促红细胞生成素在视网膜新生血管形成中调控作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的探讨氧诱导增殖性视网膜病变小鼠视网膜组织中促红细胞生成素(EPO)mRNA及蛋白质表达的动态变化及意义。
     方法76只出生后7天(P7)的C57BL/6J小鼠随机分为模型组(70只)及对照组(6只),出生后第7天(P7)模型组小鼠和母鼠一起放入氧气含量为(75±5)%的饲养箱中饲养,出生后第12天(P12)回到正常大气环境中饲养。模型组及对照组在第17天(P17)分别取小鼠6只,FITC-Dextran左心室灌注后行视网膜铺片,荧光显微镜下观察血管分布和形态(每组各3只)。组织学切片观察突破视网膜内界膜的新生血管内皮细胞核数量(每组各3只)。提取模型组小鼠出生后第12(P12)、12.5(P12.5)、13(P13)、13.5(P13.5)、14(P14)、17(P17)、19(P19)、26天(P26)八个时间点的视网膜总RNA及蛋白质,通过RT-PCR及免疫印Western blot技术检测视网膜组织中EPO表达的动态变化趋势。
     结果荧光造影结果显示模型组小鼠在出生后第17天时视网膜有大量新生血管形成,视盘周围见大范围无灌注区。组织切片可见大量突破视网膜内界膜的新生血管内皮细胞核;模型鼠视网膜组织中EPOmRNA及蛋白质表达水平在缺氧状态下迅速升高,于缺氧48h时到达高峰,然后缓慢下降。
     结论EPO mRNA及蛋白质表达水平在氧诱导增殖性视网膜病变小鼠视网膜中明显上调,其变化趋势与视网膜新生血管形成相对应。
     目的筛选能有效抑制EPO表达的小干扰RNA(siRNA)并观察靶向EPO的siRNA在正常氧及低氧环境下对EPO表达的抑制效率。
     方法设计并合成3条靶向EPO的siRNA,通过阳离子脂质体包裹转染NIH/3T3细胞(转染浓度为100nmol/L)。转染后24小时,采用RT-PCR及Western blot技术检测EPO siRNA对细胞内EPOmRNA及蛋白质表达的抑制效果,从而筛选出能有效抑制EPO表达的siRNA序列。然后将NIH/3T3细胞分成正常氧培养组和低氧培养组,将EPO siRNA转染两组细胞。转染后24小时,采用RT-PCR及Western blot技术观察正常氧及低氧环境下EPO siRNA对细胞内EPO表达的抑制效果。
     结果设计的3条靶向EPO的siRNA(siEPO1-3)均能不同程度的抑制细胞中EPO的表达。其中,siEPO2对细胞中EPO表达的抑制效率最高,抑制效率达到80%。正常氧及低氧环境下,EPO siRNA能明显抑制NIH/3T3细胞内EPO mRNA及蛋白质的表达。
     结论正常氧及缺氧环境下,siEPO2能有效抑制EPO的表达,为体内试验提供基础。
     目的观察促红细胞生成素小干扰RNA(siRNA)对视网膜新生血管形成的抑制作用,进一步阐明促红细胞生成素在视网膜新生血管形成中的调控作用。
     方法将33只鼠龄为7天的C57BL/6J小鼠置于浓度为(75±5)%高氧环境中生活5天,然后返回正常氧环境中。22只小鼠于出氧舱后当日一只眼玻璃体腔内注射1ul脂质体-EPO siRNA(5ug)混合物,对侧眼注射1ul脂质体-阴性对照siRNA(5ug)混合物。11只不作注射的高氧诱导小鼠作为模型组。另取11只小鼠于正常氧环境下饲养作为正常对照组。FITC-dextran左心室造影视网膜铺片了解视网膜血管形态的改变;组织学切片观察突破视网膜内界膜的血管内皮细胞核数量。采用RT-PCR、Western blot检测视网膜中EPO mRNA及蛋白质的表达水平。
     结果模型鼠玻璃体腔内注射siEPO2后,视网膜铺片结果显示:siEPO2注射组新生血管芽及荧光素渗漏现象较模型组明显减少;组织学切片结果表明:与模型组相比较,siEPO2注射组突破视网膜内界膜的血管内皮细胞核数量明显减少。玻璃体腔注射siEPO2后,视网膜组织中的EPO mRNA及蛋白质表达水平较模型组明显下调,差异有统计学意义(P<0.05)。
     结论EPO小干扰RNA可有效抑制视网膜新生血管的形成,进一步证明了EPO在视网膜新生血管形成中所起的调控作用。同时为血管增生性视网膜病变的治疗提供了新的途径。
Objective:To explore the changes and signifcance of expression of erythropoietin(EPO) mRNA and protein in mice with oxygen-induced proliferative retinopathy.
