人表皮干细胞复合裸鼠脱细胞真皮支架构建组织工程皮肤及移植的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:用组织工程学原理,通过体外分离扩增人表皮干细胞作为种子细胞,复合自己制备的异种(裸鼠)脱细胞真皮支架材料,探讨体外构建活性组织工程皮肤的可行性。将该组织工程皮肤移植于实验动物创面,检测和了解该组织工程皮肤的结构和功能。
     方法:用中性蛋白酶消化法,分离小儿包皮的表皮,制成单细胞悬液, IV型胶原快速粘附10-15min (370C),分别取快速粘附细胞和未黏附的细胞培养。用K-SFM培养基,补充10%的干细胞培养专用胎牛血清(FBS)。用免疫组织化学测定角蛋白15(CK15)、角蛋白19(CK19)和β1整合素(β1-integrin)和用流式细胞仪检测CD71等指标,对进表皮干细胞行鉴定。以胰蛋白酶法制备(裸鼠)脱细胞真皮支架,并进行组织学观察。将分离培养传代的表皮干细胞接种于铺好IV型胶原的脱细胞真皮表面,置入干细胞培养体系培养后,再行气液界面培养构建组织工程皮肤。HE染色切片观察组织工程皮肤结构。将组织工程皮肤移植于实验动物创面,以单纯脱细胞真皮移植作对照。肉眼观察移植后的创面情况,对移植后的皮肤取材行组织学观察及免疫组织化学鼠抗人广谱角蛋白染色确定组织来源。
     结果:1.表皮干细胞能被IV型胶原快速黏附;2.黏附的细胞在培养皿中后很快贴壁,第3-4d形成一些小集落,其后细胞逐渐增殖,至第7d左右逐渐有大集落形成。而未黏附的细胞集落形成早1-2d,集落形成数明显少于实验组。黏附细胞免疫组织化学染色阳性率CK15为50.80%+1.81、CK19为51.40%+2.22、和β1-integrin为51.40%+1.90,CD71阳性率约1.91%+0.21。黏附细胞具有表皮干细胞特性,阳性率与文献报道的差别不大。3、制备的脱细胞真皮支架呈乳白色,柔软有弹性,光镜下见表皮去除,真皮内无其他细胞成分,胶原纤维结构保存完好,排列有序。4、表皮干细胞能快速黏附到由IV型胶原包被的脱细胞真皮支架上,迅速贴壁生长,无排斥反应。联合培养约两周后,可融合形成含1-2层细胞的复合皮。5、活性复合皮移植于实验动物的创面后,创面愈合良好,未见排斥反应,创面收缩不明显; 4周后,移植皮肤取材切片HE染色,光镜下见创面愈合,皮层含2-3层细胞,胶原排列整齐,未见皮肤附属结构。组织工程皮肤鼠抗人广谱角蛋白染色为阳性反应,对照组染色阴性,鼠皮广谱角蛋白染色阴性,说明移植皮肤的皮肤结构来源于实验用的人体种子细胞,表皮干细胞向表皮细胞分化。脱细胞真皮组无表皮结构形成,表面逐渐干燥、变硬,创面收缩,3周后创面愈合。组织取材HE染色未见表皮层结构形成,为红染的疤痕样组织,鼠抗人广谱角蛋白染色为阴性反应。
     结论:1、表皮干细胞能被IV型胶原快速黏附,利用这一特性,可以用来筛选表皮干细胞,并在K-SFM培养体系中分裂增殖,产生大量的子代细胞,可作为皮肤组织工程的种子细胞。
     2、胰蛋白酶法制备的异体脱细胞真皮,能去除表皮层及真皮内各种细胞成分,胶原纤维结构保存完好,可作为组织工程用脱细胞真皮支架材料。
     3、扩增、传代的第二代表皮干细胞能快速黏附在预铺好IV型胶原的脱细胞真皮上,在表皮干细胞培养体系中生长,联合气液界面培养,能构建活性复层结构的人工皮肤。
     4、构建的活性组织工程皮肤能修复实验动物创面,4周后的组织学检测显示,表皮干细胞分化为表皮细胞,组织内未见有皮肤附属结构形成。
Auto-skin grafting will be fist used when extensive skin loss occurs, when suffer a deficient of donor sites available for skin graft, other methods always used in clinic such as small stamps of autografting, mesh skin grafting, intermingle transplantation of auto-allografting, micro-skin-grafting and cultured epidermal Auto-grafting, because lack of dermis, can't resolve the problems regarding the cosmesis and function satisfactorily. Tissue-engineering skin can help resolving this problem, but there are some trouble in all kinds of tissue-engineering skin now, some are just dermis scaffold, some may lead to reject reaction because of the variaton of epidermal cells. Therefore, it will have clinical importance to composite a permanent skin substitute with ideal functions and no reject reaction.
     Objective: Investigate the feasibility constructing living composite skin of tissue-engineering. To construct tissue-engineered skin with cultured epidermal stem cells and acellular dermal scaffold and investigate the feasibility of repairing animal skin defection with the tissue-engineered skin. To research the construction and function of the tissue-engineered skin.
     Methods: Epidermis was separated from dermis of child's forskin,and dissociated into single cells. epidermal cells were incubated for 10-15min at 370C on dishes coated with collagen typeⅣ,then the adherent and nonadherent cells were cultured respectively in the K-SFM medium, supplemented with 100g/L fetal calf serum (FBS, for stem cell). The cells were examined for phenotypes under microscope, the expressions of Cytokeratine 15 (CK15) , Cytokeratine 19 (CK19) andβ1-integrin were detected with immunohistochemical method, andCD71 were detected with flow cytometry. Acellular dermal scaffolds were prepared by using of trypsin .Well-growing human epidermal stem cells which isolated were seeded onto the surface of acellular dermal scaffold which covered by collagen typeⅣto construct living tissue-engineered skin. This kinds of skin were transplanted to full skin wound in SD rats, compared with transplatation of acellular dermal scaffold only. The wounds were oberserved after operation. Tissue samples were harvested and examined by means of histology and immunohistochemistry method.
