芜菁花青素合成关键基因F3H启动子区序列及蓝光受体CRY1基因的克隆与初步功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
依赖于蓝光的花青素合成现象是植物中普遍存在的一种现象,近期研究表明这种现象是由植物蓝光受体—隐花色素(Cryptochrome,CRY)所介导的。本研究对克隆花青素合成依光型芜菁品种“津田”芜菁中的花青素合成关键基因F3H(flavanone 3-hydroxylase)的启动子区序列以及蓝光受体CRY1基因进行了克隆和功能分析,为揭示植物隐花色素对花青素合成的调节机制开展了必要的前期工作。
     1 F3H启动子区序列的克隆、分析与瞬时表达
     根据已经公布的Brassica rapa subsp.pekinensis中含有F3H基因的KBrS001M03克隆序列,采用常规PCR的方法,克隆得到“津田”芜菁F3H基因启动子区序列。在线比对和生物信息学分析表明此序列是位于“津田”芜菁F3H基因上游的启动子区序列,具有启动子特征。利用plantcare工具分析统计此序列中的各个功能元件,发现其中除具有一般真核生物启动子结构所普遍具有的保守CAAT box和TATA box等序列外,还有许多其他的保守序列。
     采用研究启动子的pKGWFS7载体,利用Gateway技术将此序列替换到Gus基因的上游,驱动Gus基因在“津田”芜菁无菌苗的离体胚轴和子叶中瞬时表达。检测结果显示,胚轴和子叶中均有Gus基因表达。而且无论是在光下还是在黑暗中,克隆到的F3H启动子区序列均可驱动Gus基因正常表达。可见所克隆的序列具有启动子功能。
     2芜菁CRY1基因的克隆与功能初步分析
     1)CRY1基因的克隆及其功能分析
     采用RT-PCR的方法克隆芜菁的CRY1基因,对克隆得到序列进行和系统进化树分析,初步确定其为CRY1基因。研究了此基因在不同波长光下的表达情况,结果表明芜菁CRY1基因的表达量基本一致,为组成型表达。这说明CRY1与其他因子发生作用来传递光信号影响花青素的合成。利用酵母双杂交系统研究芜菁CRY1与COP1的相互作用的结果表明两者之间具有相互作用,表明其具有与拟南芥中蓝光受体传递光信号的类似机制。
     2) CRY1-dsRNAi表达载体的构建与遗传转化
     为更深入的研究芜菁CRY1的生理功能,采用Gateway克隆系统,根据克隆到的“津田”芜菁CRY1基因序列设计RNA干涉引物,成功构建了芜菁CRY1双链RNA干扰表达载体:CRY1-dsRNAi。
     采用农杆菌介导的方法转化芜菁,对影响芜菁离体再生和农杆菌介导的遗传转化的各个因素进行了研究。通过对外植体类型、激素种类、AgNO_3浓度、无菌苗苗龄、预培养时间等因素的优化,获得了再生频率达90%左右的离体再生体系,可以满足遗传转化的要求。研究发现,采用TDZ代替前人常采用的BA来与NAA配合更适于“津田”芜菁的离体再生,适合再生的激素组合为TDZ 7.0 mg/L+NAA 1.0 mg/L。5.0 mg/L AgNO_3对再生来讲是必须的。外植体以苗龄为5d的带柄子叶为好。采用含1.0 mg/L的2,4-D的MS培养基预培养2d可以一定程度上提高再生的频率。
     在已经建立的芜菁离体再生体系的基础上,研究了不同抗生素种类、农杆菌菌液不同浓度、不同侵染时间、不同共培养时间等因素对遗传转化的影响。得到了较好的转化程序。结果表明采用OD_(600)为0.6的农杆菌菌液侵染20 min后共培养3 d,用300 mg/L的羧苄青霉素脱菌,在含300 mg/L羧苄青霉素和20 mg/L潮霉素的培养基中筛选为好。对转化植株后代进行PCR和Southern-blot杂交分析,结果表明干涉片段已经整合到芜菁基因组中。
Biosynthesis of anthocyanidinmany induced by blue light is common in plant. Cryptochrome(CRY),a receptor of blue light,plays a key role in the biosynthesis.In this study, CRY1 gene and promoter sequence of flavanone 3-hydroxylase(F3H) gene in turnip 'Tsuda' (Brassica rapa L.ssp.rapifera) were cloned,and their function was studied.The works in this study were part of investigation on the mechanism that CRY regulate the biosynthesis of anthocyanidinmany.
     1 Cloning and transient expression of F3H promoter in turnip 'Tsuda'
     With primers designed according to the sequence of Brassica rapa subsp,pekinensis clone KBrS001M03 which including F3H gene,and total DNA of turnip 'Tsuda' as templat,the promoter of F3H was cloned by PCR.The results of blast and analysis of bioinformation showed the cloned sequence was upstream sequence of F3H and has characters of promoter. The statistical analysis of elements in the sequence was carried out with software Plantcare. The elements such as CAAT box and TATA box in eukaryote promoters were found.
