飞轮储能电池磁悬浮轴承控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁悬浮轴承具有非线性和开环不稳定性,需要先进的控制系统加以控制。磁悬浮轴承的性能优劣很大程度上取决于其控制系统的性能优劣。通过采用新型先进控制理论来设计控制器以满足磁悬浮轴承系统稳定性、鲁棒性的需求是重要的研究方向,展开磁悬浮轴承控制方法的研究有着非常重要的现实意义。
     文中首先对飞轮储能系统进行了介绍,对飞轮储能磁悬浮轴承进行了详细的阐述和受力解耦分析。然后设计了单自由度磁悬浮轴承控制实验平台,对其控制部分的位移传感器、功率放大器和执行机构三大部分进行了性能分析与选型。针对单自由度磁悬浮轴承实验平台进行了详细受力分析推导并通过试验测试建立了其数学模型。以此数学模型为基础进行了PID控制算法和滑模变结构控制算法的理论分析与MATLAB系统仿真。通过仿真具体比较以上两种控制方法的性能。仿真结果表明与PID控制理论相比,滑模变结构控制理论具有更良好的稳定性和鲁棒性,且能够在较短的时间内快速达到系统平衡,并对干扰信号具有较强的抑制作用。
     在理论分析与仿真的基础上,基于TMS320LF2407 DSP芯片设计了数字控制器,通过实验进一步验证控制方法的实际性能。实验结果充分肯定了滑模变结构控制算法的性能优越性。
the magnetic bearing system has the performance of nonlinear dynamics and open-loop unstability, so the control system for magnetic bearing is needed. The magnetic bearing's performance is highly depended on its control system. Using optimal control theory to design the controller is more important for magnetic bearing. It was great significant to study and analyze the control methods for magnetic levitation system.
     Based on the FESS, the magnetic bearing is introduced and the force of magnetic bearing is analyzed and decoupled. A single degree-of-freedom (1-DOF) magnetic levitation test-bed is designed. The sensor, excitation coil and power amplifier's performances of the control system are analyzed. The force is particularly analyzed and mathematic model is derived based on this 1-DOF magnetic levitation test-bed. Studies of control theories are discussed base on this mathematic model. The controllers based on traditional control method (PID) and sliding model variable structure (SMVS) control method are discussed and simulated by MATLAB software. The performances of both control method are compared. The results of simulation show that the SMVS control method has more stability and more robust than PID control method. The SMVS control method can also reach the stability faster and has more power to restrain the noise distribution than PID control method.
     After the theory analysis and the MATLAB simulation, a numerical controller based on the DSP chip (TMS320LF2407) is designed. The lab experiment proved the result of simulation. The controller based on SMVS method is more stability and more robust for the magnetic levitation system.
引文
[1]周宇,蒋书运。磁悬浮储能飞轮系统研究进展。低温与超导,2003,2(31):43-46
    [2]魏凤春,张恒,葵红等。飞轮储能技术研究超导磁悬浮飞轮储能的基本原理和发展现状.洛阳大学学报.2005,6(20):28-30
    [3]詹三一,唐跃进,李敬东等。超导磁悬浮飞轮储能的基本原理和发展现状.电力系统自动化.2001,8(25):67-72
    [4]Robert Hebner,Joseph Beno,Alan Walls.Flywheel batteries come around again.IEEE Spectrum,2002,4(39):46-51
    [5]Michael E.Bowler.Flywheel Energy Systems:Current Status and Future Prospects.Magnetic Material Producers Association Joint Users Conference(1997).
    [6]James P.Lyons,Mark A.Preston,Ram Gurunoorthy,Paul M.Szczesny.Design and Control of a Fault-tolerant Active Magnetic Bearing System for Aircraft Engines.The Fourth International symposium on Magnetic bearings,1994,8:449-454
    [7]张金平,张奕黄 磁悬浮列车的原理及现状。交通科技,2002,6:31-33
    [8]Scott Alan Green.Robust Nonlinear Control of Magnetic levitation Systems.New York:Rensselaer Polytechnic Institute,1997.