     Results:1、The epiderm stem cells can be adhered rapidly by collagen typeⅣ; 2、the adhered cells formed more and bigger colonies than that of nonadhered cells. The positive expressions by immunohistochemical method of CK15 are50.80%+1.81, CK19 are 51.40%+2.22,β1-integrin are51.40%+1.90, and the positive expressions by flow cytometry method of CD71 is1.91%+0.21. 3. The acellular xeno-dermis prepared firstly has been removed of the epidermis and all cellular components of the dermis. but the basement membrane complex and the three-dimensional structure of the collagen scaffold appeared intact. 4, ESCs can soon adhered to the surface and seed on the acellular dermal scaffold which voverd by collagen typeⅣ. A living tissue-engineered skin include 1-2 layers of epithelium was constructed in vitro after 2 weeks Co-cultivation. 5, After the tissue-engineered skin being transplated onto the wounds, it healed well with no rejiection and only a little contraction. The tissue histology structure also demonstrated that the wounds had healed. The neoepithelium was 1-2 layers thick consisting of epidermal cells, but there is no auxiliary structure of skin can be seen . The positive expression of broad-spectrum cytokeratine demonstrated that the neoskin was regenerated from grafted human cells. But in control group, the acellular dermal scaffolds transplated become dry because of no epithelium. In the end, the acellular dermal scaffolds seperated from the wounds and the wound contraction , 3 weeks later, the wounds heal with scar, tissue histology show that the expression of broad-spectrum cytokeratine is negative.
     Conclusion:1、The character of epiderm stem cell can be adherent by collagen typeⅣcan be used to separate ESCs, ESCs can grow rapidly in K-SFM medium, and produce massive daughter cells, so can be used as the seeds of tissue-engineered skin.
     2、The acellular dermal scaffolds prepared by method of Trypsin had been demonstrated that it had been removed of the epidermis and all cellular components of the dermis. but its basement membrane complex and the three-dimensional structure of the collagen scaffold appeared intact. Can be used as scaffold of TE.
     3、The ESCs can be seeded onto the surface of scaffold after amplification and passage, after 2 weeks’growth and Co-cultivation in K-SFM medium, can construct a living tissue-engineered skin with human epidermal stem cells and acellular dermal scaffold in vitro .
     4、After transplantation onto animal wounds,the composite skin was demonstrated to be a good skin substitut to repair skin defection, tissue history show that the ESCs can differentiate to epithelium, duration the observation there is no auxiliary structure of skin can be seen.
引文
1. CORSATELIS G, SUN T T, LAVKER R M,et al . Label– retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis [J]. Cell, 1990, 61: 1239-1337.
    2. R zepka K, Schaarschmidt G, Nagler M, et al. Epidermal stem cells [J]. J Dtsch Dermatol Ges, 2005, 3(12): 962-973.
    3. Bickenbach JR,Chism E. Selection and extended growth of murine epidermal stem cells in culture. Exp Cell Res 1998; 244(1): 184-195
    4. COTSARELIS G, KAUR P , DHOUAILLY D , et al . Epithelial stem cells in the skin : definition ,markers ,localization and functions [J] .Exp Dermatol , 1999 ,8 :80 - 88.
    5. Webb A, Li A, Kaur P. Location and phenotype of human adult keratinocyte stem cells of the skin [J]. Differentiation, 2004, 72 (8): 387 - 395.
    6.李剑,戴育成.体外分离、纯化人表皮干细胞促进皮肤的功能生理性修复[J].中国临床康复, 2003, 7 (11) : 1620.
    7.孙晓燕,付小兵,孙同柱.表皮干细胞的分离培养及鉴定[J].中华实验外科杂志,2007 ,24 :163.
    8. Michel M,Torok N,Godbout MJ , et al. Keratin 19 as a biochemical marker of skin s tem cells in vivo and in vitro: keratin 19 expressing cells are differentially localized in function of anatomic s ites , and their number varies with donor age and culture s tage. J Cell Sci 1996; (Pt5):1017-1028
    9. Lyle S,Chris tofidou-Solomidou M,Liu Y, et al. The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle s tem cells . J Cell Sci 1998; 111(Pt 21):3179-3188
    10. Jones PH, Watt FM. Separation of human epidermal s tem cells from transit amplifying cells on the basis of differences in integrin function and expres sion. Cell 1993; 73(4): 713-724
    11. Jones PH, Harper S, Watt FM. Stem cell patterning and fate in human epidermis. Cell 1995; 80(1):83-93
    12. Trempus CS, Morris RJ, Bortner C, et al. Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34[J ] . J Invest Dermatol, 2003, 120 (4): 501-11.
    13. Germain L, Rouabhia M, Guignard R, et al.Improvement of human keratinocyte isolation and culture using thermolysin. Burns,1993,19(2):99-104.
    14. Green H,Rehinde O. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting[J]. Proc Natl Acad Sci Usa,1979, 76(11) :5665-8
    15. Eaglstein WH, Falanga V. Tissue engineering for skin: An update [J]. Aaam Acad Dermatol, 1998,39(6):1 007-10
    16.杨亚东,伍津津,朱堂友.表皮干细胞的分选鉴定及培养[J].重庆医学. 2008 ,37(3):275-281.
