亚波长金属光栅与等离子波导的光传输特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面等离子激元是局域在金属表面的自由电子和外部光子相互作用而形成的一种电磁表面波。近年来,亚波长金属结构中表面等离子激元的物理特性研究已逐渐成为纳米光学前沿领域的研究热点之一。本文基于自主开发的适用于计算含金属色散介质的时域有限差分程序,在可见光和近红外线波段,研究了几种亚波长金属光栅(周期性结构)的光传输特性和耦合表面等离子激元模在一种含环形谐振腔的等离子波导(非周期性结构)的传输属性,理论分析了表面等离子激元在这些结构中激发和传播的规律。
     本文的主要研究内容和结论如下:
     (1)提出一种由金属-介质交替排列组成的新型多层膜光栅结构,其中每个金属层和介质层实际上都是具有相同光栅周期和缝宽度的亚波长空气缝阵列,相邻的金属-介质-金属三层膜可看成是一个复合单元功能层。在可见光和近红外线波段,研究了这种周期性亚波长缝阵列金属-介质多层膜光栅结构的光传输响应。结果表明,这种多层膜结构的光传输属性被两个因素所共同调节:一个是介质层中横向的耦合的表面等离子激元波导模之间的干涉,另一个是光栅狭缝中纵向的类Fabry-Perot波导共振条件。当合理设置一些几何参数时,随着功能层数的增加,光的透射峰能够劈裂成更多的峰。此外,同一级的透射峰的波长位置会随着光栅周期的增加而向长波方向移动,随着狭缝宽度或者介质层厚的增加而向短波方向移动。
     (2)提出了一种新型周期性亚波长双缝阵列(在每个光栅周期内含有两个宽度相同但填充介质不同的亚波长金属缝)复合金属光栅,在可见光和近红外线波段研究了这种复合金属光栅的传输共振特性。结果显示,这种复合金属光栅的透射谱除了在某一特定波长外几乎是相应的两种简单金属光栅透射谱的复合叠加,而在这个特定波长时,复合金属光栅中这两种金属狭缝内均产生了类Fabry-Perot波导共振现象,但是共振模的级数不同。如果它们的共振模级数相差一,则光的透射强度将大幅度消弱,由于这两种狭缝出口处的磁场相位彼此反相,故可把这种现象归因为相位共振。相反,如果它们的共振模级数相差二,则光的透射强度将进一步增强,而此时这两种狭缝出口处的磁场相位彼此同相。
     (3)研究了一种双层复合金属光栅结构的光传输特性。这种双层复合金属光栅结构是由两个相同的单层周期性亚波长双缝阵列复合金属光栅级联组成。结果表明,这种双层复合金属光栅的光传输属性强烈地依靠于两个金属层之间的电磁波的耦合作用和每个金属层的相邻两种狭缝出口处电磁波的相位配置关系,导致其对光的传输响应非常不同于与其对应的单层复合金属光栅和任一种双层简单金属光栅。例如在某一特定层间距时,对这个双层复合金属光栅而言,在某一波长下出现了一个显著的透射峰;而对于其相应的单层复合金属光栅而言,由于在这个波长时激发了相位共振从而导致在此波长所对应的是透射极小值;另外,对于这一层间距相应的两种双层简单金属光栅而言,在这个波长附近很宽的电磁波谱范围内的透射率都几乎为零。
     (4)研究了一种二维含环形谐振腔的金属-绝缘体-金属(MIM)等离子波导复合结构的电磁波传输特性。这种复合结构由两个直MIM波导和一个环形谐振腔相互连接组成,其中两个直MIM波导位于环形谐振腔的两侧,出射侧直MIM波导相对于入射侧直MIM波导有一个位置偏向角θ。结果显示:与对称结构(θ=0°时)相比,非对称结构(θ>0°时)的滤波性能大大改善。对于大多数非对称结构,在略大于相应对称结构的透射极大值的波长位置都出现了透射极小值,同时在相应对称结构的透射极大值的波长位置仍然保留了一个透射峰,则非对称结构的透射谱上透射极大值和极小值之间的差值明显提高,且透射峰宽度变窄。研究表明:这种非对称结构产生透射极小值时,环形谐振腔与出射侧直MIM波导的耦合处都位于环形内的驻波共振的波节位置。
Surface plasmon polaritons (SPPs) are electromagnetic surface modes by interaction of free electrons of metallic surface with environmental photons. In recent years, the researchs on the physical characteristics of the SPPs in subwavelength metallic structures becomes a hot spot of the modern nano-optics. In this dissertation, based on finite-difference time-domain (FDTD) code developed independently by ourselves, which can calculate dispersive metallic material, in the visible and near infrared regions, we investigate the optical transmission through some subwavelength metallic gratings (periodical structures) and the transmission characteristics of coupled waveguide mode in plasmonic waveguides with ring resonator (nonperiodical structures), and theoretically analyse the characteristics of excitation and propagation of SPPs in these structures.