     The cloned sequence was replaced into Gateway vector pKGWFS7 at the position upstream of Gus to induce the expression of Gus in excised hypocotyl and cotyledon of turnip 'Tsuda' seedling.The results showed that Gus was expressed both in hypocotyl and cotyledon. Moreover,either in light or in dark,the cloned sequence of F3H promoter can induce expression Gus stably.So,it is concluded that the cloned sequence had function of promoter.
     2Cloning of CRY1 gene and its function
     1)Sequence and function of CRY1
     CRY1 gene of turnip 'Tsuda' was cloned by RT-PCR.Homology analysis of cloned sequence suggested the sequence was homologous with CRY1 of Brassica napus and Arabidopsis thaliana.The expression of this gene in light with different wavelength was studied.The results suggested the expression was steady and not influenced by wavelength. The interaction of CRY1 and COP1 in turnip 'Tsuda' was confirmed by two hybrid system.
     2)Construction of vector CRY1-dsRNAi and its genetic transformation
     To investigate the function of CRY1 by RNAi,the factors influence the regeneration and genetic transformation of turnip 'Tsuda' were studied.With cotyledonary petiole and hypocotyl explants,the regeneration frequencies of turnip 'Tsuda' cukivars were examined.To achieve a high-frequency regeneration system,the hormone combination of thidiazuron(TDZ) and naphthaleneacetic acid(NAA) was compared with combination of benzyladenine(BA) and NAA on shoot regeneration.The results show that cotyledonary petioles were the best explant and that Murashige and Skoog(MS) medium containing 7.0mg/L TDZ and 1.0 mg/L NAA was suitable recipe for getting high-frequency shoot regeneration.Based the recipe,the effects of AgNO_3 concentration,seedling age,pre-culture time of 2,4-Dichlorophenoxyacetic acid (2,4-D) were investigated to optimize the shoot regeneration system.The results suggseted that petiolate cotyledon with seedling age of 5 d cultured in MS medium containing TDZ 7.0 mg/L+NAA1.0mg/L+AgNO_3 5.0 mg/L followed by pre-culture with 2,4-D 1.0 mg/L for 2 d can be induced with highest-frequency regeneration.The highest shoot formation rate was about 90%.The rooting percentage of shoots was 100%on MS supplemented with 0.1 mg/L indole-3-butyric acid(IBA).The 95%rooted shoots survived in a greenhouse
     The pivotal factors,which influenced the transformation frequency,were compared,and the parameters of transformation system were optimized.It was showed that selective medium containing 300 mg/L carbenicillin,which inhibited growth of Agrobacterium,led to production of more shoots resistant to hygromycin;the time required for infecting and co-culture with Agrobacterium was 20min and three days respectively;and the efficiency of screening with 20 mg/L hygromycin was highest.Molecular analysis of seedlings resisting to hygromycin showed transformants were positive.
     With Gateway clonging system,expression vector,CRY1-dsRNAi was constructed with primers designed acording to the sequence of CRY1.The vector was transformed to turnip 'Tsuda' mediamed by agrobacterium successfully.
引文
[1]Kleine T,Kindgren P,Benedict C,Hendrickson L,Strand A.Genome-wide gene expression analysis reveals a critical role for cryptochromel in the response of arabidopsis to high irradiance,Plant Physiology,2007,144:1391-1406
    [2]Deboo GB,Albertsen MC,Taylor LT.Flavanone 3-hydroxylase transcripts and flavonol accumulation are temporally coordinate in maize anthers.Plant Journal,1995,7:703-713
    [3]Charrier B,Coronado C,Kondorosi A.Molecular characterization and expression of alfafa flavanone 3-hydroxylase and dihydroflavonol-4-reductase encoding genes.Plant Mol Biol.1995.29(4):773-786.
    [4]Pelletier MK,Shirley BW.Analysis of flavanone 3-hydroxylase in Arabidopsis seedlings.Coordinate regulation with chalcone synthase and chalcone isomerase.Plant Physiol,1996,111(1):339-345
    [5]肖月华,罗明,方卫国,罗克明,侯磊,罗小英,裴炎.利用YADE法进行棉花基因组PCR步行.遗传学报,2002,29(1):62-66
    [6]彭仁旺,周雪荣.烟草花药特异表达基因启动子的克隆及序列分析.生物工程学报,1996,12(3):247-250.
    [7]苏宁,孙萌,李轶女,倪丕冲,沈桂芳.水稻叶绿体16S启动子克隆改造、载体构建及转化研究,植物学通报,2003,20(3):295-301.