    17.谢晓繁,贾赤宇,付小兵等.成体表皮干细胞的分离培养与鉴定中国危重病急救医学2006,18(1):46-48
    1. Kai-Hong J, Jun X, Kai-Meng H, et al. P63 expression pattern during rat epidermis morphogenes is and the role of p63 as a marker for epidermal stem cells . J Cutan Pathol 2007; 34(2):154-159
    2. Youn SW, Kim DS, Cho HJ, et al. Cellular senescence induced loss of stem cell proportion in the skin in vitro. J Dermatol Sci 2004; 35:113-123
    3. Matic M,Evans WH,Brink PP,et al.Epidermal stem cells do not communicate through gap junctions .J Inves t Dermatol 2002;118( 1):110-116
    4.李延仓,李孝建,沈雁.表皮干细胞标记物鉴定及应用现状.中国组织工程研究与临床康复2007;11(46):9329-9332
    5. Michel M,Torok N,Godbout MJ , et al. Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro: keratin 19 expressing cells are differentially localized in function of anatomic sites , and their number varies with donor age and culture stage. J Cell Sci 1996; (Pt5):1017-1028
    6. Lyle S,Chris tofidou-Solomidou M,Liu Y, et al. The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle s tem cells. J Cell Sci 1998; 111(Pt 21):3179-3188
    7. Lyle S ,Christofidou SM,Liu Y, et al . Human hair follicle bulge cellsare biochemically distinct and possess an epithelial stem cell phenotype[J]. J Investig Dermatol Symp Proc,1999, 4 (3) 296-301.
    8. Kaur P ,Li A. Adhesive properties of human basal epidermal cells an analysis of keratinocyte stem cells transit amplifying cells ,and postmitotic differentiating cells[J ] . J Invest Dermatol , 2000 ,114 (3) :413~420.
    9. Jones PH, Watt FM. Separation of human epidermal s tem cells fromtransit amplifying cells on the bas is of differences in integrin function and expression. Cell 1993; 73(4): 713-724
    10. Jones PH, Harper S, Watt FM. Stem cell patterning and fate in human epidermis. Cell 1995; 80(1): 83-93
    11. Watt FM. Stem cell fate and patterning in mammalian epidermis [J].Curr Opin Genet Dev,2001,11:410-417.
    12. Pellegrini G,Dellambra E,Gohsano O,et a1. P63 identifies keratinocyte stem cells[J].Proc Natl Acad Sci,2001,98:3156 -61.
    13. Janes S, Low ellS, utter C. Epiderm alstem cells. J P athol 2002; 1997 (4): 479-491
    14. Ito M , Liu Y , Y ang Z, et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epiderm is. Nat Med 2005; 11(12): 1351-1354
    15. Lee H, Kimelman D. A dominant negative form of P63 is required for epidermal proliferation in zebrafish[J] . Dev Cell, 2002, 2 (5): 607-616.
    16. Tani H, Morris RJ, Kaur P. Enrish for murine keratinocyte stem cells based on cell surface phenotype [J]. PNAS, 2000, 97: 10960-10965.
    1. Adekogbe I, Ghanem A. Fabrication and characterization of DTBP crosslinked chitosan scaffolds for skin tissue engineering. Biomaterials, 2005, 26: 7241-7250.
    2. Margulis A, Zhang W, Garlick JA. In vitro fabrication of engineered human skin . Methods Mol Biol, 2005, 289:61-70.
    3. Herson MR, Mathor MB , Altran S , et al . In vitro construction of a potential skin substitute through direct human keratinocyte plating onto decellularized glycerol preserved allodermis. Artif Organs, 2001, 25: 901-906.
    4. Ma L, Gao C, Mao Z, et al . Thermal dehydration treatment and glutaraldehyde cross-linking to increase the biostability of collagenchitosan porous scaffolds used as dermal equivalent [J]. Biomater Sci Polym, 2003, 14 (8):861 - 8741
    5. Ma L, Gao C, Mao Z, et al. CollagenPchitosan porous scaffolds with improved biostability for skin tissue engineering [J]. Biomaterials, 2003 , 24 (26) :4833 - 48411
    6. Cuy JL, Beckstead BL , Brown CD , et al . Adhesive protein interactions with chitosan : consequences for valve endothelial cell growth on tissue- engineering materials [ J ] . J Biomed Mater Res, 2003, 67A(2) :538– 5471
    7.程树军,黄锦桃,李卉等.几种真皮支架的体内组织相容性比较.中国比较医学杂志,2006;16(6):327-329.
    8.Wainwright D.Use of 811 acellular allograft dermal matrix(AlloDerm)in the management of full thickness bums.Burns,1995,21(4):243
    9. DeSagun EZ, Botts JL, Srivastava A, et al. Long - term outcome of xenogenic dermal matrix imp lantation in immunocompetent rats [J]. J Surg Res, 2001, 96(1): 96-106.
    10. ArmourAD, Fish JS, Woodhouse KA, et al. A comparison of human and porcine acellularized dermis: interactions with human fibroblasts in vitro [J].Plast Reconstr Surg, 2006,117 (3): 845-56.
    11. Walter RJ, Matsuda T, Reyes HM, et al.Characterization of acellular dermal matrices (ADMs) prepared by two different methods. Burns 1998; 24(2):104-113
    12. Chen RN, Ho HO, Tsai YT, et al.Process development of an acellular dermal matrix (ADM) for biomedical applications. Biomaterials 2004; 25(13):2679-2686
    13.董丽,马绍英,赵亚平等.无细胞真皮支架与同种细胞相容性的动态观察,中国组织工程研究与临床康复, 2008;12(27):5262- 5266.
    1. Bell E, Ehilich HP ,Sher S , et al . Development and use of a living skin equivalent [J]. Plast Reconstr Surg, 1981, 67(3):386-92.
    2. Wainwright DJ. Use of an acellular allograft dermal mat rix (Alloderm) in the management of full thickness burns[J]. Burns, 1995 ,21 :243.
    3.曹谊林.组织工程学的研究进展[J].中国美容医学, 2005;14(2): 134-135
    4. Trempus CS , Morris RJ , Bortner CD , et al. Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34[J]. J Invest Dermatol, 2003, 120 (4): 501.