     The main research works and conclusions are as following:
     (1) A novel metal/dielectric multilayer-film grating structure, in which both metal layers and dielectric layers are in fact air slit arrays with the same grating period and the same slit width and a metal/dielectric/metal sandwich stack is being viewed as a functional layer, is proposed. The transmission response of the multilayer-film grating structure is investigated in the visible and near infrared regions. The results show that the optical transmission property is mediated by the interference among the propagating coupled-SPP modes along the lateral direction inside the dielectric layers and the conditions of Fabry-Perot-like resonance along the longitudinal direction together. When some geometric parameters are suitably initialized, the high transmission peaks can split into more peaks as the functional layer number increases, and the wavelength of the same-order transmission peak exhibits a red shift as the grating period increases and a blue shift as the slit width or dielectric layer thickness increases.
     (2) A novel compound metallic grating with two subwavelength slits filled with different dielectrics inside each period is proposed, and the transmission resonances of the compound metallic grating are investigated in the visible and near infrared regions. The results show that the transmission spectrum is almost a compound of that of two corresponding simple gratings expect for the transmisson feature at a certain resonant wavelength, where the Fabry-Perot-like phenomena have been found both inside the two slits, but the orders of the FP-like modes are different. If the order of the FP-like mode inside one slit is one bigger than inside the other, the intensity of the transmission will be significantly weakened. We attribute this phenomenon to the phase resonance because the phases at the exits of the two slits are opposite to each other. On the contrary, when the order of the FP-like mode inside the one slit is two bigger than inside the other, the intensity of the transmission will be enhanced because the light waves at the exits of the two slits are in-phase.
     (3) Optical transmission through double-layer compound metallic gratings composed of two identical compound metallic gratings with two subwavelength slits inside each period is investigated. The results show that the transmission properties of the double-layer gratings are dependent on both the coupling effect of electromagnetic fields between the two metallic layers and the phase configurations of the electromagnetic waves at the exits of adjacent slits of each layer. Then the transmission response of the double-layer compound metallic gratings is very different from that of corresponding single-layer compound metallic gratings and double-layer simple metallic gratings. For example, when a suitable layer separation is chosen, for the double-layer compound metallic gratings a notable transmission peak emerges at a certain wavelength, at which phase resonance appears for the corresponding single-layer compound metallic gratings, while the transmission spectra of the corresponding double-layer simple metallic gratings with the separation exhibit unexpected transmission suppressions in a broad spectral region nearby the wavelength.
     (4) The transmission characteristics of the electromagnetic wave are investigated in two-dimensional compound plasmonic structures composed of two straight subwavelength metal-insulator-metal (MIM) waveguides and a ring resonator. The two straight MIM waveguides situate on both sides of the ring resonator, and the MIM waveguide of the outgoing side has a positional angular deviation9relative to the MIM waveguide of the incoming side. The results show that the filtering performances of the asymmetric structures (θ>0°) are greatly improved by comparison with the symmetric structure (θ>0°). For the most of the asymmetric structures, there is a transmission minimum at the slightly bigger wavelength than one where the transmission peak appears for the symmetric structures, and there is still a transmission peak at the wavelength of the transmission peak of the symmetric structures. Then the difference between the transmission maximum and transmission minimum is increased, and the breadth of the transmission peak becomes narrow. For these transmission minima of the asymmetric structures, it is found that the parts of coupling the MIM waveguide of the outgoing side with the ring resonator locate at the magnetic nodes of the standing waves in the ring resonator.