     Methods:Seventy-six 7-day-old C57BL/6J mice were randomly divided into model group(70 mice)and control group(6 mice).On the 7th day after the birth,the mice in model group were raised in fl box full of (75±5)%and then under the normal atmosphere condition on the 12th postnatal day.The mice in control group were raised under the normal circumstance all the time.On the 17th day after birth,6 mice in each group underwent fluorescein perfusion and histological analysis.The expression of EPO、in model group were detected by reverse transcription-polymerase chain reaction and western blot on the 12th, 12.5th,13th,13.5th,14th,17th,19th,26th postnatal day. Results:On the 17th day after the birth in the model group,retinal neovascularization and non-perfused area around the optic post were observed;the expression of EPO mRNA and protein increased 12 hours after hypoxia,reached the peak at the 48 hours,and then decreased slowly:
     Conclusion:The expressions of EPO mRNA and protein in mice with oxygen-induced proliferative retinopathy is related to retinal anigogenesis.
     Chapter2 pick out effective small interfering RNA (siRNA)targeting EPO
     Purpose:To pick out the small interfering RNA(siRNA) which could most effectively inhibit expression of EPO in vitro and investigate the inhibitory effect of siRNA on the expression of erythropoietin in cultured cells under normoxia and hypoxia condition.
     Method:Three siRNA against erythropoietin were designed and synthesized.Then it was transfected to NIH/3T3 cells by liposome. RT-PCR and Western blot were used to evaluate the efficacy of siRNA on attanuating erythropoietin expression in the cells,The most effective siRNA could be picked out by this means.Then,NIH/3T3 cells were divided into normoxia and hypoxia group.After transfection of erythropoietin siRNA into NIH/3T3 cells by Lipofectamine 2000, erythropoietin expression was examined by using RT-PCR and Western blot.
     Result:three designed siRNA could suppress EPO expression with different ability,siEPO2 was the most efficient one which could inhibit 80%erythropoietin expression in cultured cell.Meanwhile, erythropoietin mRNA and protein expression in cultured NIH/3T3 cells under both normoxia and hypoxia condition was down-regulated significantly by siEPO2.
     Conclusion:siRNA against erythropoietin effectively inhibits the expression of erythropoietin in vitor and provides basis for in vivo study.
     Objective:To observe the effect of inhibition of retinal neovascularization by small interference RNA(siRNA) targeting erythropoietin(EPO).
     Method:One week old C57BL/6J mice were exposed to(75±2)% oxygen for 5 days,then it returned to the room air to induce retinal neovascularization,siRNA which manifested as most powerful in reducing EPO expression in vitro was intrvitreal injected in the treatment group.Retinal neovascularization was evaluated by angiography with injection of fluorescein dextran and quantification of neovascular proliferative retinopathy after 5 days in room air.Moreover,RT-PCR, immunoblot analysis were used to determined whether local administration of EPO siRNA could affect the expression of EPO in murine retinas.
     Result:In murine model of oxygen-induced retlnopathy,retinal neovascularization in the eyes with siEPO2 injection was significantly reduced compared with that of the contralateral control eyes.Similarly, histological analysis indicates that neovascular nuclei protruding into viteous cavity was decreased compared to the control eyes.Furthermore, the expression of EPO in the retinas with injection of siEPO2 was drmatically decreased.
     Conclusion:siRNA against Erythropoietin could inhibit the experimental retinal neovascularization through reducing EPO expression in the retinas of mice.It may provide a powerful and novel therapeutic tool for ischemic-induced retinal diseases.