    5.刘坡,祁少海,舒斌等.Ⅳ型胶原黏附法分选表皮干细胞,中国组织工程研究与临床康复, 2007;11(7):1201-1207.
    6. Prunieras M, Regnier M, Woodley D. Methods for cultivation of keratinocytes whith an air - liquid interface. J Invest Dermatol, 1983, 81:28s-33s.
    7. Kawai K, Suzuki S, Tabata Y, et al. Accelerated tissue regeneration through incorporation of basic fibroblast growth factor- impregnated gelatinmicrospheres into artificial dermis [J].Biomate,2000,21(5): 489- 499
    8. Wilcke I, Lohmeyer JA, Liu S, et al. VEGF(165) and bFGF proteinbased therapy in a slow release system to improve angiogenesis in a bioartificial dermal substitute in vitro and in vivo [J]. Langenbecks Arch Surg,2007, 392(3):305- 314.
    9. Pienimaki JP, Rilla K, Fulop C, et al. Epidermal growth factor activates hyaluronan synthase in epidermal keratinocytes and increases pericellular and intracellular hyaluronan [J].J Bio Chem, 2001,276(23):20428- 20435
    10.董丽,马绍英,赵亚平等.无细胞真皮支架与同种细胞相容性的动态观察,中国组织工程研究与临床康复, 2008;12(27):5262- 5266.
    1.孙锦章,韩春茂.组织工程皮肤的研究进展[J].国际外科学杂志, 2006;33 (5) : 389 - 391.
    2.Pellegrini G, Ranno R, Stracuzzi G, et a1. The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin. Transplantation. 1999, 27; 68(6):868-79.
    3.Berthod F, Germain L, Li H, Collagen fibril network and elastic system remodeling in a reconstructed skin transplanted on nude mice. Matrix Biol. 2001; 20(7):463-73.
    4.ZHANG Cong , WANG Naizuo Experimental study on Repairing full—thickness cutaneous deficiency with tissue engineered skin Chinese Journal of Reparative and Reconstructive Surgery,2008,28(2):196-201
    5.廖立新,陈刚泉.应用表皮=F细胞构建组织工程皮肤及移植实验[J].中国组织工程研究与临床康复,2007,14(11):2661-2664
    6. Clayman MA, Clayman SM. The use of collagen glycosaminoglycan copolymer ( Integra) for the repair of hypertrophic scars and keloids[J]. J B urn Care Res, 2006, 27(3): 404-409.
    7. Lida T, Takami Y. Development of a tissue enginereed human oral mucosa equivalent based on an acellular allogeneic dermal matrix: a preliminary report of clinical app lication to burn wound[J]. Scand J Plast Reconstr Surg Hand Surg, 2005, 39 (3): 138-146.
    8. Omar AA, Mavor A I, JonesM, et al. Treatment of venous legulcerswithDermagraft [ J ]. Eur J Vasc Endovasc Surg, 2004, 27(6): 666-672.
    9. Fivenson DP, Scherschun L, ChoucairM, et al. Graftskin therapy in ep- idernolysis bullosa[J]. J AM ACAD Derm atol, 2003, 48(6): 886-892
    10. Banta MN, Kirsner RS. Modulating diseased skin with tissue engineering: actinic purpura treated with apligraf[J]. Derm atol Surg, 2002, 28 (12): 1103-1106.
    11. Robertancis X. McGuigan. Skin Substitutes as Alternatives to Autografting in a Wartime Trauma Setting [J]. Am Acad Ortho Surg, 2006, 14 (10) : S87-S89.
    12. Kawai K, Suzuki S, Tabata Y, et al. Accelerated tissue regeneration through incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis [J].Biomate,2000,21(5): 489- 499
    13. Wilcke I, Lohmeyer JA, Liu S, et al. VEGF(165) and bFGF proteinbased therapy in a slow release system to improve angiogenesis in a bioartificial dermal substitute in vitro and in vivo [J]. Langenbecks Arch Surg,2007, 392(3):305- 314.
    14. Pienimaki JP, Rilla K, Fulop C, et al. Epidermal growth factor activates hyaluronan synthase in epidermal keratinocytes and increases pericellular and intracellular hyaluronan [J].J Bio Chem, 2001,276(23):20428- 20435
    15.付小兵,孙晓庆,孙同柱等.表皮细胞生长因子通过诱导皮肤干细胞分化加速受创表皮再生的研究,中国修复重建外科杂,2002;16(1): 31-35.
    16.李丹,李世荣,曹川等.创面分泌液对表皮干细胞体外趋化作用的实验研究,重庆医学,2007 ;36 (21):2174-2176.
    17.陈东明,牛星焘,谷庭敏等.大鼠皮肤创面愈合过程中内源性EGF、EGFR、TGFβ1蛋白和基因的变化,解剖学杂志,2001;24(3):206-209.
    18.朱莉,吴建和,胡宝等.深度烫伤大鼠创面渗液中细胞因子的变化,上海第二医科大学学报,1997;17,suppl:27-29.
    19.刘晓亮,金岩,聂鑫,刘源等.同种异体组织工程复合皮肤移植修复大鼠皮肤缺损,第四军医大学学报,2002;23 (11)980-982.
    1. Charadack WM, Martin MM, Jewett R ,et al . Synthetic substitutes For skin.clinical experience with their use in the treatmeat of burns [J] .Plast Reconstr Surg, 1962,30(4) :554-67.
    2.Rheinwald JG, Green H. Serial cultivation of strains of human epidermal kertinocytes: the formation of keratinizing colonies from single cell [J] .Cell, 1975, 6(3):331-43.
    3.Green H, Kehinde O , Thomas J . Growth of cultured human epidermal cells into multiple epithelia suitable for grafting [J]. Proc Natl Acad Sci USA, 1979, 76 (11):5665-8.