引文
[1]Ozbay E. Plasmonic:merging photonics and electronics at nanoscale dimensions. Science,2006,311(13):189-193
    [2]Bethe H A. Theory of Diffraction by Small Holes. Phys. Rev.,1944,66(7): 163-182
    [3]Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature,1998,391(11):667-669
    [4]Garcia de Abajo F. Light transmission through a single cylindrical hole in a metallic film. Opt.Express,2002,10(25):1475-1484
    [5]Degiron A, Lezec H J, Yamamoto N, et al. Optical transmission properties of a single subwavelength aperture in a real metal, Opt.Commun.,2004,239(1): 61-66
    [6]Yin L, Vlasko-Vlasov V K, Rydh A, et al. Surface palsmons at single nanoholes in Au films. Appl.Phys.Lett.2004,85(3):467-469
    [7]Popov E, Bonod N, Neviere M, et al. Surface plasmon excitation on a single subwavelength hole in a metallic sheet. Appl.Opt,2005,44(12):2332-2337
    [8]Garcia-Vidal F J, Moreno E, Porto J A, et al. Transmission of light through a single rectangular hole. Phys.Rev.Lett,2005,95(10):103901-1-4
    [9]Chang C W, Sarychev A K, Shalaev V M. Light diffraction by a subwavelength circular aperture. Laser Phys.Lett.,2005,2(7):351-355
    [10]Webb K J, Li J. Analysis of transmission through small apertures in conducting films. Phys.Rev.B,2006,73(3):033401-1-4
    [11]Genet C, Ebbesen T W. Light in tiny holes. Nature,2007,445(4):39-46
    [12]Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature,2003,424(14):824-830
    [13]Boardman A D. Electromagnetic Surface Modes. Chichester, New York:Wiley, 1982.
    [14]Agranovich V M, Mills D L. Surface Polaritons:ElectromagneticWaves at Surfaces and Interfaces. Amsterdam, New York:North-Holland Pub. Co.:Sole distributors for the USA and Canada, Elsevier Science Pub. Co.,1982
    [15]Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Berlin:Springer,1988
    [16]Berini P. Long-range surface plasmon polaritons. Advances in Optics and Photonics,2009,1(3) 484-588
    [17]Huang C P, Zhu Y Y. Plasmonics:Manipulating Light at the Subwavelength Scale. Active and Passive Electronic Components,2007,2007:30946-1-13
    [18]Economou E N. Surface plasmons in thin films. Phys. Rev.,1969,182(2): 539-554
    [19]Otto A. Excitation by light of ω+ and ω-surface plasma waves in thin metal layers. Z. Phys.,1969,219:227-233
    [20]Kovacs G J, Scott G D. Attenuated total reflection angular spectra of a Ag film bounded by dielectric slabs. Can. J. Phys.,1978,56(9):1235-1247
    [21]Otto A. A new method for exciting non-radioactive surface plasma oscillations. Phys. Stat. Sol.,1968,26:K99-K101
    [22]Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys.,1968,216(4):398-410
    [23]Kretsehmann E, Raether H. Radiative decay of nonradiative surface plasmons excited by light. Z. Naturforsch. A,1968,23(12):2135-2136
    [24]Kretschmann E. Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberfliichenplasmaschwingungen. Z. Phys.,1971,241(4): 313-324
    [25]Abeles F, Lopez-Rios T. Decoupled optical excitation of surface plasmons at the two surfaces of a thin film. Opt. Commun.,1974,11(1):89-92
    [26]Lalanne P, Hugonin J P, Rodier J C. Theory of Surface Plasmon Generation at Nanoslit Apertures. Phys. Rev. Lett.,2005,95(26):263902-1-4
    [27]Lalanne P, Hugonin J P, Rodier J C. Approximate model for surface-plasmon generation at slit apertures. J. Opt. Soc. Am. A,2006,23(7):1608-1615
    [28]Janssen O T A, Urbach H P, Hooft G W. On the phase of plasmons excited by slits in a metal film. Opt. Express,2006,14(24):11823-11832
    [29]Kihm H W, Lee K G, Kim D S, et al. Control of surface plasmon generation efficiency by slit-width tuning. Appl. Phys. Lett.,2008,92(5):051115-1-3
    [30]Mehfuz R. Maqsood M W, Chau K J. Enhancing the efficiency of slit-coupling to surface-plasmonpolaritons via dispersion engineering. Opt. Express,2010, 18(17):18206-18216
    [31]Maqsood M W. Mehfuz R. Chau K J. High-throughput diffraction-assisted surface-plasmon-polariton coupling by a super-wavelength slit. Opt. Express. 2010,18(21):21669-21677
    [32]Ghaemi H F, Thio T, Grupp D E, et al. Surface plasmons enhance optical transmission through subwavelength holes. Phys. Rev. B,1998,58(11): 6779-6782
    [33]Popov E, Neviere M, Enoch S, et al. Theory of light transmission through subwavelength periodic hole arrays. Phys. Rev. B,2000,62(23):16100-16108.