引文
[1]pepper MS,Mandriota S,Vassalli JD,et al.Angiogenesis regulating cytokines:activities and interactions.Curr Top Microbiol Immunol.1996;213:31-67
    [2]Parfyonova YV.Plekhanova OS,Tkachuk VA.Plasminogen activators in vascular remodeling and angiogenesis.Biochemistry(Mosc) 2002;67:119-134.
    [3]Le Gat L,Gogat K,Bouquet C et al.In vivo adenovirus-mediated delivery of a uPA/uPAR antagonist reduces retinal neovascularization in a mouse model of retinopathy.Gene Ther.2003;10:2098-2103.
    [4]Rundhaug JE.Matrix metalloproteinases and angiogenesis.J Cell Mol Med.2005;9:267-285
    [5]Reich SJ,Fosnot J,Kuroki A,et al.Small interfering RNA(siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model.Mol Vis.2003;30:210-216.
    [6]Hackett SF,Wiegand S,Yancopoulos G,et al.Angiopoietin-2 plays an important role in retinal angiogenesis.J Cell Physiol.2002;192:182-187.
    [7]Smyth SS,Patterson C.Tiny dancers:the integrin-growth factor nexus in angiogenic signaling.J Cell Biol.2002;158:17-21
    [8]McGuire PG,Jones TR,Talarico N et al The urokinase/urokinase receptor system in retinal neovasculariztion:inhibition by(?)6 suggests a new therapeutic target.Invest ophthalmol Vis Sci.2003;44:2736-2742
    [9]Wilkinson-Berka JL,Jones D,Taylor G,et al.SB-267268,a Nonpeptidic Antagonist of(?)vβ3 and(?)vβ5 Integrins,Reduces Angiogenesis and VEGF Expression in a Mouse Model of Retinopathy of Prematurity Invest Ophthalmol Vis Sci.2006;47:1600-1605
    [10]Carlini R,Reyes A,Rothstein M,et al.Recombiant human stimulatesangiogenesis in vitro.K idneyl ntenration,l 997,47 :7 40-745
    [11]Silva M,Grillot D,Benito A,et al.Erythropoietin can promote erythroid progenitor survival by repressing apoptosis through Bcl-XL and Bcl-2. Blood. 1996; 88: 1576-82.
    [12]Ribatti D,Vacca A,Roccaro A,et al.Erythropoietin as an angiogenic factor..Eur J Clin Invest.2003;33:891-896.
    [13] Ribatti D,Presta M,Vacca A,et al.Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo.Blood, 1999,93:2627-2636.
    [14]Bocker-Meffert S,Rosenstiel P,Rohl C,et al.Erythropoietin and VEGF promote neural outgrowth from retinal explants in postnatal rats.Invest Ophthalmol Vis Sci,2002,43:2021-2026.
    [15]Junk AK, Mammis A, Savitz SI, et al.Erythropoietin administration protects retinal neurons from acute ischemia-reperfusion injury. Proc Natl Acad Sci U S A,2002,99:10659-64.
    [16]Heeschen C,Aicher A,Lehmann R,et al.Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood, 2003,102:1340-6.
    [17]Jaquet K,Krause K,Tawakol-Khodai M,et al.Erythropoietin and VEGF exhibit equal angiogenic potential.Microvasc Res,2002,64:326-333.
    [18]Yasuda Y, Masuda S, Chikuma M,et al. Estrogen-dependent production of erythropoietin in uterus and its implication in uterine angiogenesis.J Biol Chem,1998,273:25381-7.
    [19]Galeano M,Altavilla D,Bitto A,et al. Recombinant human erythropoie- tin improves angiogenesis and wound healing in experimental burn wounds.Crit Care Med,2006,34(4):1139-46
    [20] Ribatti D, Marzullo A, Nico B,et al. Erytropoietin is an angiogenic factor in gastricarcinoma. Histpathology, 2003,42:246-50.
    [21] Smith LEH, Wesolowski E, McLellan A, et al.Oxygen-indueed retinopathy in the mouse.Invest Ophthalmol Vis Sci.1994;35:101-111
    [22]Chong, Z.Z., J.Q. Kang, and K. Maiese, Erythropoietin is a novel vascular protectant through activation of Aktl and mitochondrial modulation of cysteine proteases. Circulation, 2002. 106(23): p. 2973-9.
