耦合型回音壁模式光学微腔的构建与光学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学微腔是一种能够把光场限制在微米量级区域中的光学谐振腔。它利用在介电常数不连续的材料界面的反射,散射或衍射,将光能量限制在很小的区域内来回振荡,从而增加光子寿命,减少光场模式数目。当增益介质(偶极子)置于微腔中,它的自发辐射性质受到局域真空场的显著调制,因此产生低阈值的激光。光学微腔在先进光源,信号处理和传感技术等领域有着广泛的应用。空间中多个光学微腔互相靠近组成的耦合腔器件可以人工调制光能在空域和频域的分布,从而获得一系列的新的物理现象和应用,因而受到人们的广泛关注。本文围绕“耦合型回音壁模式光学微腔的构建与光学性质研究”的课题,在半导体微盘激光器、单频紫外微腔激光器以及聚合物微环传感器等方面开展了一系列研究工作。
     本论文的主要创新点是:
     1.设计出一种具有窄发散角、单方向出射的平面耦合微腔——半螺旋型对称耦合微腔。利用时域有限差分(Finite-Difference Time-Domain, FDTD)仿真技术,设计并优化了这种半导体回音壁模式的品质因子和方向性出射特性。研究结果表明,在通信波段它的光学模式具有很好的单方向出射,TM模式的光束的发散角仅为19度。同时单方向出射的模式的Q值提高,而多方向出射的Q值降低,有利于激光器的单模工作。
     2.在聚合物薄膜、光微流以及半导体材料三种体系实现了基于耦合微腔的紫外单频激光器。根据复合腔选模的原理,当两个尺寸不同的微腔平面耦合,自由光谱范围被扩展(即游标效应),在两个腔共同的谐振频率处具有最低的的损耗因而实现单频激射。这种构型的成功实现,为解决制备紫外波段高反射率的DBR反射镜和小周期的光栅所需的高水平工艺要求提供了一个有效简便的途径。
     3.实现了一种具有高自发辐射因子的垂直耦合光子分子微盘激光器。这种垂直耦合结构对F-P模式进行了有效的抑制,从而增强回音壁模式激光的自发耦合效率,降低了激光阈值。实验证明,和单个微盘相比,回音壁模式激光自发耦合因子β提高了15倍,高达0.5。当三个相同的微盘垂直耦合时,对F-P模式抑制更有效,从而增大了自发耦合因子,β值高达0.72。同时观察到不同微盘之间的强耦合导致的模式劈裂,模式间耦合强度系数是0.4THz,比量子点与腔模的耦合强度至少高一个数量级。
     4.利用纳米压印技术制备了聚合物SU-8微环谐振器,并应用在生物传感领域。微环谐振器在水中的本征品质因子高达8×105,这是迄今芯片上聚合物微环的最高记录。利用这个高性能的器件,可以探测到表面质量密度为12.7pg/mm2的生物分子,等噪声的探测极限低达55.9fg/mm2。
Microcavities are optical resonators which confine the light field in micron or sub-micron volume.The light oscillates in the medium with discontinuous dielectric constants by reflection, scattering or diffraction at the interface.With extending the photon lifetime and reducing the optical modes, the spontaneous emission of gain medium(dipoles) inside the cavity will be significantly modulated by the local vacuum field, and lasing emission of low threshold can occur as well. Microcavities have been widely applied in various fields such as advanced light sources, signal processing and sensing technology.The coupled microcavities consisting of multiple cavities in array can artificially modulate mode patterns in space and frequency to generate a series of new physics phenomena and applications, thus have attracted great attentions.This thesis mainly focuses on the research work in the subject of "Study on the fabrications and optical properties of coupled microcavities based on whispering gallery mode". Research works include:the design and fabrication of semiconductor microdisk laser, single mode UV microlaser and high-Q polymer microring resonator for optical biosensing application. This thesis focuses on the following aspect:
     First, we designed symmetric half-spiral microcavities (SHSMs) with high-Q unidirectional emission properties.Mode field patterns and light emissionsare investigatedby the two-dimensional (2-D) finite-difference time domain (FDTD) method. The calculation results show thatan SHSM can support high-quality (Q-104) distorted whispering-gallery modes with directional emissions.Moreover, artificial controls on the Q factor and emission directionality are realized in the coupled size-mismatchedSHSMs, and unidirectional emission from the coupled cavity structure with a divergence of19°is achieved.
     Second, single-frequency lasing from coupled asymmetric microcavitiesis achieved in polymer microring, optofludics and semiconductor systems. By coupling two size-mismatched circular microcavities, multi-whispering-gallery modes are successfully suppressed and free spectrum range increases. The single-frequency laser emission is robustly obtained at the common resonance of the two cavities with the lowest loss.These achievements provide a simple and effective way to avoid the challenging fabrication of DBR mirror of high reflectivity in the ultraviolet range and small cycle grating.
     Third, we fabricated vertically coupled photonic molecule microdisk laserswith exceptionalspontaneous emission coupling to the lasing whispering gallery modes. The multi-stacks drastically suppress the photonic density of states in thevertical F-P modes, and enhance the spontaneous emission coupling factor β of WGMs to decrease the lasing threshold. The experiment shows the β of the double coupled microdisk laser is0.5which is15times higher than that of single disk laser. When three microdisks are vertically coupled, P can be up to0.72. At the same time, we observe the mode splitting induced by strong coupling between the microdisks and the coupling strength is0.4THz, which is at least one order higher than that between the quantum dots and cavity modes.