    [8]王利军,范三红,郭蔼光,2004,拟南芥ats1A基因启动子的克隆和功能分析.西北植物学报,4(10):1856-1860
    [9]Triglia T,Peterson MG,Kemp DJ.A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences.Nucleic acids Res.,1988,16:81-86
    [10]杨予涛,杨国栋,刘石娟,郭兴启,郑成超.一个光合组织特异表达强启动子的分离及功能分析,中国科学(C辑),2003,33(4):298-306
    [11]王新国,肖成祖,张国华,方荣祥.用衔接头PCR克隆新的胡萝卜Ⅱ型转化酶基因启动子.中国生物化学与分子生物学报,2001,17(1):61-65
    [12]苗红梅.小麦淀粉合成关键酶基因启动子的克隆与特征.2004,河南农业大学博士学位论文
    [13]Li HY,Qi J,Shu HR,Zheng CC,Li Y.Isolation and characterization of a chitinase gene VCH3 promoter from grapevine.J.Plant Physiol.Mol.Biol.,2005,31(5):485-491
    [14]Liu YG,Whittier RF.Thermal asymmetric interlaced PCR:automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking.Genomics,1995,25:674-681
    [15]Liu YG,Mitsukawa N,Oosumi T,Whittier RF.Efficient isolation and maping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR.Plant J.,1995,8(3):457-462
    [16]刘召华,郭洪年,郑光宇,田颖川.ACA基因启动子的克隆及功能初探.生物工程学报,2005,21(1):139-143
    [17]Wang P,Sun YR,Li X,Zhang LM,Li WB,Wang YQ.Rapid isolation and functional analysis of promoter sequence of the nitrate reductase gene from Chlorella ellipsoidea.J.Appl.Phycol.,2004,16(1):11-16
    [18]财音青格乐,李明春,蔡易,陶然,邢来君.大豆种子特异性启动子的克隆及序列分析,作物学报,2005,31(1):11-17
    [19]李秋莉,张毅,尹辉,李丹.辽宁碱蓬甜菜碱醛脱氢酶(BADH)基因启动子分离及序列分析.生物工程学报,2006,22(1):77-81
    [20]Liu YG,Huang N.Efficient amplification of inset and sequence from bacterial artifical chromosome clones by thermal asymmertric interlaced PCR.Plant Mol.Biol.Rep.,1998,16:175-181
    [21]Huang SH,Jong AY,Yang W,Holcenberg J.Amplification of gene ends from gene library by PCR with single-sided specificity.Methods Mol.Biol.,1993,15:357-363
    [22]王树启.胡萝卜AFP基因上游启动子的克隆鉴定及AFP基因转化水稻的研究.2003,硕士学位论文,中山大学
    [23]Rachael LN,Robert WW,Raymond LR.Eukaryotic DNA fragments which act as promoters for a plasmid gen.Nature,1979,277:324-325
    [24]Donna MW,Elizabeth JD,Paul SL.Cloning restriction fragments that pmmote expression of a gene in Bacillus subtilis.Bacterol,1981,146:1162-1165
    [25]李奉锡,李育阳.在枯草杆菌中有启动子功能的噬菌体T5DNA片断的克隆.遗传学报,1987,14(6):468-474
    [26]金红,王以光.麦迪霉素产生菌具有启动功能的DNA片段的克隆和分析.微生物学报,1994,34(6):415-421
    [27]Rinehart JA,Petersen MW,John ME.Tissue specific and developmental regulation of cotton gene FbL2A.Plant Physiol.,1996,112:1331-1334
    [28]Triglia T,Peterson MG,Kemp DJ.A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences.Nucleic acids Res.,1988,16:8186
    [29]Mol J,Grotewold E,Koes R.How genes paint flowers and seeds.Trends in Plant Science.1998,3:212-217
    [30]Winkel-Shirley B.Flavonoid biosynthesis:a colorful model for genetics,biochemistry,cell biology,and biotechnology.Plant Physiology,2001,126:485-493
    [31]Shirley BW.Flavonoid biosynthesis:‘new’ functions for an ‘old’ pathway.Trends in Plant Science,1996,1:377-382
    [32]Fuglevand G,Jackson JA,Jenkins GI.UV-B,UV-A and blue light signal transduction pathways interact synergistically to regulate chalcone synthase gene expression in Arabidopsis.Plant Cell,1996,8:2347-2357
    [33]Lozoya E,Block A,Lois R,Hahlbrock K,Scheel D.Transcriptional repression of lightinduced flavonoid biosynthesis by elicitor treatment of cultured parsley cells.Plant Journal,1991,1:227-234
    [34]Aharoni A,De Vos CH,Wein M,Sun Z,Greco R,Kroon A,Mol JN,O'Connell AP.The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco.The Plant Journal,2001,28:319-332
    [35]Shirley BW,Kubasek WL,Storz G,Bruggemann E,Koornneef M,Auaubel FM,Goodman HM.Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis.Plant Journal,1995,8:659-671
    [36]Winkel-Shirley B.It takes a garden.How work on diverse plant species has contributed to an understanding of flavonoid metabolism.Plant Physiology,2001,127:1399-1404
    [37]Nesi N,Jond C,Debeaujon I,Caboche M,Lepiniec L.The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for the proanthocyanidin accumulation in developing seed.Plant Cell,2001,13:2099-2114