    [23]Hardee ME, Cao Y, Fu P, Jiang X, Zhao Y, Rabbani ZN, Vujaskovic Z, Dewhirst MW, Arcasoy MO. Erythropoietin blockade inhibits the induction of tumor angiogenesis and progression PLoS ONE. 2007 ;20;2:e549
    [24]Miller H, Miller B, lshibashl T, etal.Pathogenesisoflaser-inducedchoroidal subretinal neovasculairzation. Invest ophthalmol Vis Sci., 1990, 31:899-098.
    [25]ZhangS, Leske DA,Lanier WL et al . Preretinal ncovascularization associatcd with acetaozlamide - induced systemic acidosis in the neoatal rat. Invest ophthalmol Vis Sci, 2001, 42:1066-71.
    [26] Miller JW.Vascular endothelial growth factor and ocular neovascularization. Am J Pathol. 1997;151(1):13-23
    [27]Pe'er J, Shweiki DItin A, Hemo I, Gnessin H, Keshet E.Hypoxia-induced expression of vascular endothelial growth factor by retinal cells is a common factor in neovascularizing ocular diseases. Lab Invest, 1995; 72: 638
    [28] Gregg L Sememza. HIF-l:mediator of physiological and pathophysiological reponses to hypoxia. Appl Physiol,2000,88:1474-1480
    [29] Vaupel P. The role of hypoxia-induced factors in tumor progression.Oncologist. 2004;9 Suppl 5:10-7. Review
    [30]Yoshida D, Kim K, Noha M, Teramoto A. Hypoxia Inducible Factor 1-alpha Regulates of Platelet Derived Growth Factor-B in Human Glioblastoma Cells. J Neurooncol. 2005 Jul 30;
    [31]Ariamaa O,Nikinmaa M. Oxygen-dependent diseases in the retina:role of hypoxia-inducible factors.Exp Eye Res,2006,83(3):473-83.
    [32] Robinson GS, Pierce EA, Rook SL, Foley E, Webb R, Smith LE Oligodeoxynucleotides inhibit retinal neovascularization in a murine model of proliferative retinopathyProc Natl Acad Sci U S A. 1996 May 14;93(10):4851-6.
    [33] Avery R, Pearlman J, Pieramici D, et al. Intravitreal bevacizumab (Avastin)in the treatment of proliferative diabetic retinopathy. Ophthalmology,2006,113:1695.
    [34]Downward J.RNA interference.BMJ.2004,328(7450):1245-1248.
    [35] Knight SW,Bass BL.A role for the RNase Ⅲ enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans.Science, 2001,293 (5538): 2269-2271.
    [36]Zamore PD,Tuschl T,Sharp PA, Bartel DP.RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals.Cell, 2000,101(1): 25-33.
    [37] Hammond SM,Bernstein E,Beach D, Harmon GJ.An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells.Nature, 2000,404 (6775):293-296.
    [38] Du Q, Thonberg H K, Wang J, Wahlestedt C, Liang Z C. A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites. Nucleic Acids Res, 2005, 33(5): 1671-1677.
    [39] Reynolds A, Leake D, Boese Q,Scaringe S,Marshall WS,Khvorova A. Rational siRNA design for RNA interference. Nat Biotechnol. 2004;22:326-330.
    [40]Overhoff M, Alken M, Far R K K, Lemaitre M, Lebleu B, Sczakiel G, Robbins I. Local RNA target structure influences siRNA efficacy: a systematic global analysis. JMolBiol, 2005, 348: 871-881.
    [41]Kumiko U T, Naito Y K, Takahashi F, Haraguchi T, Hiroko O H, Juni A, Ryu U, Kaoru S. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res, 2004, 32(3): 936-948
    [42]Xia XB, Xiong SQ, Song WT,et al.Inhibition of retinal neovascularization by siRNA targeting VEGF165 Mol Vis. 2008; 14:1965-1973
    [43]Xia XB, Xiong SQ, Xu HZ,et al. Suppression of retinal neovascularization by siRNA target to HIF-la. Current Eye Research. 2008;33(10):892-902.