    [34]Martin-Moreno L, Garcia-Vidal F J, Lezec H J, et al. Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett.,2001, 86(6):1114-1117
    [35]Vigoureux V M. Analysis of the Ebbesen experiment in the light of evanescent short range diffraction. Opt. Commun.,2001,198(4):257-263
    [36]Salomon L, Grillot F D, Zayats A V, et al. Near-field distribution of optical transmission of periodic subwavelength holes in a metal film. Phys. Rev. Lett., 2001,86(6) 1110-1113
    [37]Altewischer E, Exter M P, Woerdman J P. Plasmon-assisted transmission of entangled photons. Nature(London),2002,418(11):304-306
    [38]Degiron A, Lezec H J, Barnes W L, et al. Effects of hole depth on enhanced light transmission through subwavelength hole arrays. Appl. Phys. Lett.,2002,81(23): 4327-4329
    [39]Bonod N, Enoch S, Li L, et al. Resonant optical transmission through thin metallic films with and without holes. Opt. Express,2003,11(5):482-490
    [40]Darmanyan S A, Zayats A V. Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films:An analytical study. Phys. Rev. B,2003,67(3):035424-1-7
    [41]Martin-Moreno L, Garcia-Vidal F J. Optical transmission through circular hole arrays in optically thick metal films. Opt. Express,2004,12(16):3619-3628
    [42]Beruete M, Sorolla M, Campillo I, et al. Enhanced millimeter-wave transmission through subwavelength hole arrays. Opt. Lett.,2004,29(21):2500-2502.
    [43]Baida F I, Van Labeke D, Granet G, et al. Origin of the super-enhanced light transmission through a 2-d metallic annular aperture array:a study of photonic bands. Appl. Phys. B,2004,79(1):1-8.
    [44]Gordon R, Brolo A G, McKinnon A, et al. Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays. Phys. Rev. Lett.,2004,92(3): 037401-1-4
    [45]Koerkamp K J K, Enoch S, Segerink F B, et al. Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes. Phys. Rev. Lett..2004,92(17):183901-1-3
    [46]Molen van der K L, Klein Koerkamp K J, Enoch S, et al. Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes:Experiment and theory. Phys. Rev. B,2005,72(4): 045421-1-9
    [47]Ruan Z, Qiu M. Enhanced transmission through periodic arrays of subwavelength holes:The role of localized waveguide resonances. Phys. Rev. Lett.,2006, 96(23):233901-1-4
    [48]Mary A, Rodrigo S G, Martin-Moreno L, et al. Theory of light transmission through an array of rectangular holes. Phys. Rev. B,2007,76(19):195414-1-5
    [49]Beruete M, Sorolla M, Navarro-Cia M, et al. Extraordinary transmission and left-handed propagation in miniaturized stacks of doubly periodic subwavelength hole arrays. Opt. Express,2007,15(3):1107-1114
    [50]Fang X, Li Z, Long Y, et al. Surface-Plasmon-Polariton Assisted Diffraction in Periodic Subwavelength Holes of Metal Films with Reduced Interplane Coupling. Phys. Rev. Lett.,2007,99(6):066805-1-4
    [51]Sun M, Liu R J, Li Z Y, et al. Enhanced near-infrared transmission through periodic H-shaped arrays. Phys. Lett. A.2007,365(5):510-513
    [52]Chen C Y, Tsai M W, Chuang T H, et al. Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice. Appl. Phys. Lett.,2007.91(6):063108-1-3
    [53]Bao Y J, Peng R W, Shu D J, et al. Role of Interference between Localized and Propagating Surface Waves on the Extraordinary Optical Transmission Through a Subwavelength-Aperture Array. Phys. Rev. Lett.,2008,101(8):087401-1-4
    [54]Li T, Liu H, Wang S M, et al. Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations. Appl. Phys. Lett.,2008,93(2): 021110-1-3
    [55]He M D, Liu J Q, Gong Z Q, et al. Light transmission through metal films perforated with arrays of asymmetric cross-shaped hole. Solid State Communications,2010.150(1):104-108
    [56]Tsai M W, Chuang T H, Chang H Y, et al. Bragg scattering of surface plasmon polaritons on extraordinary transmission through silver periodic perforated hole arrays. Appl. Phys. Lett.,2006,88(21):213112-1-3
