基于DSP的泥沙含量传感器的设计与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泥沙含量测量在水利、海洋、生态环境等领域占据着重要的位置,高效能、高精度的测量技术一直受到国内外测控专家广泛的关注,并对此做了大量的研究。超声波在传播中具有良好的束射性和方向性,易于产生,成本低廉,不受环境的限制,使用超声波技术实现泥沙含量测量的技术难度相对较小,因此,在很多领域得到广泛应用。
     传统的泥沙含量测量采用称重法或光学法,其硬件结构主要是采用单片机,而测量算法只是做简单的信号比较。这种方法在一些要求不高的场合可以应用,但是,由于单片机芯片本身的限制以及算法的相对简单,使得测量精度较低,易受到环境中很多因素的干扰。而且,对于不同地区和不同泥沙含量的液体,需要使用不同频率的超声波进行测量,目前还没有一种适合本地区泥沙含量测量的仪器。
     本文首先分析了超声传感器的原理,又具体分析了泥沙含量测量的理论依据、测量方法和本地区泥沙的特征,在深入分析了超声波的性能特点以及超声波泥沙含量测量原理的基础上,设计了基于TMS320F2812高性能32位数字信号处理器的泥沙含量传感器的软、硬件,并针对具有本地区特性的亚粘土泥沙进行了超声波衰减实验,本设计方案采用数字信号处理方法使得硬件结构变得简单易行。实验结果表明,实验中确定的频率范围适合测量本地区液体中的泥沙含量,而且与传统测量方法相比,这种设计方法在一定程度上提高了测量精度。
Measurement of silt are very important on field of water, ocean and biology, Attention of measurement technology with high efficient and high precision have been extensively paid by experts of these area domestic and international. With excellent character of beam emission and direction when transmitting, supersonic is easy available, inexpensive, unrestricted by environment, and less difficult when measuring. It is comparatively easy to use supersonic technology to accomplish the technique of silt measurement. As a result, supersonic is widely used in a majority of area.
     Traditional adapted main principal of silt measurement is weighing and lighting. The primary choice of hardware is various of singlechips and the arithmetic of measurement is to gain come-and -go time through simple compare of signal, accordingly, this method is adapted in less demanding occasion. However, because of intrinsic disadvantage of singlechips and relative simple of arithmetic, this measurement's precision is low and the results are sensitive to environment, moreover, Different frequency supersonic is needed to different region and silt content, there are no common device for this region's fluid of silt.
     We analyzed the theory of supersonic sensor firstly, and concrete analyzed measurement method of silt and the principle of silt measurement, explicate characteristic of supersonic and silt of this region. We designed the software and hardware of silt sensor based on high performance 32bits DSP of TMS320F2812. Making many experiment in accord with silt of this region. The result indicate that the structure of this design based on DSP made the handware easy, and the frequency range are proper for local silt fluid, comparing with traditional method we improve the precision to some extent.
引文
[1] 王忠友,林书英.人耳听不见的声音——超声波.中学物理教学参考,Vol.31No.1~2,Jan~Feb,2002
    [2] 常太华,苏杰.检测技术与应用.中国电力出版社,2003
    [3] 李喜孟等编著.无损检测.机械工业出版社,2001,24(5):200-202
    [4] 耿荣生.新千年的无损检测技术—从罗马会议看无损检测技术的发展方向.无损检测[J],2001,23(1):P2-5
    [5] 钟斌,马莉丽.水流泥沙含量测量方法.西南农业大学学报
    [6] Vassilios Karagiannis, Christos Manassis, Dimitrios Bargiotas,Position sensors based on the delay line principle, Sensors and Actuators A 106,2003: 183-186
    [7] 林书玉.超声换能器的原理及设计.北京:科学出版社,2004
    [8] Recommendations on International Hamonigation Training,Qualification,and Certification of Nondestructive Testing Personnel (1985),JnTernational Committee on Nondestructive testing,, Zoetermeer,, Netherlands.