    [38]Nesi N,Debeaujon I,Jond C,Pelletier G,Caboche M,Lepiniec L.The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques.Plant Cell,2000,12:1863-1878
    [39]Ang LH,Chattopadhyay S,Wei N,Oyama T,Okada K,Batschauer A,Deng XW.Molecular interaction between COP1 and HY5 of Arabidopsis.Mol Cell,1998,1:213-222
    [40]Boss PK,Davies C,Robinson SP.Expression of anthocyanin biosynthesis pathway genes in red and white grapes.Plant Molecular Biology,1996,32:565-569
    [41]Jin H and Martin C.Multifunctionality and diversity within the plant MYB-gene family.Plant Mol Biol,1999,41:577-585
    [42]Mo Y,Nagel C,Taylor LP.Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen.Proc Natl Acad Sci USA,1992,89:7213-7217
    [43]Taylor LP,Jorgensen R.Conditional male fertility in chalcone synthase-deficient petunia.J Hered 1992,83:11-17
    [44]van der Meer IM,Stam ME,van Tunen AJ,Mol JNM.Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility.Plant Cell,1992,4:253-262
    [45]Forkmann G,Stotz G Genetic control of flavanone 3-hydroxylase activity and flavonoid 3'-hydroxylase activity in Antirrhinum majus(snapdragon).Z Naturforsch,1981,36:411-416
    [46]Britsch L,Ruhnau-Brich L,Forkmann G Molecular cloning,sequence analysis,and in vitro expression offlavanone-3 P-hydroxylase from Petunia hybrida.J Biol Chem,1992,267:5380-5387
    [47]Chanier B,Coronado C,Kondorosi A,Ratet P.Molecular characterization and expression of alfalfa(Medicago sativa L.)flavanone 3-hydroxylase and dihydrolflavonol 4-reductase encoding genes.Plant Mol Biol,1995,29:773-786
    [48]ackson D,Roberts K,Martin C.Temporal and spatial control of expression of anthocyanin biosynthetic genes in developing flowers of Antirrhinum majus.Plant J,1992,2:425-434
    [49]Meldgaard M.Expression of chalcone synthase,dihydroflavonol reductase,and flavanone-3-hydroxylase in mutants of barley deficient in anthocyanin and proanthocyanidin biosynthesis.Theor Appl Genet 1992,83:695-706
    [50]Koes RE,Quattrocchio F,Mol JNM.The flavonoid biosynthetic pathway in plants:function and evolution.BioEssays,1993,16:123-132
    [51]Charrier B,Leroux C,Kondorosi A,Ratet P.The expression pattern of alfalfa flavanone 3-hydroxylase promoter-GUS fusion in Nicotiana benthamiana correlates with the presence of flavonoids detected in situ.Plant Mol Biol,1996,30:1153-1168
    [52]Ahmad M,Cashmore AR.The HY4 gene involved in blue light sensing in Arabidopsis thaliana encodes a protein with the characteristics of a blue light photoreceptor.Nature,1993,366:162-166
    [53]Lin C,Ahmad M,Cashmore AR.Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-dependent regulation of plant growth and development.Plant J,1996,10:893-902
    [54]Lin C,Yang H,Guo H,Mockler T,Chen J,Cashmore AR.Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2.Proc.Natl.Acad.Sci.USA,1998,95:2686-2690
    [55]Brudler R,Hitomi K,Daiyasu H,Toh H,Kucho K,IshiuraM,Kanehisa M,Roberts VA,Todo T,Tainer JA,Getzoff ED.Identification of a new cryptochrome class:structure,function,and evolution.Mol Cell,2003,11:59-67
    [56]Kleine T,Lockhart P,Batschauer A.An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles.Plant J,2003,35:93-103
    [57]Lin C,Robertson DE,Ahmad M,Raibekas AA,Schuman Jorns M,Dutton PL.Cashmore AR.Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1.Science,1995,269:968-970
    [58]Lin C.Plant blue-light receptors.Trends in Plant Science,2000,5:337~342
    [59]Cashmore AR,Jarillo JA,Wu YJ,Liu D.Cryptochromes:blue light receptors for plants and animals.Science,1999,284:760-765
    [60]Mockler TC,Guo H,Yang H,Duong H and Lin C.Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction.Development,1999,126:2073-2082
    [61]Ahmad M,Jarillo JA,Cashmore AR.Chimeric proteins between CRY1 and CRY2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability.Plant Cell,1998,10:197-208