    [57]Lezec H. Thio T. Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays. Opt. Express,2004, 12(16):3629
    [58]Fan Z, Zhan L, Hu X, et al. Critical process of extraordinary optical transmission through periodic subwavelength hole array:Hole-assisted evanescent-field coupling. Opt. Commun.,2008,281(21):5467-5471
    [59]Lezec H J, Thio T. Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays. Opt. Express, 2004,12(16):3629-3651
    [60]Treacy M M J. Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings. Phys. Rev. B,2002,66(19):195105-1-11
    [61]Liu L, Lalanne P. Microscopic theory of the extraordinary optical transmission. Nature,2008,452(8):728-731
    [62]Barnes W L, Murray W A, Dintinger J, et al. Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film. Phys. Rev. Lett.,2004,92(10): 107401-1-4
    [63]Cao Q, Lalanne P, Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits. Phys. Rev. Lett.,2002,88(5): 057403-1-4
    [64]Porto J A, Garcia-Vidal F J, Pendry J B. Transmission resonance on metallic gratings with very narrow slits. Phys. Rev. Lett.,1999,83(14):2845-2848
    [65]Xie Y, Zakharian A R, Moloney J V, et al. Transmission of light through a periodic array of slits in a thick metallic film. Opt. Express,2005,13(12): 4485-4491
    [66]Astilean S, Lalanne P, Palamaru M. Light transmission through metallic channels much smaller than the wavelength. Opt. Commun.,2000,175(4):265-273
    [67]Jiao X, Wang P, Tang L, et al. Fabry-Perot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits. Appl. Phys. B,2005,80(3):301-305
    [68]Lee K G, Park Q H. Coupling of Surface Plasmon Polaritons and Light in Metallic Nanoslits. Phys. Rev. Lett.,2005,95(10):103902-1-4
    [69]Pacifici D, Lezec H J, Atwater H A, et al. Quantitative determination of optical transmission through subwavelength slit arrays in Ag films:Role of surface wave interference and local coupling between adjacent slits. Phys. Rev. B,2008, 77(11):115411-1-5
    [70]Hu B, Gu B Y, Dong B Z, et al. Optical transmission resonances tuned by external static magnetic field in an n-doped semiconductor grating with subwavelength slits. Opt. Commun.,2008,281(21):6120-6123
    [71]Sturman B, Podivilov E. Theory of extraordinary light transmission through arrays of subwavelength slits. Phys. Rev. B,2008,77(7):075106-1-12
    [72]Wang Y, Wang Y, Zhang Y, et al. Transmission through metallic array slits with perpendicular cuts. Opt. Express,2009,17(7):5014-5022
    [73]Liu L, Han Z, He S. Novel surface plasmon waveguide for high integration. Opt. Express,2005,13(17):6645-6650
    [74]Zia R, Schuller J A, Chandran A, et al. Plasmonics:the next chip-scale technology. Maters. Today,2006,9(7):20-27
    [75]Dionne J A, Sweatlock L A, Atwater H A. Plasmon slot waveguides:Towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B, 2006,73(3):035407-1-9
    [76]Weeber J C, Dereux A, Girard C, et al. Plasmon polaritons of metallic nanowires for controlling submicron propagation of light. Phys. Rev. B,1999,60 (12): 9061-9068
    [77]Wang B, Wang G. P. Metal heterowaveguide for nanometric focusing of fight. Appl. Phys. Lett.,2004,85(16):3599-3601
    [78]Stockman M I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett.,2004,93(13):137404-1-4
    [79]Moreno E, Rodrigo S G, Bozhevolnyi S I, et al. Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. Phys. Rev. Lett.,2008, 100(1):023901-1-4
    [80]Veronis G, Fan S. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Appl. Phys. Lett.,2005,87(13):131102-1-3
    [81]Lee T W, Gray S. Subwavelength light bending by metal slit structures. Opt. Express,2005,13(24):9652-9659