    [9] Gregorio Andria,Filippo Attivissimo and Nicola Giaquinto.Digital signal processing techniques for obtaining high accuracy in ultrasonic distance measurements,Measurement,ISSN 0263-2241
    [10] Francis Gueuning E,Mihai VarIan.Accurat distance measurement by an autonomous ultrasonic system combining time of flight and phase shif tmethods[A].IEEE Transactions on Instrumentation and Measurennent, 1997,46(6)
    [11] Huysmans M C D N J M, Thijssen J M.Ultrasonic measurement of enamel thickness: a Tool for monitoring dental erosion[J].Jourmal of Dentistry 28,2000.
    [12] 孟立凡,郑宾,侯文.超声测距换能器及收发电路的研究[J].华北工学院学报,2001,22(2)
    [13] 许天增,许克平等.超声传输特性和超声传感系统研究.厦门:厦门大学学报(自然科学版),Vol.40,Mar,2000
    [14] MILES Upton. Techniiques for distance measurement[J],SAE 952085,1995
    [15] Urick,R.J.The Absorption of Sound in Suspensions of Irregular Particles. J.Acoust. Soc.Am,Vol. 20. 1948. pp: 283—289.
    [16] Zhang S.progress in underwater acoustic geo-mapping technology Acoustic Australia, 1996;24: 47-51
    [17] SHI Zhong BEN Lar fa ZHANG shu ying et al. Acoustic imaging of cohesive sediment suspended cohesive sediment concentration profiles[J].J Coast Res,1988,14:1213-1224
    [18] Unrick R J.Principal of underwater sound McGraw- Hill Bool Co.,New York 1983
    [19] 张叔英,李允武.声学悬浮泥沙观测系统的研究和应用[J.]海洋学报,1998.20: 114-119
    [20] 方彦军,唐懋官.超声衰减法含沙量测试研究[J].泥沙研究,1990,6(2):1—12
    [21] 张叔英,李允武.悬浮泥沙声学观测的原理分析[J.]声学学报.,1999.24: 269-274
    [22] THORNE P D,VIN CENT C E,HARDCASTAL P J,et al Measuring suspended sediment concentration using acoustic backscatter devices[J] Marine Geology 1991,98:7-16
    [25] A.Riza Karagoz,H.Hapoglu,M.Alpbaz. Generalized minimum variance control of optimal temperature profiles in a polystyrene polymerization reactor. Chemical Engineering and Processing 39, 2000: 253-262
    [26] 王华奎,张立毅.数字信号处理理论及应用.太原理工大学
    [27] 胡广书.数字信号处理理论、算法与实现.清华大学出版社,2001[29]
    [24] 张卫宁.TMS320C28x系列DSP的CPU与外设(上)(下).清华大学出版社, 2004,9
    [25] TMS320F2810, TMS320F2812 Digital Signal Processors data manual, www.ti.com,2004.3
    [26] Oppenheim, A. V. and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall, 1989, p: 619.
    [27] 李圭峰,吕强.TMS320F2812原理与开发.电子工业出版社,2005
    [28] 张雄伟,曹铁勇.DSP芯片的原理与开发应用.电子工业出版社,2001
    [29] John G.cherng,Ali Goktan,Mark French,Yi Gu and Anil Jacob. Improving drive files for vehicle road simulations. Mechanical Systems and Signal Processing, 2001,15(5): 1007-1022
    [30] 李肇庆,韩涛.串行端口技术.国防工业出版社,2004
    [31] 严勇,欧辉.DSP集成开发环境CCS开发指南.北京航空航天大学出版社,2003
    [32] 清源科技.TMS320F240XDSP应用程序设计教程.2003
    [33] 刘和平,王维俊.TMS320LF240X DSP C语言开发应用.北京航空航天大学出版 社,.2001
    [34] 殷福亮,宋爱军.数字信号处理C语言程序集.辽宁科学技术出版社.,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700