    4 . Yannas IV, Burke JF. Design of an artificial skin:I Basic design priciples[J] .Biomed Mater Res ,1980 ,14 (1) :65-81.
    5.Yannas IV ,Burke JF ,Gordon PL , et al . Design of an artificial skin:II Control of chemical composition [J ] . Biomed Mater Res, 1980, 14 (2) :107-32.
    6.O′Conner NE ,Mulliken JB ,Bunks SG, et al . Grafting of burns with cultred epithelium prepared from autogous epidemal cell [J]. Lancet, 1981, 1 (8211) :75-8.
    7. Bell E, Ehilich HP ,Sher S , et al. Development and use of a living skin equivalent [J]. Plast Reconstr Surg. 1981, 67(3): 386-92.
    8 . Prunieras M, Regnier M, Woodley D. Methods for cultivation of keratinocytes whith an air-liquid interface. J Invest Dermatol, 1983 ,81 :28s-33s.
    9.Faure M,Mauduit G,Schmitt D,et al. Growth and differentiation of human epidermal cultures used as auto and allografts in human [J] . Br J Dermatol, 1987, 116(2): 161-70.
    10.Herndon DN, Rutan RL. Comparison of cultured epidermal autograft and massive excision with serial autografting plus homograft overlay [J]. J Burn,1992,13(2) :154-7
    11.Bouvard V , Germain L , Roy B , et al . Influence of dermal equivalent maturation on a skin equivalent development. Biochem Cell Biol, 1992 ,70 :34-42.
    12.Cuono CB, Langdon R ,Birchall N , et al . Compsite autologous-allogeneic skin replacement:development and clinical application[J]. Plast Reconstr Surg, 1987, 80 (7): 626-37.
    13.Boyce ST,Hansbrough JF. Biologic attachment, growth, and differentiation of cultured human epidermal keratinocytes on a graftable collagen and chondroitin-6-sulfate substrate [J].Surgery, 1988, 103 (4):421-31.
    14.Copper ML, Hansbroug JF, Spielovgel RL, et al. In vivo optimization of a living dermal substitute employing cultured human fibroblasts on a biodegradable polyglycolic acid or polyglactin mesh.[J].Biomaterials ,1981 ,12 (3) :243-8.
    15. Matsue H, Cruz PD, Bergstresser PR,et al .Cytokine expression byepidermal cell subpopulations. J Invest Dermatol, 1992, 99:42s-45s.
    16. Hansbroagh JF, Morgan J,Greenleaf G, et al . Development of atemporary living skin replacement composed of human fibroblasts cultured in Biobrane, asynthetie dressing material [J]. Surgery, 1994, 115(8):633-44.
    17.Coulomb B , Lebreton C , Dubertret L ,et al . Influence of huaman dermal fibroblasts on epidermalization. J Invest Dermatol, 1989, 92:122-5.
    18. Goulet F, Poitras A , Rouabhia M, et al . Stimulation of human keratiocyte proliferation through growth factor exchanges with dermal fibroblast in vitro.Burns, 1996, 22(2):107-12.
    19.吴家云,贾生贤,邵松生,等.严重烧伤混合植皮异体真皮染色体核型分析[J].上海医科大学学报,1994 ,21(7) :427
    20.苏波,孙家玲,王文正,等.自体表皮细胞培养与异体真皮组合皮应用研究[J].中华创伤杂志,1995 ,11(3) :140.
    21.王旭,王甲汉,吴军,等1复合皮的制作与临床应用[J ].中国修复重建外科杂志,1997 ,11(2) :100.
    22. Eaglstein WH, Falanga V. Tissue engineering and the development of Apligraf,a human skin equivalent. Clin Ther. 1997 Sep-Oct; 19(5):894-905.
    23. Maruguchi T, Maruguchi Y, Suzuki S, et al. A new skin equivalent: keratinocytes proliferated and differentiated on collagen sponge containing fibroblasts. Plast Reconst Surg, 1994, 93:537-544.
    24. Liu H, Mao J, Yao K,et al. A study on a chitosangel atinhyaluronic acid scaffold as artificial skin in vitro and its tissue engineering applications. J Biomater Sci Polym Ed, 2004 , 15: 25-40.
    25. Adekogbe I, Ghanem A. Fabrication and characterization of DTBP crosslinked chitosan scaffolds for skin tissue engineering. Biomaterials, 2005, 26:7241-7250.
    26. Margulis A, Zhang W, Garlick JA. In vitro fabrication of engineered humanskin. Methods Mol Biol, 2005, 289:61-70.
    27. Herson MR, Mathor MB , Altran S , et al . In vitro construction of a potential skin substitute through direct human keratinocyte plating onto decellularized glycerol2preserved allodermis. Artif Organs, 2001, 25:901-906.
    28.Wainwright D.Use of 811 acellular allograft dermal matrix(AlloDerm)in the management of full thickness bums.Burns,1995,21(4):243
    29. CORSATELIS G, SUN T T,LAVKER R M,et al . Label– retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis [J]. Cell, 1990, 61: 1239-1337.
    30. Rzepka K, Schaarschmidt G, Nagler M, et al. Epidermal stem cells [J]. J Dtsch Dermatol Ges, 2005, 3(12):962-973.
    31.Mathor MB,Ferrari G,DellambraE eta1.Clonal analysis of stably transdued human epidermal stem cells in culture. Proe Natl Acad Sc/USA,1996,93(19):10371
    32.Pellegrini G, Ranno R, Stracuzzi G, et al. The control of epidermal stem cells (holoclones) in the treatment of massive full2thickness burns with autologous keratinocytes cultured on fibrin. Transplantation, 1999,68: 868-879.
    33. Ringe J, Kaps C, Burmester GR,et al. Stem cells for regenerative medicine: advances in the engineering of tissues and organs [J]. Naturwissenschaften, 2002, 89(8):338-351.