    [82]Ditlbacher H, Krenn J R, Schider G, et al. Two-dimensional optics with surface plasmon polaritons. Appl. Phys. Lett.,2002,81(10):1762-1-3
    [83]Nikolajsen T, Leosson K, Bozhevolnyia S I. Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl. Phys. Lett., 2004,85(24):5833-5835
    [84]Wang B, Wang G. Surface plasmon polariton propagation in nanoscale metal gap waveguides. Opt. Lett.,2004,29(17):1992-1994
    [85]Weeber J. Gonzalez M, Baudrion A, et al. Surface plasmon routing along right angle bent metal strips. Appl. Phys. Let.,2005,87(22):221101-1-3
    [86]Gao H, Shi H, Wang C, et al. Surface plasmon polariton propagation and combination in Y-shaped metallic channels. Opt. Express,2005,13(26): 10795-10800
    [87]Wang B, Wang G. Plasmon Bragg reflectors and nanocavities on flat metallic surfaces. Appl. Phys. Lett.,2005,87(1):013107-1-3
    [88]Berini P, Lu J. Curved long-range surface plasmon-polariton waveguides. Opt. Express,2006,14(6):2365-2371
    [89]Bozhevolnyi S, Volkov V, Devaux E, et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 2006,440:508-511
    [90]Steinberger B, Hohenau A, Ditlbacher D, et al. Dielectric stribes on gold as surface plasmon waveguides. Appl. Phys. Lett.,2006,88(9):094104-1-3
    [91]Reinhardt C, Passinger S, Chichkov B, et al. Laser-fabricated dielectric optical components for surface plasmon polaritons. Opt. Lett.,2006,31(9):1307-1309
    [92]Boltasseva A, Bozhevolnyi S I, Nikolajsen T, et al. Compact Bragg gratings for Long-Range surface plasmon polaritons. J. Lightwave Technol.,2006,24(2): 912-918
    [93]Hossieni A, Massoud Y. A low-loss metal-insulator-metal plasmonic bragg reflector. Opt. Express,2006,14(23):11318-11323
    [94]Han Z, Liu L, Forsberg E. Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons. Opt. Commun.,2006, 259(2):690-695
    [95]Krasavin A V, Zayats A V. Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides. Appl. Phys. Lett.,2007,90(21): 211101-1-3
    [96]Holmgaard T, Bozhevolnyi S. Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Phys. Rev. B,2007,75(24):245405-1-12
    [97]Han Z, He S. Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter. Opt. Commun..2007,278(1): 199-203
    [98]Han Z, He S. Two-dimensional model for three-dimensional index-guided multimode plasmonic waveguides and the design of ultrasmall multimode interference splitters. Applied Optics,2007,46(25):6223-6227
    [99]Han Z, Forsberg E, He S. Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photon. Technol. Lett.,2007,19(2): 91-93
    [100]Lin W, Wang G. Metal heterowaveguide superlattices for a plasmonic analog to electronic Bloch oscillations. Appl. Phys. Lett.,2007,91(14):143121-1-3
    [101]Hosseini A, Massoud Y. Nanoscale surface Plasmon based resonator using rectangular geometry. Appl. Phys. Lett.,2007,90(18):181102-1-3
    [102]Holmgaarda T, Bozhevolnyi S I, Markey L, et al. Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths:Excitation and characterization. Appl. Phys. Lett.,2008,92(1):011124-1-3
    [103]Holmgaard T, Chen Z, Bozhevolnyi S, et al. Bend-and splitting loss of dielectric-loaded surface plasmon-polariton waveguides. Opt. Express,2008 16(18):13585-13592
    [104]Zhao H, Guang X, Huang J. Novel optical directional coupler based on surface plasmon polaritons. Physica E,2008,40(10):3025-3029
    [105]Hosseini A, Nejati H, Massoud Y. Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors. Opt. Express,2008,16(3): 1475-1480
    [106]Liu J Q, Wang L L, He M D, et al. A wide bandgap plasmonic Bragg reflector. Opt. Express,2008,16(7):4888-4894
    [107]Park J, Kim H, Lee B. High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating. Opt. Express,2008,16(1): 413-425
    [108]Chu Y, Schonbrun E, Yang T, et al. Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays. Appl. Phys. Lett.,2008,93(18): 181108-1-3