    [44]ZhangG, FahmyRG, diGirolamoN, et al. JUN siRNA regulates matrix metalloproteinase 2 expression,microvaacular endothelialgrowth and retinal neovascularization. J Cell Sci, 2006, 119: 3219-3226.
    [45] Shen J, Samul R, Silva RL,et al. Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther. 2006;13:225-234
    [46]Tolenfino U, Brueker AJ, Fosnot J et al. Intravitreal injection of vascular endothelial growth factor small interfering RNA inhibits growth and leakage in nonhuman primate, lsser-induced model of choroidal neovasenlarization. Retina. 2004, 24: 132-138.
    [47]Feigner PL,GadekTR,Holm M ,et al.Lipofection:a highly efficient lipid -mediated DNA-transfection procedure.Proc Natl Acad Sci U S A . 1987;84:7413-7.
    [48] Masuda I, Matsuo T, Yasuda T, et al. Gene transfer with liposomes to the Intraocular tissues by different routes of a dministration.Invest Ophthalmol Vis Sci. 1996;37:1914-20.
    [49]Ozaki H, Yu AY, Delia N , Ozaki K, Luna JD, Yamada H, et al. Hypoxia inducible factor-lalpha is increased in ischemic retina: temporal and spatial correlation with VEGF expression. Invest Ophthalmol Vis Sci. 1999;40:l82-189.
    [50]Lipardi C, Wei Q, Paterson BM. RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs.Ce//. 2001; 107:297-307.
    [51]Kleinman ME, Yamada K, Takeda A et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 2008 452 591-597
    [52] Jackson AL, Bartz BR, Schelter J, et al. Expression profiling rerveals off-target gene regulation by RNAi. NatuerBiotechnol, 2003,21 ;635-637
    [53]Persengiev SP, Zhu X, Green MR. Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs(siRNAs).RNA.2004;10:12-18
    [54]Junk AK,Mammis A,Savitz SI,et al.Erythropoietin administration protects retinal neurons from acute ischemia-reperfusion injury.Proc Natl Acad Sci U SA.2002;99:10659-64.
    [55]Campana WM,Misasi R.Identificatin of a nerotropic sequence in erythropoietin.Int.J.Mol.Med,1998:1:235-241
    [1].Parfyonova YV,Plekhanova OS,Tkachuk VA.Plasminogen activators in vascular remodeling and angiogenesis.Biochemistry,2002,67:119-134.
    [2].Le Gat L,Gogat K,Bouquet C,et al.In vivo adenovirus-mediated delivery of a uPA/uPAR antagonist reduces retinal neovascularization in a mouse model of retinopathy.Gene Ther,2003,10:2098-2103.
    [3].McGuire PG,Jones TR,Talarico N,et al The urokinase/urokinase receptor system in retinal neovasculariztion:inhibition by(?)6 suggests a new therapeutic target.Invest Ophthalmol Vis Sci,2003,44:2736-2742.
    [4].Penn JS,Rajaratnam VS.Inhibition of retinal neovascularization by intravitreal injection of human rPAI-1 in a rat model of retinopathy of prematurity.Invest ophthalmol Vis Sci,2003,44:5423-5429.
    [5].Rundhaug JE.Matrix metalloproteinases and angiogenesis.J Cell Mol Med,2005,9:267-285.
    [6].Ohno-Matsui K,Uetama T,Yoshida T,et al.Reduced retinal angiogenesis in MMP-2-deficient mice.Invest Ophthalmol Vis Sci,2003,44:5370-5375.
    [7].Hangai M,Kitaya N,Xu JS,et al.Matrix metalloproteinase-9-dependent exposure of a cryptic migratory control site in collagen is required before retinal angiogenesis.Am J Pathol,2002,161:1429-1437.
    [8].Carcia C,Bartsch DU,Rivero ME,et al.Efficacy of prinomastat(AG3340):a matrix metalloprotease inhibitor in treatment of retinal neovascularization.Curr Eye Res,2002,24:33-38.
    [9]. Reich S J, Fosnot J, Kuroki A, et al. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol Vis,2003,30:210-216.
    [10]. Shen J, Samul R, Silva RL, et al. Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther, 2006, 13:225-234.