    [9]Schweitzer G,Traxler A,Bleuler H.混合磁轴承基础、性能及应用,虞烈,袁崇军译.北京:新时代出版社,1997.3
    [10]褚海英,范瑜 飞轮电池磁悬浮控制系统的仿真和实验研究.系统仿真学报,2007,19(23):5473-5476.
    [11]张建成 飞轮储能系统及其运行控制技术研究.[博士学位论文]华北电力大学.2000.12
    [12]杨峰力 单自由度磁悬浮系统的设计与控制。[硕士学位论文].中南大学,2005.1
    [13]石国清,范瑜 混合磁轴承在磁悬浮飞轮储能系统中的应用 电气应用 2007.2(26)94-97
    [14]褚海英,范瑜.用于地铁机车的飞轮电池磁悬浮控制系统的设计.北京交通大学学报(自然科学版),2007,31(2):80-84.
    [15]刘迎澎,黄田.磁悬浮轴承研究综述.机械工程学报,2000,11:5-9
    [16]Youcef-Toumi K,Reddy S Dynamic analysis and Control of High Speed and High Precision Active Magnetic Bearings Journal of Dynamic Systems,Measurement and Control 1992,12:(114)623-633
    [17]Rundell,A.E,Drakunov,S.V.DeCarlo,R.A.,A Sliding Mode Observer and Controller for Stabilization of Rotational Motion of a Vertical Shaft Magnetic Bearing.IEEE Transactions on Control Systems Technology,1996,9(4):598-608.
    [18]曹建荣,虞烈,谢友柏 感应型磁悬浮电动机的解耦控制 电工技术学报,2000,15(5):1-5
    [19]Smith,R.D.,Weldon,W.F.,Nonlinear Control of a Rigid Rotor Magnetic Bearing System:Modeling and Simulation with Full State Feedback IEEE Transactions on Magnetics 1995,3(31):973-980.
    [20]Stephen C.Paschall Ⅱ.Design,Fabrication and Control of a Single Actuator Magnetic Levitation System.Texas:Texas A&M University Mechanical Engineering Department,2002.
    [21]张俊 混合磁悬浮系统鲁棒控制器的研究[硕上学位论文]西南交通大学,2006,5
    [22]徐科军 传感器与检测技术 北京:电子工业出版社,2008
    [23]牛永奎,冷芳 传感器及应用 北京:北京交通大学出版社,2007
    [24]胡新宁,崔春艳 光纤位移传感器在低温装置中测量超导转子悬浮微位移的应用 光学精密工程 2007,9(15)1342-1346
    [25]王春麟,陈维,胡业发 磁悬浮转子位移测量传感器的研究.武汉理工大学学报,2007,7(29):63-66
    [26]Jiles,David 著 磁学及磁性材料导论 肖春涛译 兰州:兰州大学出版社,2003
    [27]毕见强,孙康宁,尹衍升 磁性材料的研究和发展趋势。山东大学学报,2003,3(33):225-228
    [28]Kung,S.如何选择合适的铁氧体磁芯。电子产品世界,1995,11:27-28
    [29]刁春丽,娄广辉 铁氧体磁性材料的研究现状与展望。山东陶瓷,2006,1(29):18-21
    [30]韩金刚,史新乾,汤天浩等 一种基于PWM的开关功率放大器的设计。电气传动,2006,1(36):30-32
    [31]吕常智,范迪.电磁轴承中PWM开关功率放大器的实现。轴承,2006,6:1-5
    [32]王磊,艾晓庸,朱齐丹 基于LMD18200组件的直流电机驱动器的设计。自动化与仪表,2004,1(19):26-27
    [33]Tim Regan National Semiconductor Application Note 694 December 1999
    [34]钟顺时 电磁场基础 北京:清华大学出版社,2006
    [35]章明涛,肖如鸿 电机的电磁场.北京:机械工业出版社,1988
    [36]王蔷,李国定,龚克 电磁场理论基础。北京:清华大学出版社,2001
    [37]阎明.电场力。磁场力两种计算方法的讨论.上海海运学院学报,2002,1(23):82-85
    [38]郑大钟.线性系统理论.北京:清华大学出版社,2002
    [39]吴麒.自动控制原理.北京:清华大学出版社,1999
    [40]申铁龙 控制理论及应用,北京:清华大学出版社,1996
    [41]王德进 H_2和H_∞优化控制理论,哈尔滨:哈尔滨土业大学出版社,2001
    [42]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用.清华大学出版社,2003.9
    [43]冯纯伯 田玉平 忻欣.鲁棒控制系统设计。南京:东南大学出版社.1995
    [44]吉明,姚绪梁.鲁棒控制系统.哈尔滨:哈尔滨工程大学出版社.2002.