    34. Wang Y, Kim UJ, Blasioli DJ,et al. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells [J]. Biomaterials, 2005, 26 (34):7082-7094.
    35. Morishita T, Honoki K, Ohgushi H, et al. Tissue engineering approach to the treatment of bone tumors: three cases of cultured bone grafts derived from patients' mesenchymal stem cells[J].Artif Organs, 2006, 30(2):115-118.
    36. Pittenger MF, Mackay AM, Beck SC,et al. Multilineage potential of adulthuman mesenchymal stem cells [J]. Science, 1999,284 (5411):143-147.
    37. Oswald J, Boxberger S, Jorgensen B, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro[J]. Stem Cells, 2004, 22 (3): 377-384
    38. Liu Yongbo, Deborah S, Gao Xiaohua, et al.Wound repair by bone marrow stromal cells through growth factor production [J].J Surg Res, 2006, 136: 336-341.
    39. Perng CK, Kao CL, Yang YP, et a1. Culturing adult human bone marrow stem cells on gelatin scaffold with pNIPAAm as transplanted grafts for skin regeneration [J] . J Biomed Mater Res A, 2008, 84 (3):622- 630.
    40.刘爱军,黄锦桃,李海标. ES细胞源性表皮干细胞与胶原海绵构建组织工程皮肤[J].中山大学学报(医学科学版),2006,27(6):625-629
    41.伍津津,刘荣卿,麦跃,等.毛乳头细胞诱导毛囊形成的研究[J].中国修复重建外科杂志,2003,17(2):108-112
    42. Fliniaux I,Viallet JP,Dhouailly D,et al. Transformation of amnion epithelium into skin and hair follicles. Differentiation 2004; 72 (9-10):558-565
    43.方利君,付小兵,孙同柱,等.骨髓间充质干细胞分化为血管内皮细胞的实验研究[J].中华烧伤杂志,2003,19(1):22-24
    44. Tonello C, Vindigni V , Zavan B , et al . In vitro reconstruction of an endothelialized skin substitute provided with a microcapillary network using biopolymer scaffolds. FASEB J, 2005, 19: 1546-1548.
    45. Caissie R,Gingras M,Champigny MF,et al. In vivo enhancement of sensory perception recovery in a tissue- engineered skin enriched with laminin. Biomaterials 2006;27(15):2988-2993.
    46. Liu Y,Suwa F,Wang X,et al.Reconstruction of a tissue-engineered skin containing melanocytes. Cell Biol Int 2007; 31(9):985-990.
    1. Janes SM, Lowell S, Hutter C. Epidermal stem cells. [J]Pathol. 2002, 197(4): 479-91.
    2.Cotsarelis G, Kaur P, Dhouailly D, et al. Epithelial stem cells in the skin: definition, markers, localization and functions. [J] Exp Dermatol. 1999, 8(1): 80-8.
    3. Morasso MI, Tomic-Canic M. Epidermal stem cells: the cradle of epidermal determination, differentiation and wound healing. [J]Biol Cell. 2005, 97(3): 173-83.
    4. Kolodka TM, Garlick JA. Taichman LBEvidence for keratinocyte stem cells in vitro: long term engraftment and persistence of transgene expression from retrovirus-transduced keratinocytes. [J] Proc Natl Acad Sci USA. 1998, 95(8): 4356-61.
    5. Mackenzie IC. Retroviral transduction of murine epidermal stem cells demonstrates clonal units of epidermal structure. [J] Invest Dermatol. 1997, 109(3): 377-83.
    6. Zellmer S, Gaunitz F, Salvetter J, et al. Long-term expression of foreign genes in normal human epidermal keratinocytes after transfection with lipid/DNA complexes. [J] Histochem Cell Biol. 2001, 115(1): 41-7.
    7.陈晓东,利天增,祁少海,等.正常人不同部位皮肤于细胞分布规律的研究[J],中华烧伤杂志,2006,22(1):53-56。
    8. Taylor G, Lehrer MS, Jensen PJ, et al. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell. 2000, 102(4): 451-61.
    9. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002, 13(12): 4279-95.
    10.付小兵,孙晓庆,孙同柱,等.表皮细胞生长因子治疗创面出现的干细胞岛现象.中华医学杂志,2001,81:733—736.
    11.付小兵,孙晓庆,孙同柱等.表皮细胞生长因子通过诱导皮肤干细胞分化加速受创表皮再生的研究.中国修复重建外科杂志,2OO2,16(1):31-35。
    12. Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol. 2001, 17: 387-403.
    13. Slack JM.Stem cells in epithelial tissues. Science. 2000, 287(5457): 1431-3.
    14. Watt FM. Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO J. 2002, 21(15): 3919-26.
    15. Ferraris C, Chevalier G, Favier B, et al. Adult corneal epithelium basal cells possess the capacity to activate epidermal, pilosebaceous and sweat gland genetic programs in response to embryonic dermal stimuli.Development. 2000, 127(24): 5487-95.
    16. Watt FM, Hogan BL. Out of Eden: stem cells and their niches.Science. 2000, 287(5457): 1427-30.
    17. Turksen K, Troy TC. Epidermal cell lineage. Biochem Cell Biol. 1998, 76(6): 889-98.
    18.牛云飞,路卫,夏照帆.表皮干细胞的分离与鉴定锑二军医大学, 2004,25(8):889~891。
    19. Brakebusch C, Grose R, Quondamatteo F, et al. Skin and hair follicle integrity is crucially dependent on beta 1 integrin expression on keratinocytes.EMBO J. 2000, 19(15): 3990-4003.
    20. Jones PH, Watt FM. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression.Cell. 1993, 73(4): 713-24.
    21. Jones PH, Harper S, Watt FM. Stem cell patterning and fate in human epidermis. Cell. 1995, 80(1): 83-93.
    22. Kaur P, Li A. Adhesive properties of human basal epidermal cells: an analysis of keratinocyte stem cells, transit amplifying cells, and postmitotic differentiating cells.J Invest Dermatol. 2000, 114(3): 413-20.