    [62]Lin C,Yang H,Guo H,Mockler T,Chen J,Cashmore AR.Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome2.Proc.Natl.Acad.Sci.USA,1998,95:2686~2690
    [63]Jiao YL,Yang HJ,Ma LG,Sun N,Yu HY,Liu T,Gao Y,Gu HY,Chen ZL,Wada M,Gerstein M,Zhao HY,Qu LJ,Deng XW.A Genome-Wide Analysis of Blue-Light Regulation of Arabidopsis Transcription Factor Gene Expression during Seedling Development.Plant Physiology,2003,133:1480-1493
    [64]Brudler R,Hitomi K,Daiyasu H,Toh H,Kucho K,IshiuraM,Kanehisa M,Roberts VA,Todo T,Tainer JA,Getzoff ED.Identification of a new cryptochrome class:structure,function,and evolution.Mol Cell,2003,11:59-67
    [65]Kleine T,Lockhart P,Batschauer A.An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles.Plant J,2003,35:93~103
    [66]Short TW and Briggs WR.The transduction of blue light signals in higher plants.Annu.Rev.Plant Physiol.Plant.Mol.Biol,1994,45:143-171
    [67]Chory J and Wu D.Weaving the complex web of signal transduction.Plant Physiology,2001,125:77-80
    [68]Ahmad M,Lin C,Cashmore A R.Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation.Plant J.,1995,8:653-658
    [69]Chory J.A genetic model for light-regulated seedling development in Arabidopsis.Development,1992,115:337-354
    [70]Jackson JA,Jenkins GI.Extension-growth responses and expression of flavonoid biosynthesis genes in the Arabidopsis hy4 mutant.Planta,1995,197:233-239
    [71]Chuang CF,Meyerowitz EM.Specific and heritable genetic interference by doublestranded RNA in Arabidopsis thaliana.Pro Natl Acad Sci,2000,97:4985-4990
    [72]Wesley SV,Helliwell CA,Smith NA,Wang MB,Rouse DT,Liu Q,Gooding PS,Singh SP,Abbott D,Stoutjesdjk PA,Robinson SP,Gleave AP,Green AG,Waterhouse PM.Construct design for efficient,effective and high-throughput gene silencing in plants.Plant J,2001,27:581-590
    [73]Wojtjowiak A,Siek A,Alejska M,Jarmolowski A,Szweykowska-Kulinska Z,Figlerowicz M.RNAi and viral vectors as useful tools in the functional genomics of plants:construction of BMV-based vectors for delivery into plant cells.Cell&Mol Biol Lett,2002,7:511-522
    [74]Guo S,Kemphues KJ.par-1,a gene required for establishing polarity in C.elegans embryos,encodes a putative Ser/Thr kinase that is asymmetrically distributed.Cell,1995,81:611-620
    [75]Fire A,Xu S,Montgomery MK,Kostas SA,Driver SE,Mello CC.Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans.Nature,1998,391:806-811
    [76]Tchurikov NA,Chistyakova LG,Zavilgelsky GB,Manukhov IV,Chernov BK,Golova YB.Gene-specific Silencing by Expression of Parallel Complementary RNA in Escherichia coli.Journal of Biological Chemistry,2000,275:26523-26529
    [77]Ketting RF,Haverkamp THA,Van Luenen HGAM,Plasterk RHA.mut-7 of C.elegans,required for transposon silencing and RNA interference,is a homolog of werner syndrome helicase and RNaseD.Cell,1999,99:133-141
    [78]Tabara H,Sarkissian M,Kelly WQ Fleenor J,Grishok A,Timmons L,Fire A,Mello CC.1999.The rde-1 gene,RNA interference,and transposon silencing in C.elegans.Cell,1999,99:123-132
    [79]Ratcliff FG,MacFarlane SA,Baulcombe DC.Gene Silencing without DNA:RNA-Mediated Cross-Protection between Viruses.The Plant Cell,1999,11:1207-1216
    [80]Brantl S.Antisense-RNA regulation and RNA interference.Biochim Biophys Acta,2002,1575:15-25
    [81]Banerjee D,Slack F.Control of developmental timing by small temporal RNAs:a paradigm for RNA-mediated regulation of gene expression.BioEssays:News Anal Reviews In Molecular,Cellular Anal Developmental Biology,2002,24:119-129
    [82]Aravin AA,Naumova NM,Tulin AV,Vagin VV,Rozovsky YM,Gvozdev VA.Doublestranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D.melanogaster germline.Current Biology,2001,11:1017-1027
    [83]Bryan R.Cullen.RNA interference:antiviral defense and genetic tool.Nature Immunology,2002,3:597-599.
