. Cloning, expression and chromosome locations of the human Dnmt3 gene family. Gene,1999,236(1):87-95.
    [28]Chen T, Tsujimoto N, Li E. The PWWP domain of Dnmt3a and Dnmt3b is required for directing DNA methylation to the major satellite repeats at pericentric heterochromatin. Mol Cell Biol,2004,24(20):9048-9058.
    [29]Okano M, Xie S, Li EN. Cloning and characterization of a family of novel mammalian DNA (cytosine-5)methyltransferases. Nature Genet,1998,19(3): 219-220.
    [30]Cheng X, Blumenthal RM. Mammalian DNA methyltransferases:A structural perspective. Structure,2008,16(3):341-350.
    [31]Hattori N, Abe T, Hattori N, et al. Preference of DNA methyltransferases for CpG Islands in mouse embryonic stem cells.Genome Res,2004,14(9): 1733-1740.
    [32]Che'din F, Lieber MR, Hsieh C. The DNA methyltransferase-like protein Dnmt3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci USA, 2002,99:16916-16921.
    [33]Suetake I, Shinozaki F, Miyagawa J, et al. DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J Biol Chem.2004,279(26):27816-23.
    [34]Kaneda M, Okano M, Hata K, et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and ma ternal imprinting. Nature,2004, 429(6994):900-903.
    [35]Kato Y, Kaneda M, Hata K, et al. Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum Mol Genet,2007,16(19):2272-2280.
    [36]Imhof A. Epigenetic regulators and histone modification. Brief Funct Genomic Proteomic.2006,5(3):222-7.
    [37]Zhang Y, Fatima N, Dufau ML. Coordinated changes in DNA methylation and histone modifications regulate silencing/derepression of luteinizing hormone receptor gene transcription. Mol Cell Biol.2005,25(18):7929-39.
    [38]Cosgrove MS, Wolberger C. How does the histone code work? Biochem Cell Biol.2005,83(4):468-76.
    [39]Dobosy JR, Selker EU. Emerging connections between DNA methylation and histone acetylation. Cell Mol Life Sci.2001,58(5-6):721-7.
    [40]Grewal SI, Moazed D. Heterochromatin and epigenetic control of gene expression. Science.2003,301(5634):798-802
    [41]Finnin MS, Donigian JR, Cohen A, et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature,1999, 401 (6749):188-93.
    [42]Richon VM, Emiliani S, Verdin E, et al. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci USA,1998,95(6):3003-7.
    [43]Vogelauer M, Rubbi L, Lucas I, et al. Histone acetylation regulates the time of replication origin firing. Mol Cell.2002,10(5):1223-33.
    [44]Ikura T, Ogryzko VV, Grigoriev M, et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell.2000,102(4):463-73.
    [45]Dunphy EL, Johnson T, Auerbach SS, et al. Requirement for TAFII250 Acetyltransferase Activity in Cell Cycle Progression. Mol Cell Biol,2000,20(4): 1134-1139.
    [46]Tamaru H, Zhang X, McMillen D, et al. Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa. Nat Genet,2003,34(1):75-9.
    [47]Dillon SC, Zhang X, Trievel RC, Cheng X. The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol,2005,6(8):227.
    [48]Biel M, Wascholowski V, Giannis A. Epigenetics-an epicenter of gene regulation:histones and histone-modifying enzymes. Angew Chem Int Ed Engl, 2005,44(21):3186-216.
    [49]Vakoc CR, Mandat SA, Olenchock BA, et al. Histone H3 lysine 9 methylation and HP1 gamma are associated with transcription elongation through mammalian chromatin. Mol Cell,2005,19(3):381-391.
    [50]Zinner R, Albiez H, Walter J,et al. Histone lysine methylation patterns in human cell types are arranged in distinct three-dimensional nuclear zones. Histochem Cell Biol.2006,125(1-2):3-19.
    [51]Zhang W, Xia X, Reisenauer MR, et al. Dot1a-AF9 complex mediates histone H3 Lys-79 hypermethylation and repression of ENaCalpha in an aldosterone-sensitive manner. J Biol Chem.2006,281(26):18059-68.
    [52]Scherer SW, Cheung J, Macdonald JR. et al. Human chromosome 7:DNA sequence and biology. Science,2003,300 (5620):767-772.
    [53]Mattick JS. Non-coding RNAs:the architects of eukaryotic comp lexity. EMBO, 2001,2(11):986-991.
    [54]Prasanth KV, Spector DL. Eukaryotic regulatory RNAs:an answer to the 'genome complexity' conundrum. Genes Dev.2007,21(1):11-42.
    [55]Michels AA, Nguyen VT, Fraldi A, et al. MAQ1 and 7SK RNA interact with CDK9/cyclin T complexes in a transcription-dependent manner. Mol Cell Biol. 2003,23(14):4859-69.