    [11]. Takahashi K, Saishin Y, Morik, et al. Topical nepafenac inhibits ocular neovasculariztion . Invest Ophthalmol Vis Sci.2003 ;44:409-415
    [12]. Soker S, Takashima S, Miao HQ, et al. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell, 1998, 92:734-745.
    [13]. Avery R, Pearlman J, Pieramici D, et al. Intravitreal bevacizumab (Avastin)in the treatment of proliferative diabetic retinopathy. Ophthalmology,2006, 113:1695.
    [14]. Bainbridge JWB , Mistry A , Alwis M , et al. Inhibition of retinal neovascularization by gene transfer of soluble VEGF receptor sFlt-1.Gene Ther,2002,9:320-326.
    [15]. Deng WT, Yan Z, Dinculescu A, et al . Adeno-associated virus-mediated expression of vascular endothelial growth factor peptides inhibits retinal neovascularization in a mouse model of oxygen-induced retinopathy. Human Gene Therapy, 2005, 16:1247-1254.
    [16]. MaierP, Unsoeld AS, Junker B, et al. Intravitreal injection of specific receptor tyrosine kinase inhibitor PTK787/ZK222 584 improves ischemia-induced retinopathy in mice. Graefes Arch Clin Exp Ophthalmol, 2005, 243:593-600.
    [17]. Bullard LE, Qi X, Penn JS. Role for extracellular signal-responsive knase-1 and-2 in retinal angiogenesis. Invest Ophthalmol Vis Sci, 2003, 44:1722-1731.
    [18]. Hackett SF, Wiegand S, Yancopoulos G, et al. Angiopoietin-2 plays an important role in retinal angiogenesis. J Cell Physiol, 2002, 192:182-187.
    [19]. Takagi H, Koyama S, Seike H, et al. Potential role of the angiopoietin/tie2 system in ischemia-induced retinal neovascularization. Invest Ophthalmol Vis Sci, 2003, 44:393-402.
    [20]. Thurston G, Suri C, Smith K, et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science , 1999: 2511-2514.
    [21]. Zamora DO, Davies MH, Planck SR, et al. Soluble forms of ephrinb2 and ephb4 reduce retinal neovascularization in a model of proliferative retinopathy. Invest Ophthalmol Vis Sci, 2005, 46:2175 -2182.
    [22]. Chen J, Hicks D, Brantley-Sieders D, et al. Inhibition of retinal neovascularization by soluble EphA2 receptor. Exp Eye Res, 2006, 82:664-673.
    [23]. Watanabe D, Suzuma K, Matsui S, et al. Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N Engl J Med, 2005, 353:782-792.
    [24]. Majka S, McGuire PG, Das A. Regulation of matrix metalloproteinase expression by tumor necrosis factor in a murine model of retinal neovascularization. Invest Ophthalmol Vis Sci, 2002, 43:260-266.
    [25]. Yoshida S, Yoshida A, Ishibashi T. Induction of IL-8, MCP-1, and bFGF by TNF-alpha in retinal glial cells: implications for retinal neovascularization during post-ischemic inflammation. Graefes Arch Clin Exp Ophthalmol , 2004,242:409-413.
    [26]. Gardiner TA, Gibson DS, de Gooyer TE, et al. Inhibition of tumor necrosis factor-alpha improves physiological angiogenesis and reduces pathological neovascularization in ischemic retinopathy. Am J Pathol, 2005, 166 :637-644.
    [27]. Smyth SS, Patterson C. Tiny dancers: the integrin-growth factor nexus in angiogenic signaling. J Cell Biol,2002,158:17-21.
    [28]. Wilkinson-Berka JL, Jones D, Taylor G, et al. SB-267268, a nonpeptidic antagonist of α_vβ_3 and α_vβ_35 integrins, reduces angiogenesis and vegf expression in a mouse model of retinopathy of prematurity. Invest Ophthalmol Vis Sci, 2006, 47:1600-1605.
    [1]Li Z,Chong K,Maie SE.Erythropoietin on a tighrtope:balancing neuronal and vascular protection between intrinsic and extrinsic pathways.Neurosignals.2004.13.265-89.
    [2]Tsuda E.Comparative structural study of N-linked oligosaccharides of urinary and recombinant erythropoietins.Biochemistry,1988.27:5646-54.