    [84]Hannon GJ.RNA interference.Nature,2002,418(6894):244-251
    [85]Hammond SM,Bernstein E,Beach D.An RNA directed nuclease mediates post- transcription gene silencing in Drosophila cells.Nature,2000,404(6775):293-296
    [86]Nykanen A,Haley B,Zamore PD.ATP requirements and small interfering RNA in the RNA interference pathway.Cell,2001,107(3):309-321
    [87]Springe PS.Gene traps:tools for plant development and genomics.Plant Cell,2000,12(7):1007-1020
    [88]Smith N,Singh S,Wang MB.Total silencing by intron-spliced hairpin RNAs.Nature,2000,407:319-320
    [89]Bezanilla M,Pan A,Quatrano R.RNA interference in the mossPhyscomitrella patens.Plant Physiol,2003,133:470-475
    [90]郭晓红,周忠孝.转录后水平的基因沉默-RNA干涉.基础医学与临床,2003,23(1):24-29
    [91]Nunes ACS,Vianna GR,Cuneo F,Amaya-Farf(?)n J,de Capdeville G,Rech EL,Arag(?)o FJL(2006) RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content.Planta 224(1):125-132
    [92]Sin SF,Yeung EC,Chye ML.Downregulation of Solanum americanum genes encoding proteinase inhibitor Ⅱ causes defective seed development.Plant J.,2006,45(1)58-70
    [93]Jun SI,Kwon SY,Paek KY,Paek KH.Agrobacterium-mediated transformation and regeneration of fertile transgenic plants of Chinese cabbage(Brassica campestris ssp.pekinensis cv.'spring flavor').Plant Cell Rep,1995,14:620-625
    [94]王凌健,倪迪安等.青菜组织培养和转化系统的初步建立.实验生物学报,1999,32(1):93-95
    [95]侯喜林,曹寿椿.不结球白菜子叶离体培养再生植株.南京农业大学学报,1994,17(3):60-64
    [96]吴昌银,叶志彪等.AgNO3对不结球白菜子计离体再生的影响.华中农业大学学报,1999,18(1):80-82
    [97]薛红卫,卫志明,许智宏.通过PEG法转化甘蓝获得基因植株.植物学报,1997,39(1):28-33
    [98]Stahl R,Arnoldo M,Glavin T,Goring D,Rothstein S.The self-incompatibility phenotype in Brassica is altered by the transformation of a mutant S locus receptor kinase.Plant Cell,1998,10:209-218
    [99]Verwoert II,Van der Linden KH.Modification of Brassica napus seed oil by expression of the Escherichia coil fabH gene,encoding 3-ketoacyl-acyl carrier protein synthase Ⅲ.Plant Mol Biol,1995,27(5):875-876
    [100]钟蓉,朱峰.油菜的遗传转化及抗溴苯腈转基因油菜的获得.植物学报,1997,39(1):22-27
    [101]彭仁旺,陈正华等.转基因雄性不育油菜选育的简介.遗传学报,1996,23(1):84
    [102]李学宝,郑进学.甘蓝型油菜抗虫转基因植株及其抗性分析.遗传学报,1999,26(3):262-268
    [103]Mukhopadhyay A,Agrumugam N.Genetic transformation of Agrobacterium-mediated oilseed Brassicaestris:Transformation frequency is strongly influenced by the mode of shoot regeneration.Plant Cell Reports,1992,11:506-513
    [104]De Block M.Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumetfaciens and the expression of the bar and neo genes in the transgenic plants.Plant physiol,1989,91:694
    [105]Docma G,Barfieldl.Gene transfer in plants of Cassics junces using Agrobacterium tumefacieus mediated transformation.Plant Cell Reports,1991,10:308-314
    [106]Ajay-Guar,Chowdhury VK,Yadav RC,Chowdhury JB.Agrobacterium-mediated transformation in Indian mustard(Brassica juncea L.Coss and Czern) Crueiferae-Newsletter,1997,19:59-60
    [107]顾红雅,瞿礼嘉等编著.植物基因与分子操作.北京大学出版社,1995
    [108]傅荣昭,孙勇如,贾士荣主编.植物遗传转化技术手册.中国科学技术出版社,1994
    [109]夏英武,昊殿星,舒庆尧.农杆菌T-DNA介导的植物转基因的分子机制.生物学杂志,1994,(5):7-12
    [110]何玉科.甘蓝Ri T-DNA转化根的植株再生.生物工程学报,1990,6(2):120-125
    [111]Muller HJ.Types of visible variations induced by X-rays in Drosophila.J Genet,1930,22:299-334
    [112]温孚江,郭兴启,张松,宋云枝,朱常香.抗芜菁花叶病毒转基因大白菜的培育.植物病理学报,2001,31(3):257-264
    [113]张凤兰,高田烟羲,徐家炳.大白菜子叶离体培养再生植株,园艺学报,2002,29(4):348-352
    [114]曹家树,余小林,黄爱军,徐淑英.提高白菜离体培养植株再生频率的研究.园艺学报,2000,27(6):452-454
    [115]徐淑平,卫志明,黄健秋.青菜的高效再生和农杆菌介导Bt及CpTI基因的转化.植物生理与分子生物学报,2002,28(4):253-260