    23. Watt FM. Stem cell fate and patterning in mammalian epidermis. Curr Opin Genet Dev. 2001, 11(4): 410-7.
    24. Pellegrini G, Dellambra E, Golisano O,et al. p63 identifies keratinocyte stem cells. Proc Natl Acad Sci USA. 2001, 98(6): 3156-61.
    25. Zhu AJ, Watt FM. Expression of a dominant negative cadherin mutant inhibits proliferation and stimulates terminal differentiation of human epidermal keratinocytes. J Cell Sci. 1996, 109 (3): 3013-23.
    26. Michel M, T?r?k N, Godbout MJ, et al. Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro: keratin 19 expressing cells are differentially localized in function of anatomic sites, and their number varies with donor age and culture stage.J Cell Sci. 1996, 109 (5): 1017-28.
    27. Lyle S, Christofidou-Solomidou M, Liu Y, et al. The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells.J Cell Sci. 1998, 111 ( Pt 21): 3179-88.
    28. Lyle S, Christofidou-Solomidou M, Liu Y, et al. Human hair follicle bulge cells are biochemically distinct and possess an epithelial stem cell phenotype. J Investig Dermatol Symp Proc. 1999, 4(3): 296-301.
    29. Bagutti C, Wobus AM, F?ssler R, et al. Differentiation of embryonal stem cells into keratinocytes: comparison of wild-type and beta-1 integrin-deficient cells. Dev Biol. 1996, 179(1): 184-96.
    30. Tani H, Morris RJ. Kaur P.Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proc Natl Acad Sci USA. 2000, 97(20): 10960-5.
    31. Lee H, Kimelman D. A dominant-negative form of p63 is required for epidermal proliferation in zebrafish. Dev Cell. 2002, 2(5): 607-16.
    32. Youn SW, Kim DS, Cho HJ, et al. Cellular senescence induced loss of stem cell proportion in the skin in vitro.J Dermatol Sci. 2004, 35(2): 113-23.
    33. Matic M, Evans WH, Brink PR, et al. Epidermal stem cells do not communicate through gap junctions. J Invest Dermatol. 2002, 118(1): 110-6.
    34. Nakamura Y, Muguruma Y, Yahata T, et al. Expression of CD90 on keratinocyte stem/progenitor cells. Br J Dermatol. 2006, 154(6): 1062-70.
    35. Lema?tre G, Gonnet F, Vaigot P, et al. CD98, a novel marker of transient amplifying human keratinocytes. Proteomics. 2005, 5(14): 3637-45.
    36. Rosenblum MD, Yancey KB, Olasz EB, et al. CD200, a "no danger" signal for hair follicles. J Dermatol Sci. 2006, 41(3): 165-74.
    37. Redvers RP, Li A, Kaur P. Side population in adult murine epidermis exhibits phenotypic and functional characteristics of keratinocyte stem cells. Proc Natl Acad Sci USA. 2006, 103(35): 13168-73.
    38. Bickenbach JR. Identification and behavior of label-retaining cells in oral mucosa and skin. J Dent Res. 1981, 60, No C: 1611-20.
    39. Fu X, Sun X, Li X, et al. Dedifferentiation of epidermal cells to stem cells in vivo. Lancet. 2001, 358(9287): 1067-8.
    40.杨玲,刘善荣,仵敏娟,等.成人体皮表皮干细胞的定位及分离培养[J].第二军医大学学报,2004,25(8):815-817。
    41. Jones PH. Isolation and characterization of human epidermal stem cells.Clin Sci (Lond). 1996, 91(2): 141-6.
    42. Larouche D, Hayward C, Cuffley K, et al. Keratin 19 as a stem cell marker in vivo and in vitro. Methods Mol Biol. 2005, 289: 103-10.
    43. Webb A, Li A, Kaur P. Location and phenotype of human adult keratinocyte stem cells of the skin.Differentiation. 2004, 72(8): 387-95.
    44. Morris RJ, Potten CS. Highly persistent label-retaining cells in the hair follicles of mice and their fate following induction of anagen.J Invest Dermatol. 1999, 112(4): 470-5.
    45. Pellegrini G, Bondanza S, Guerra L, et al. Cultivation of human keratinocyte stem cells: current and future clinical applications.Med Biol Eng Comput. 1998, 36(6): 778-90.
    46. Kim DS, Cho HJ, Choi HR, Isolation of human epidermal stem cells by adherence and the reconstruction of skin equivalents.Cell Mol Life Sci. 2004, 61(21): 2774-81.
    47. Olszewski WL. Stem cells of the human skin epithelium-can they be isolated and resume function as single-cells transplanted into recipient skin defects. Ann Transplant. 2004; 9(4):34-6.
    48. Marionnet C, Pierrard C, Vioux-Chagnoleau C, et al. Interactions between fibroblasts and keratinocytes in morphogenesis of dermal epidermal junction in a model of reconstructed skin. J Invest Dermatol. 2006, 126(5): 971-9.
    49. Spichkina OG, Kalmykova NV, Kukhareva LV, et al. Isolation of human basal keratinocytes by selective adhesion to extracellular matrix proteins Tsitologiia. 2006, 48(10): 841-7.
    50. Black AF, Bouez C, Perrier E, et al. Optimization and characterization of an engineered human skin equivalent. Tissue Eng. 2005, 11(5-6): 723-33.
    51.胡葵葵,戴育成,李剑,等.人表皮干细胞的体外分离与培养[J].中国修复重建外科杂志,2006,20(12):1244-1247。
    52. Bickenbach JR, Chism E. Selection and extended growth of murine epidermal stem cells in culture.Exp Cell Res. 1998, 244(1): 184-95.