    [3]Dube S,Fisher JW,Powell JS.Glycosylation at specific sites of erythropoietin is essential for biosynthesis,secretion,and biological function.J Biol Chem,1988.263:17516-21.
    [4]FFC K.Kung E.Goldwasser.Some chemical properties of erythropoietin.Endocrinology.1985.116.2286-92.
    [5] Atkins HL, Broudy VC, Papayannopoulou T. Characterization of the structure of the erythropoietin receptor by ligand blotting. Blood. 1991,77:2577-2582
    [6] Kawakami M, Sekiguchi M, Sato K, et al,Erythropoietin Receptor-mediated inhitibion of exocytotic Glutamate Relase confers neuroprotecion during chemical ischemia. J B Chem. 2001,276:39469-39475
    [7] Middleton SA. Barbone FP, Johnson DL, et al. Shared and unique determinants of th erythropoietin receptor are important for binding EPO and EPOmimetic peptide J Biol Chem 1999,274:14163-14169
    [8] lwatsuklK, EndoT., MisawaH., et al.STAT5 sactivation corelates with erythropoietin receptor-mediated erythroid differentiation of an erythroleukemia cell line. JBiolChem, 1997, 272:8149-52·
    [9] KretzA., HappoldC.J·, Martickc J.K, et al.Etythropoietin Promotes Regeneration of adult CNS neuorns via Jak2/Stat3 and PI3K/AKT Pathway activation Mol Cell Ncurosci, 2005, 29:56979·
    [10] chong Z.., Lins.H., Kang J.Q., et al.Erythropoietin Prevets early andlate nuronal demisethrough mdoulation of Aktl and induction of caspase l,3,and 8. J Neurpsci Res, 2()03, 71:659-69·
    [11] Koshlmula K., Murakami Y., Sohmiya M., et al.Efects of erythropoietinon on neuronal activation.J Neurochem, 1999, 72:2565-72·
    [12] JiaoH., BeradaK, Yang W., et al.Direct association with and dephosphorylation of Jak2 kinase by the SH2-domain-coinaining Portein tyrosine phosphatase SHP-1.Mol Cell Biol, 1996, 16:6958-92.
    [13] Liu J., Narasihan R, Yu E, et al .NeuroProtection by hypoxic preconditoning involves oxidative srtess-mediated experssion of hypoxia inducible factor and erythropoietin.stroke, 2005, 36:1246-92.
    [14]Nissenson AR.Epoetin and cognitive function. Am J kidney Dis, 1992; 20:21-24
    [15]Pickett JL, Theberege DC, Brown WS, et al Normalizing hematocrite in dialysis patients improves brain function. Am J kidney Dis.1993;33:1122-1130
    [16]Konishi Y, Chiui DH, Hirose H et al. Trophic effect of erythropietin and other hemotopoietic factors on central cholinergic neurons in vitro and in vivo. Brain Res.1993/609:29-35.
    [17]Campana WM,Misasi R.Identificatin of a nerotropic sequence in erythropoietin.Int.J.Mol.Med,1998:1:235-241
    [18]Ruscher K,Freyer Dkarsch M,et al erythropietin ia a paracrine mediator of ischemic tolerance in the brain:evidence from an invitro moedel.J.Nerosci 2002;22:10291-10301
    [19]Sinor AD,Greenberg DA.Erythropietin protects cultured cortical neurons but not astroglia,from hypoxia and AMPA toxicity.Neurosci Lett.200;290:213-215.
    [20]Yu X,Shacka JJ,Eells JB et al erythropietin resceptor signalling is required for normal brain development.Development,2002;192:505-516
    [21]曾志磊,娄季宇,苗旺.促红细胞生成素对大鼠脑缺血再灌注损伤后缺血侧皮层神经元凋亡和Bcl-2表达的影响.实用神经疾病杂志,2005;8:31-32
    [22]Barta S,Perelman N,Luck L etal Pediatric tumor cells experss ertyhropoietin and functional erythroPoietin receptor that pomotes angiogenesis and tumor cell survival.Lab Invest,2003,83:1477-1487
    [23]刘志忠,张宇新,阐志生,等。脑胶质瘤促红细胞生成素的表达及其生物学意义。实用肿瘤杂志2005,20:43-45
    [24]Kanori S,Akihiro T.Expression of erythropoietin receptors on acute leukemia cells and their response to erythropietin in vitro.Jpn J Cancer Res,1996,87:422-423
    [25]樊华,金锋,陈波,等.EpRo/H-Ras介导的白血病细胞系增生信号传导机制的研究.白血病淋巴瘤.2003,12(3):15-17
    [26]ZhouM,LiaoQK,LIFY et al.Erythropoietin increases transferring receptor expression and the impact of erythropoietin on K 562 leukemia cell cycle.Chin J Pediatr,2003 41:528-530.41(7) 528-530.