    [116]余小林,曹家树,徐淑英.改良菜心离体培养植株再生体系的研究.实验生物学报,2001,34(2):157-161
    [117]Kuvshinov V,Koivu K,Kanerva A,Pehu E.Agrobacterium tumefaciens-mediated transformation of greenhouse-grown Brassica rapa ssp.oleracea.Plant cell reports,1999,18:773-777
    [118]蒋兴村.甘蓝畸胎瘤的诱导及T-DNA的转移.科学通报,1984,13:814
    [119]Birot AM,Bouchez D,Casse-Delbart F,Durand-Tardif M,Pautot V,Robaglia C,Tepfer D,Tepfer M,Tourneur J,Vilaine F.Studies on the uses of the Ri plasmids of Agrobacterium rhizogenes.Plant Physiol.Biochem.1987,25:323-335
    [120]Charest PJ.Virulence of Agrobacterium tumefaciens strains with Brassica napes and Brassica juncea.Plant Cell Reports,1989,8:303
    [121]Matheus VH.Regeneration of shoots from Brasslca juncea(linn czern) and coss cells transformed by Agrobacterlum tumefaciens and expression of nopaline dehydrogenase genes.Plant Science,1985,39:49
    [122]Charest PJ,Holbrook LA,Gabard J,Iyer VN,Miki BL,Agrobacterium mediated transformation of thin cell layer explants from Brassica napus L.Theor Appl Genet,1988,75:438-445
    [123]Fry J,Barnason A,Horsch RB.Transformation of Brassica napus with Agrobacterium based vectors.Plant Cell Rep,1987,6:321-325
    [124]Pua EC,Mehra Palta A,Nagy F,Chua NH.Transgenic plants of Brassica napus L.Biotechnology,1987,5:815-817
    [125]程振东,卫志明,许智宏.芸薹属作物的遗传转化.植物生理学通讯,1992,28(3):161-164
    [126]Chi GL.Effect of AgNO3 and aminoethokyvinyl glycine on in vitro shoot and root organogenesis from seedling explants of recalcitrant Brassy ca genotypes.Plant Cell Rep,1990,9:195-198
    [127]Grison R,Grezes-Besset B.Nat Biotechnol,1996,14(5):643-646
    [128]卢爱兰,方荣样.抗芜菁花叶病毒转基因甘蓝型油菜的研究.遗传学报,1996,23(1):77-83
    [129]郑回勇,郑金贵,许明,刘峰,赵伊英.胡萝卜再生体系及高效遗传转化体系的建立.广西农业科学,2002,5:237-241
    [130]Mol J,Stuitje A,Gerats A.Saying it with genes:molecular flower breeding.Trends Biotechnol,1989,7:148-153
    [131]Forkmann G.Flavonoids as flower pigments:the formation of the natural spectrum and its extension by genetic engineering.Plant Breed,1991,106:1-26.
    [132]Timothy A,Holton,Edwina C.Genetics and biochemistry of anthocyanin biosynthesis.The Plant Cell,1995,7:1071-1083
    [133]尹辉,李丹,张毅,李秋莉.植物基因启动子的克隆方法及其应用,分子植物育种,2006,4(3):85-91
    [134]杨聚荣,张剑凯,何娅妮,李新伦,梁海君,林静.人NaDC1基因近端启动子生物信息学分析及载体构建.第三军医大学学报,2007,29(14):1140-1142
    [135]苏宁,孙萌,李轶女.水稻叶绿体16S启动子克隆改造、载体构建及转化研究.植物学通报,2003,20(3):295-301
    [136]彭仁旺,周雪荣,周奕华.烟草花药特异表达基因启动子的克隆及序列分析.生物工程学报,1996,12(3):247-250
    [137]蒋浩,秦红敏,田颖川.杨树皮贮藏蛋白基因启动子的克隆和功能研究.林业科学,1999,35(5):46-50
    [138]van der Meer IM,Stuitje AR,Mol JNM.Regulation of general phenylpropanoid and flavonoid gene expression.In:Control of Plant Gene Expression,1993,125-155.CRC Press,Boca Raton,FL
    [139]Sablowski RWM,Moyano E,Culianez-Macia FA,Schuch W,Bevan M.A flowerspecific Myb protein activates transcription of phenylpropanoid biosynthetic genes.EMBO J,1994,13:128-137
    [140]曹仪植.植物分子生物学.北京:高等教育出版社,2002,226;202-203;252-253
    [141]钟蓉,李胜国,潘照明.通过瞬间表达测定植物花药花粉特异基因启动子的时空表达性.四川大学学报,1997,34(6):847-851
    [142]齐春辉,韩烈保,梁小红,曾会明,刘君.以基因枪法转化日本结缕草获得转基因植株.北京林业大学学报,2006,28(3):71-75
    [143]Kawabata S,Li Yuhua,Adachi M,Maruyama H,Ozawa E,Sakiyama R.Role of Photoreceptor-and Sugar-mediated Reactions in Light Dependent Anthocyanin Production in Lily and Stock Flowers.J.Japan.Soc.Hort.Sci.,2002,71:220-225
    [144]Lin C,Ahmad,M,Chan,J,Cashmore AR.CRY2,a second member of the Arabidopsis cryptochrome gene family.Plant Physiol.,1996,110,1047.