    [109]Verhagen E, Polman A, Kuipers L K. Nanofocusing in laterally tapered plasmonic waveguides. Opt. Express,2008,16(1):45-57
    [110]Zhang Q, Huang X G, Lin X S, et al. A subwavelength coupler-type MIM optical filter. Opt. Express.,2009,17(9):7549-7554
    [111]Wang T B, Wen X W, Yin C P, et al. The transmission characteristics of surface plasmon polaritons in ring resonator. Opt.Express,2009,17(26):24096-24101
    [112]Krasavin A V, Zayats A V. All-optical active components for dielectric-loaded plasmonic waveguides. Opt. Commun,2010,283(8):1581-1584
    [113]Lin X S, Huang X G. Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt. Lett.,2008,33(23):2874-2876
    [114]Tao J, Huang X G, Lin X, et al. A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure. Opt. Express, 2009,17(16):13989-13994
    [115]Tao J, Huang X G, Chen J H, et al. All-optical broadband variable optical attenuators and switches in plasmonic teeth waveguides. Opt. Commun.,2010, 283(18):3536-3539
    [116]Wang L, Wang L L, Zeng Y, et al. Trapping of surface plasmon polaritons in a multiple-teeth-shaped waveguide at visible wavelengths. Appl. Phys. B 2011, 103(4):883-887
    [117]Zhu J H, Wang Q J, Shum P, et al. A Nanoplasmonic High-PassWavelength Filter Based on a Metal-Insulator-Metal Circuitous Waveguide. IEEE Transactions on Nanotechnology,2011,10(6):1357-1361
    [118]Harrington R F. Field Computation by Moment Methods. Melbourne, Florida: Krieger Publishing Co.,1982
    [119]Moharam M G, Gaylord T K. Three-dimensional vector coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am.,1983,73(9):1105-1112
    [120]Davies A J. The Finite Element Method. Oxford, UK:Clarendon Press,1980
    [121]Zienkiewicz O C, Taylor R L. The Finite element method:Solid mechanics. Butterworth-Heinemann,2000
    [122]Beilenhoff K, Heinrich W, Hartnagel H L. Improved finite-difference formulation in frequency domain for three-dimensional scattering problems. IEEE Transactions on Microwave Theory and Technique,1992,40(3):540-546
    [123]Xu F, Zhang Y, Hong W, et al. Finite-difference frequency-domain algorithm for modeling guided-wave properties of substrate integrated waveguide. IEEE Transactions on Microwave Theory and Technique.2003,51(11):2221-2227
    [124]葛德彪,闫玉波.电磁场时域有限差分方法(第二版).西安:西安电子科技大学出版社,2005
    [125]Taflove A, Hagness S C. Computational Electrodynamics:The Finite-Difference Time-Domain Method,2nd ed. Norwood, MA:Artech House,2000.
    [126]Gray S K. Kupka T. Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders. Phys. Rev. B,2003, 68(4):045415-1-11
    [127]Yee K S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on Antennas and Propagation,1966,14(3):302-307
    [128]Mur G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations. IEEE Trans. Electronmagn. Compat.,1981, EMC-23(4):377-382
    [129]Berenger J P. Perfectly matched layer for FDTD solution of wave-struction interaction problems. IEEE Transactions on antennas and propagation,1996, 44(1):110-117
    [130]Travassos X L, Avila S L, Prescott D, et al. Optimal Configurations for Perfectly Matched Layers in FDTD Simulations. IEEE Transactions on magnetics,2006, 42(4):563-566
    [131]Rakic A D, Djurisic A B, Elazar J M, et al. Optical properties of metallic films for vertieal-cavity optoeleetronic deviees. Appl. Opt.,1998,37(22):5271-5283
    [132]Drude P. Electronic theory of metals. Ann. Phy.,1900,306(3):566-613
    [133]Rakic A D, Djurisic A B, Elazar J M, et al. Optical properties of metallic films for verticalcavity optoelectronic devices," Appl. Opt.,1998,37(22):5271-5283
    [134]Xu T, Zhao Y, Gan D, et al. Directional excitation of surface plasmons with subwavelength slits. Appl. Phys. Lett.,2008,92(10):101501-1-3