    53.李剑,戴育成,体外分离、纯化人表皮干细胞促进皮肤的功能生理性修复[J].中国临床康复,2003,7(11):160-162。
    54. Sherley JL. Asymmetric cell kinetics genes: the key to expansion of adult stem cells in culture. Stem Cells. 2002;20(6):561-72.
    55. Moore KA, Lemischka IR. Stem cells and their niches.Science. 2006, 311(5769): 1880-5.
    56. Bonventre JV.De. Differentiation and proliferation of surviving epithelial cells in acute renal failure.J Am Soc Nephrol. 2003, Suppl 1: S55-61.
    57. Yang W, Musci TS, Mansour SL. Trapping genes expressed in the developing mouse inner ear.Hear Res. 1997, 114(1-2): 53-61.
    58. Zhu AJ, Haase I. Watt FM.Signaling via beta1 integrins and mitogen-activated protein kinase determines human epidermal stem cell fate in vitroProc Natl Acad Sci USA. 1999, 8;96(12): 6728-33.
    59. Gumbiner BM.Signal transduction of beta-catenin.Curr Opin Cell Biol. 1995, 7(5): 634-40.
    60. Zhu AJ, Watt FM. beta-catenin signalling modulates proliferative potential of human epidermal keratinocytes independently of intercellular adhesion.Development. 1999, 126(10): 2285-98.
    61. He TC, Sparks AB, Rago C, et al. Identification of c-MYC as a target of the APC pathway.Science. 1998, 281(5382): 1509-12.
    62. Van Mater D, Kolligs FT, Dlugosz AA, et al. Transient activation of beta-catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice. Genes Dev. 2003, 17(10): 1219-24.
    63, Ito M, Yang Z, Andl T. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding.Nature. 2007, 447(7142): 316-20.
    64. Zhou P, Byrne C, Jacobs J, et al. Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate.Genes Dev. 1995, 9(6): 700-13.
    65. Rizvi AZ, Wong MH. Epithelial stem cells and their niche: there's no place like home. Stem Cells. 2005, 23(2): 150-65
    66. Kobielak K, Stokes N, de la Cruz J, et al. Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. Proc Natl Acad Sci USA. 2007, 104(24): 10063-8.
    67. Gandarillas A, Watt FM.c-Myc promotes differentiation of human epidermal stem cells.Genes Dev. 1997, 11(21):2869-82.
    68. Waikel RL, Kawachi Y, Waikel PA,Deregulated expression of c-Myc depletes epidermal stem cells.Nat Genet. 2001, 28(2): 165-8.
    69. Vasioukhin V, Bauer C, Degenstein L, et al. Hyperproliferation and defects in epithelial polarity upon conditional ablation of alpha-catenin in skin.Cell. 2001, 23; 104(4): 605-17.
    70. Agren UM, Tammi M, Ryyn?nen M, Tammi R. Developmentally programmed expression of hyaluronan in human skin and its appendages. J Invest Dermatol. 1997, 109(2):219-24.
    71.李建福,付小兵,盛志勇等.创面愈合过程中创缘表皮干细胞的再分布.中华医学杂志,2003,83(3):228-230。
    72.谢举临,利天增,祁少海等.烫伤大鼠不同深度创面组织中表皮干细胞分布的初步研究.中华烧伤杂志,2OO3,19(6):344-346。
    73.李建福,付小兵,盛志勇.汗腺发生过程细胞外基质成分的免疫组化变化.中华外科杂志,2002,40:705。
    74.付小兵,孙晓庆,孙同柱等.瘢痕组织中汗腺的分布特征以及瘢痕对汗腺再生影响的实验研究.中华创伤杂志,2001,17(6):338-340。
    75. Kashimata M, Sayeed S, Ka A, et a1. The ERK-1/2 signaling pathway is involved in the stimulation of branching morphogenesis of fetal mouse submandibular glands by EGF. Dev Biol. 2000, 220(2): 183-96.
    76.李建福,付小兵,盛志勇.人胚胎期表皮干细胞与汗腺发生过程关系的研究.中华烧伤杂志,2002,l8:369-371。
    77.李建福,付小兵,盛志勇.汗腺发生过程中基质金属蛋白酶与层粘连蛋白、纤连蛋白表达特征的实验研究.中华创伤杂志,2002,l8:26l-264.
    78.韩军涛,陈璧,张晓辉等.胎鼠表皮干细胞的分离培养及毛囊再生研究.中华烧伤杂志,2003,19(1):8-ll。
    79. Li J, Fu X, Sun X, et a1. The interaction between epidermal growth factor and matrix metalloproteinases induces the development of sweat glands in human fetal skin.J Surg Res. 2002, 106(2): 258-63.
    80.王永胜,侯春林,肖仕初,等.表皮细胞、成纤维细胞和几丁质.胶原蛋白复合人工皮的体外构建.中华实验外科杂志。2003,20:491-492。
    81. Griffith LG, Naughton G. Tissue engineering-current challenges and expanding opportunities. Science. 2002,295(5557):1009-14.
    82.张群,曹宜林.组织工程化皮肤新种子细胞-毛囊干细胞.国外医学.生理、病理科学与临床分册.2005,25:94 95.12
    83. Pellegrini G, Ranno R, Stracuzzi G, et a1. The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin. Transplantation. 1999, 27; 68(6):868-79.
    84. Berthod F, Germain L, Li H, Collagen fibril network and elastic system remodeling in a reconstructed skin transplanted on nude mice. Matrix Biol. 2001; 20(7):463-73.
    85. ZHANG Cong , WANG Naizuo Experimental study on Repairing full-thickness cutaneous deficiency with tissue engineered skin Chinese Journal of Reparative and Reconstructive Surgery,2008,28(2):196-201
    86.廖立新,陈刚泉.应用表皮=F细胞构建组织工程皮肤及移植实验[J].中国组织工程研究与临床康复,2007,14(11):2661-2664。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700