    [145]Lin C.Blue light receptors and signal transduction.Plant Cell,2002,14:S207-225
    [146]Lin C,Shalitin D.Cryptochrome structure and signal transduction.Annu Rev Plant Biol 2003,54:469-496
    [147]Sancar A.Photolyase and cryptochrome blue-light photoreceptors.Adv Protein Chem.,2004,69:73-100
    [148]Giliberto L,Perrotta G,Pallara P,Weller JL,Fraser PD,Bramley PM,Fiore A,Tavazza M,Giuliano G.Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development,flowering time,and fruit antioxidant content.Plant Physiol,2005.137:199-208
    [149]Sancar A.Structure and function of DNA photolyase.Biochemistry,1994,33:2-9
    [150]Banerjee R,Batschauer A.Plant blue-light receptors.Planta,2005,220:498-502
    [151]Brudler R,Hitomi K,Daiyasu H,Toh H,Kucho K,Ishiura M,Kanehisa M,Roberts VA,Todo T,Tainer JA,Getzoff ED.Identification of a new cryptochrome class.Structure,function,and evolution.Mol Cell,2003,11:59-67
    [152]Kleine T,Lockhart P,Batschauer A.An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles.Plant J,2003,35:93-103
    [153]Yang HQ,Tang RH,Cashmore AR.The signaling mechanism of Arabidopsis CRY1involves direct interaction with COP1.Plant Cell,2001,13:2573-2587
    [154]Min BW,Cho Y-N,Song MJ,Noh TK,Kim BK,Chae WK,Park YS,Choi YD,Harn CH.Successful genetic transformation of Chinese cabbage using phosphomannose isomerase as a selection marker.Plant Cell Rep.,2007,26:337-334
    [155]Yoko A K,Hidefumi Y,Yoshihito T.Efficient plant regeneration from leaves of rapeseed (Brassica napus L.):the influence of AgNO3 and genotype.Plant Cell Rep.,2005,24(11):649-654
    [156]Christey MC,Sinclair BK,Braun RH,Wyke L.Regeneration of transgenic vegetable brassicas(Brassica oleracea and B.campestris) via Ri-mediated transformation.Plant Cell Rep.,1997,16(9):587-593.
    [157]Guo DP,Zhu ZJ,Hu XX,Zheng SJ.Effect of cytokinins on shoot regeneration from cotyledon and leaf segment of stem mustard(Brassica juncea var.tsatsai).Plant Cell Tissue Org Cult.,2005,83(1):123-127
    [158]王洋,崔继哲,李翠玲.大白菜高频再生体系的建立及策略.园艺学报,2005,32(4):701-703
    [159]Preece JE,Huetteman CA,Ashby WC.Micro-and cutting propagation of silver maple.Ⅰ.Results with adult and juvenile propagules.J Am Soc Horticult Sci.,1991,116:142-148
    [160]Huetteman CA,Preece JE.Thidiazuron:a potent cytokinin for woody plant tissue culture.Plant Cell Tissue Org Cult.,1993,33:105-119.
    [161]Murthy BNS,Murch SJ,Saxena PK.TDZ-induced somatic embryogenesis in geranium (Pelargonium x hortorum Bailey cv.Ringo rose) cotyledonary cultures.Plant Cell Rep.,1995,15:423-426
    [162]邢德峰,李新玲,王全伟,徐香玲.影响大白菜高效离体培养再生的因素.植物生理学通讯,2003,39(5):420-424
    [163]Chraibi BKM,Latche A,Roustan JP,Fallot J.Stimulation of shoot regeneration from cotyledon of Helianthus annuus by the ethylene inhibitors,silver and cobalt.Plant Cell Rep.,1991,10:204-207.
    [164]Pua EC.Cellular and molecular aspects of ethylene on plant morphogenesis of recalcitrant Brassica species in vitro.Bot.Bull.Acad.Sin.,1993,34:191-209.
    [165]Radke SE,Turner JC,Facciotti D.Transformation and regeneration of Brassica rapa using Agrobacterium tumefaciens.Plant Cell Rep.,1992,11:499-505
    [166]何业华,雄兴华,官春云,等.根癌农杆菌介导TA29-Barnase基因转化甘蓝型油菜的研究.作物学报,2003,29(4):615-620
    [167]徐晓峰,黄学林.TDZ:一种有效的植物生长调节剂.植物学通报,2003,20(2):227-237
    [168]蓝海燕,王长海,张丽华,刘桂珍,王岚兰,陈正华,田颖川.导入β-1,3葡聚糖酶基因及几丁质酶基因可育油菜及其抗菌核病的研究.生物工程学报,2000,16(2):142-146
    [169]余小林.白菜雄性不育相关基因CYP86MF的功能验证及其人工不育系的创建.浙江大学农学院博士学位论文,2002
    [170]Damgaard O,Jensen LR,Rasmussen D.Agrobacterium tumefaciens-mediated transformation of Brassica napus winter cultivars.Transgenic Res.,1997,6:279-288
    [171]郭学兰,王汉中.甘蓝型油菜细胞质雄性不育恢复系转基因体系的研究.中国油料作物学报.1999,21(3):1-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700