    [27]FAN H,SukidaKajni,ZHAI M,etal.Analyse the expression of EPO-R and function in leukemic celll line.Leukemia 2000,9(2):98-100.
    [28]CAOX S,LING Y,QIU GQ etal.Study of ertyhorietin rceptor in acute leukemia Chin HosP Pharm 20D4,24(9):529-531
    [29]Parsa,C J.,et al.A novel protective efect of erythropoietin in the infarcted heart. J Clin Invest,2003.112:99 9-1007
    [30] Saraste, A., et al., Apoptosis in human acute myocardial infarction. Circulation ,1997.95. 320-3.
    [31] Moon, C., et al., Erythropoietin reduces myocardial infarction and left ventri cular functional decline after coronary artery ligation in rats.Proc Natl Acad Sci U S A ,2003.10 0(20):p. 11 612-7.
    [32]Lipsic, E., et al., Timing of erythropoietin treatment for cardioprotection in ischemia/perfusion.J C ardiovascP harmacol,2004.44:. 473-9
    [33] Scarabelli,T .,e ta 1.,Apoptosis of endotheilal cells precedes myocyte cell Apoptosis in ischemia/reperfusion injury.Circulation,2001.10:253-6
    [34]Moon,C, et al., CardioProtection by recombinant human erythropoietin following acute experimental myocardial infarction : dose response and therapeutic window.Cardiovasc Drugs Ther,2005.19: 243-50.
    [35]Namiuchi, S., et al., High serum erythropoietin level is associated with smaller in farct size in patients with acute myocardial infarction who undergoSuccessful primary percutaneous cornary intervention. J Am Coll Cardiol, 2000 .45 :14 06-12.
    [36]Tada, H., et al., Endogenous erythropoietin system in non-hematopoietic lineage cell s plays a protective role in myocardiali schemia/reperfusion. Cardio vasc Res ,2006.71 (3):46 6-77.
    [37]Bahimann FH,de Groot K,Spandau J-M,et al.Erythropoietin regulates endothelial progenitor cells.Blood,2004,103:921 -6.
    [38]Ribatti D,Presta M,Vacca A,et al.Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo.Blood,1999,93:2627-2636.
    [39]Jaquet K,Krause K,Tawakol-Khodai M,et al.Erythropoietin and VEGF exhibit equal angiogenic potential.Microvasc Res,2002,64:326-333.
    [40]Ribatti D,Vacca A,Roccaro A,et al.Erythropoietin as an angiogenic factor.Eur J Clin Invest ,2003,33(10):891-896.
    [41]Heeschen C,Aicher A,Lehmann R,et al.Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood.2003,102:1340-6.
    [42]Galeano M,Altavilla D,Bitto A,et al. Recombinant human erythropoie- tin improves angiogenesis and wound healing in experimental burn wounds.Crit Care Med,2006,34(4):1139-46.
    [43] Yasuda Y, Masuda S, Chikuma M,et al. Estrogen-dependent production of erythropoietin in uterus and its implication in uterine angiogenesis.J Biol Chem,1998,273:25381-7.
    [44] Watanabe D, Suzuma K, Matsui S, et al. Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N Engl J Med,2005, 353:782-92.
    [45]Katsura Y,Okano T,Matsuno K,et al.Erythropoietin is highly elevated in vitreous fluid of patients with proliferative diabetic retinopathy.Diabete Care ,2005,28:2252-2254.
    [46] Chen J, Liu N, Kachara Z,et al. Early administration of erythropoietin prevents oxygen induced retinal vascular degeneration in retinopathy of prematurity. Invest Ophthalmol Vis Sci,2006,47:3219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700