    [45]刘金琨 先进PID控制及其MATLAB 仿真 北京:电子工业出版社,2003
    [46]邹伯敏 自动控制理论.北京:机械工业出版社,2004
    [47]姜玉宪 编著.控制系统仿真.北京航空航大大学出版社,1998:52-82
    [48]飞思科技产品研发中心编著 MATLAB7辅助控制系统设计与仿真 北京:电子工业出版社,2005
    [49]薛定宇 控制系统计算机辅助设计-MATLAB语言及应用.北京:清华大学出版社,1996
    [50]姚琼荟,黄继起,吴汉松 变结构控制系统。重庆:重庆出版社,1997.
    [51]王丰尧 滑模变结构控制。北京:机械工业出版社,1995.
    [52]段吉安,陆新江,李群明.电磁悬浮平台系统的滑模控制研究[J].系统仿真学报,2005,17(8):1966-1969.
    [53]Faa-Jeng Lin,Li-tao Teng.Intelligent Sliding-Mode Control Using RBFN for Magnetic Levitation System.IEEE Trans.Ind.Electron,VOL.54,NO.3,2007:1752-1762.
    [54]H.M.Gutierrez and P.I.Ro,"Magnetic servo levitation by sliding-mode control of nonaffine systems with algebraic input invertibility," IEEE Trans.Ind.Electron.,vol.52,no.5,2005:1449-1455.
    [55]F.-J.Lin and P.H.Shen,"Robust fuzzy neural network sliding-mode control for two-axis motion control system," IEEE Trans.Ind.Electron.,vol.53,2006:1209-1225
    [56]刘金琨 滑模变结构控制MATLAB仿真[电子光盘]北京:清华大学出版社,2005
    [57]陈立群,张钢,谢友柏 磁悬浮轴承控制器参数仿真与实验.西北轻工业学院学报,1998,16(1),1-7
    [58]Mark Allen Pichot.Design and Electro-dynamic Analysis of Active Magnetic Bearing Actuators.Texas:The University of Texas at Austion,2003.
    [59]Shengming Li.The Development and Implementation of an Advanced Power Electronics Converter and Electric Machine Control Technology for Flywheel Energy Storage System Application.Ohio:The Ohio State University,2002.
    [60]Won jong Kim,Himanshu Maheshwari.High-Precision Control of a Maglev Linear Actuator with Nanopositioning Capability.Proceedings of the American Control Conference Anchorage,AK 2002,5:4279-4284.
    [61]Hartavi A E,Ustun O,Tuncay R N,et al.The design,simulation and experimental study of active magnetic bearing.Electric Machines and Drives Conference,IEEE International,2001:492-495.
    [62]Chu H Y,Fan Y.A Novel Design for the Flywheel Energy Storage System.PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS,Vol.3 2005:1583-1587.
    [63]孙英,杨朋,杨素梅.应用DSP技术的磁悬浮系统的研究.河北工业大学学报,2002,2:61-64
    [64]张爱林 基于LF2407A DSP的混合磁悬浮轴承控制系统的研究,硕士学位论文,南京航空航天大学,2004
    [65]刘和平,王维俊,江渝等 TMS320LF240X DSP C语言开发应用 北京航空航天大学出版社,2003
    [66]朱铭锆,赵勇,甘泉 DSP应用系统设计.北京:电子工业出版社,2002
    [67]刘志刚.电力电子学 北京:清华大学出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700