    [135]Palik E D. Handbook of Optical Constants and Solids. New York:Academic, 1985
    [136]Ye Y H, Zhang J Y. Enhanced light transmission through cascaded metal films perforated with periodic hole arrays. Opt. Lett.,2005,30(12):1521-1523
    [137]Ye Y H, Wang Z B, Yan Desheng, et al. Multiple transmission bands through metal films perforated with two periodic arrays of apertures. Appl. Phys. Lett., 2006,89(22):221108-1-3
    [138]Cheng C, Chen J, Wu Q Y, et al. Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits. Appl. Phys. Lett,2007,91(11):111111-1-3
    [139]Cheng C, Chen J, Shi D J, et al. Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures. Phys. Rev. B, 2008,78(7):075406-1-9
    [140]He M D, Wang L L, Liu J Q, et al. Controllable light transmission through cascaded metal films perforated with periodic hole arrays. Appl. Phys. Lett.. 2008,93(22):221909-1-3
    [141]Tang Z H, Peng R W, Wang Z, et al. Coupling of surface plasmons in nanostructured metal/dielectric multilayers with subwavelength hole arrays. Phys. Rev. B,2007,76(19):195405-1-8
    [142]Valentine J, Zhang S, Zentgraf T, et al. Three-dimensional optical metamaterial with a negative refractive index. Nature(London),2008,455(7211):376-379
    [143]Ku Z, Zhang J, Brueck S R J. Bi-anisotropy of multiple-layer fishnet negative-index metamaterials due to angled sidewalls. Opt. Express,2009,17(8): 6782-6789
    [144]Dionne J A, Sweatlock L A, Atwater H A. Plasmon slot waveguides:Towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B, 2006,73(3):035407-1-9
    [145]Skigin D C, Loui H, Popovic Z, et al. Bandwidth control of forbidden transmission gaps in compound structureswith subwavelength slits. Phys. Rev. E, 2007,76(1):016604-1-6
    [146]Skigin D C, Loui H, Popovic Z, et al. Resonances on metallic compound transmission gratings with subwavelength wires and slits. Opt. Commun,2006, 262(1):270-275
    [147]Skigin D C, Depine R A. Transmission resonances of metallic compound gratings with subwavelength slits. Phys. Rev. Lett.,2005,95(21):217402-1-4
    [148]Skigin D C, Depine R A. Narrow gaps for transmission through metallic structured gratings with subwavelength slits. Phys. Rev. E,2006,74(4): 046606-1-6
    [149]Hibbins A P, Hooper I R, Lockyear M J, et al. Microwave Transmission of a Compound Metal Grating. Phys. Rev. Lett.,2006,96(25):257402-1-4
    [150]Ma Y G, Rao X S, Zhang G F, et al. Microwave transmission modes in compound metallic gratings. Phys. Rev. B,76(8):085413-1-5
    [151]Navarro-Cia M, Skigin D C, Beruete M, et al. Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime. Appl. Phys. Lett,2009,94(9):091107-1-3
    [152]Ye Y H, Wang Z B. Cao Y. Enhanced transmission through metal films perforated with circular and cross-dipole apertures. Appl. Phys. Lett.,2007,91(8): 251105-1-3
    [153]Liu J Q, He M D, Zhai X, et al. Tailoring optical transmission via the arrangement of compound subwavelength hole arrays. Opt. Express,2009,17(3): 1859-1864
    [154]Rance Helen J, Hamilton Oliver K, Sambles J R, et al. Phase resonances on metal gratings of identical, equally spaced alternately tapered slits. Appl. Phys. Lett., 2009,95(4):041905-1-3
    [155]Chan H B, Marcet Z, Woo K, et al. Optical transmission through double-layer metallic subwavelength slit arrays. Opt. Lett.,2006,31(4):516-518
    [156]Akiyama K, Takano K, Abe Y, et al. Optical transmission anomalies in a doublelayered metallic slit array. Opt. Express,2010,18(17):17876-17882
    [157]Xie S, Li H, Fu S, et al. The extraordinary optical transmission through double-layer gold slit arrays. Opt. Commu.,2010,283(20):4017-4024
    [158]Wolff I, Knoppik N. Microstrip ring resonator and dispersion measurement on microstrip lines. Electron.Lett.,1971,7(26):779-781

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700