    [56]Nudler E, Mironov AS. The riboswitch control of bacterial metabolism. Trends Biochem Sci,2004,29(1):11-17.
    [57]Beletskii A, Hong YK, Pehrson J, et al. PNA interference mapping demonstrates functional domains in the noncoding RNA Xist. Proc Natl Acad Sci USA,2001, 98(16):9215-20.
    [58]Andersen AA, Panning B. Epigenetic gene regulation by noncoding RNAs. Curr Opin Cell Biol.2003,15(3):281-9.
    [59]Looijenga LH, Verkerk AJ, De Groot N, et al. H19 in normal development and neoplasia. Mol Reprod Dev.1997,46(3):419-39.
    [60]Matzke M, Matzke AJ, Kooter JM. RNA:guiding gene silencing. Science.2001, 293(5532):1080-3.
    [61]Couzin J. Breakthrough of the year. Small RNAs make big splash. Science,2002, 298(5602):2296-7.
    [62]Seitz H, Royo H, Lin SP, et al. Imprinted small RNA genes.Biol Chem.2004, 385(10):905-11.
    [63]Hannon GJ. RNA interference. Nature.2002,418(6894):244-51.
    [64]Yang PK, Kuroda MI. Noncoding RNAs and intranuclear positioning in monoallelic gene expression. Cell.2007,128(4):777-86.
    [65]Plachot M. Cytogenetic analysis of oocytes and embryos. Ann Acad Med Singapore.1992,21(4):538-44.
    [66]Ubeda F, Wilkins JF. Imprinted genes and human disease:an evolutionary perspective. Adv Exp Med Biol.2008,626:101-115.
    [67]Lawrence LT, Moley KH. Epigenetics and assisted reproductive technologies: human imprinting syndromes. Semin Reprod Med.2008,26(2):143-52.
    [68]Weksberg R, Shuman C, Smith AC. Beckwith-Wiedemann syndrome. Am J Med Genet C Semin Med Genet.2005,137C(1):12-23.
    [69]Smith AC, Rubin T, Shuman C, et al. New chromosome 11p15 epigenotypes identified in male monozygotic twins with Beckwith-Wiedemann syndrome. Cytogenet Genome Res,2006,113(I-4):313-7.
    [70]Li M, Squire JA, Weksberg R. Overgrowth syndromes and genomic imprinting: from mouse to man. Clin Genet.1998,53(3):165-70.
    [71]Squire JA, Li M, Perlikowski S, et al. Alterations of H19 imprinting and IGF2 replication timing are infrequent in Beckwith-Wiedemann syndrome. Genomics, 2000,65(3):234-42.
    [72]Lee MP, Hu RJ, Johnson LA, et al. Human KvLQT1 gene shows tissue specific imprinting and encompasses Beckwith-Wiedemann syndrome chromosomal rearrangements. Nat Genet,1997,15:181-185.
    [73]Smilinich NJ, Day CD, Fitzpatrick GV, et al. A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome. Proc Natl Acad Sci USA.1999, 96(14):8064-9.
    [74]Mitsuya K, Meguro M, Lee MP, et al. LIT1, an imprinted antisense RNA in the human KvLQT1 locus identified by screening for differentially expressed transcripts using monochromosomal hybrids. Hum Mol Genet,1999, 8(7):1209-17.
    [75]Lee MP, DeBaun MR, Mitsuya K,et al. Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting.Proc Natl Acad Sci U S A,1999,96(9):5203-8.
    [76]Mummert SK, Lobanenkov VA, Feinberg AP. Association of chromosome arm 16q loss with loss of imprinting of insulin-like growth factor-II in Wilms tumor. Genes Chromosomes Cancer.2005,43(2):155-61.
    [77]Robinson WP, Lalande M. Sex-specific meiotic recombination in the Prader-Willi/Angelman syndrome imprinted region. Hum Mol Genet,1995, 4(5):801-6.
    [78]Horsthemke B, Wagstaff J. Mechanisms of imprinting of the Prader-Willi/ Angelman region. Am J Med Genet A.2008,146A(16):2041-52.
    [79]Gurrieri F, Accadia M. Genetic imprinting:the paradigm of Prader-Willi and Angelman syndromes. Endocr Dev.2009,14:20-8.
    [80]Nicholls RD, Saitoh S, Horsthemke B. Imprinting in Prader-Willi and Angelman syndr omes. Trends Genet,1998,14:1942200.
    [81]Lalande M, Calciano MA. Molecular epigenetics of Angelman syndrome. Cell Mol Life Sci.2007,64(7-8):947-60.
    [82]Laan LA, v Haeringen A, Brouwer OF. Angelman syndrome:a review of clinical and genetic aspects. Clin Neurol Neurosurg.1999,101 (3):161-70.
    [83]Dan B. Angelman syndrome:current understanding and research prospects. Epilepsia,2009,50(11):2331-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700