     Fourth, we fabricated SU-8polymer microring resonator and applied it to the the biosensing work. The device is systematically characterized and the intrinsic Q factor is8×105, which is the highest value so far. Taking advantage of this high performance, a surface mass density of12.7pg/mm2of BSA is detected due to the physical adsorption. The NEDL is approximately55.9fg/mm2in an intensity variation scheme. These results represent the best sensing performance which is achieved with the on-chip polymer ring resonator system.
引文
1. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev.69,681-681(1946).
    2. R. K. Chang, A. J. Campillo, Optical Processes in Microcavities (Advanced Series in Applied Physics) World Scientific Pub. Co. Inc. (June 1996).
    3. K. J. Vahala, "Optical microcavities," Nature 424,839-846 (2003).
    4. K. J. Vahala, Optical microcavities (World Scientific Publishing, Singapore, 2004).
    5. A. B. Matskoand, V. S. Ilchenko, "Optical resonators with whispering gallerymodes part I:Basics," IEEE Selected Topic in Quantum Electronics 12, 3-14(2006).
    6. V. S. Ilchenkoand, A. B. Matsko, "Optical resonators with whispering gallerymodes Part II:Applications," IEEE Selected Topic in Quantum Electronics 12,15-32(2006).
    7. T. J. Kippenberg and K. J. Vahala, "Cavity opto-mechanics," Opt. Express 15, 17172-17205(2007).
    8. X. Fan, I. M. White, S. I. shopova, H. Zhu, J. D. Suter, Y. Sun, "Sensitive optical biosensors for unlabeled targets:A review", Anal. Chem. Acta 620:8-26(2008).
    9. I. Favero and K. Karrai, "optomechanics of deformable optical cavities," Nat. Photonics 3,201-205(2009).
    10. R. J. Thompson, G. Rempe, and H. J. Kimble, "Observation of normal-mode splitting for an atom in an optical cavity," Phys. Rev. Lett.68,1132(1992).
    11. M. Hennrich, T. Legero, A. Kuhn, and G. Rempe, "Vacuum-Simulated Raman Scattering Based on Adiabatic Passage in a High-Finesse Optical Cavity," Phys. Rev. Lett.85,4872(2000).
    12. K. Iga, F. Koyama, S. Kinoshita, "Surface emitting semiconductor laser," IEEE J. Quantum Electron.24:1845-1855(1988).
    13. W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, G. R. Hadley, "Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers," 33:1810-1824(1997).
    14. J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg,"Enhanced Spontaneous Emission by Quantum Boxex in a Monlithic Optical Microcavity, " Phys. Rev. Lett.81,1110(1998).
    15. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J Plant, and Y. Yamamoto,"Efficient Source of Single Photons:A Single Quantum Dot in a Micropost Microcavity," Phys. Rev. Lett.89,233602(2002).
    16. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett.58,2059-2062(1987).
    17. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett.,58,2486-2489(1987).
    18. O. Painter, R. K. Lee, A. Schererl,A. Yariv, J. D. O'Brien, P. D. Dapkus and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284,1819(1999).
    19. S. Noda, A. Chutinan, M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407,608(2000).
    20. M. Huang, A. A. Yanik, T.-Y. Chang, and H. Altug, "Sub-wavelength nanofluidics in photonic crystal sensors,"Opt. Express 17,24224-24233(2009).
    21. T. Yoshiel, A. Schererl, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432,200-203(2004).
    22. K. Hennessy, A. Badolato, M. Winger, D. Geracel, M. Ataturel, S. Guldel, S. Falt, E. L. Hu and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445,896-899(2007).
    23. L. Rayleigh, Phil. Mag.27:100(1914).
    24. S. X. Qian, J. B. Snow, H. M. Tzeng, R. K. Chang, "Lasing Droplets: Highlighting the Liquid-air Interface by Laser Emission,"Science,231: 486-488(1986).
    25. S. X. Qian, R. K. Chang, "Multi-order Stokes Emission from Micrometer Sized Droplets,"Phys. Rev. Lett.56,926(1986).
    26. D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, "Cavity QED with high-Q whispering gallery modes," Phys. Rev. A 57, R2293-R2296 (1998).
    27. A. F. J. Levi, R. E. Slusher, S. L. Mccall, S. J. Pearton, and W. S. Hobson, "Room-temperature lasing action in In0.51Ga0.49P/In0.2Ga0.8As microcylinder laser diodes,"Appl. Phys. Lett.62:2021-2023(1993).
    28. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers,"Appl. Phys. Lett.60,289(1992).
    29. C.Y. Chao, W. Fung, and L. J. Guo, "High Q-factor polymer microring resonators for biochemical sensing applications," IEEE Selected Topic in Quantum Electronics.12,134-142 (2006)
    30. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421,925(2003).
    31. J. U. Nockel, and A. D. Stone, "Ray and wave chaos in asymmetric resonant optical cavities," Nature 385,45-47 (1997).
    32. C. G. B. Garrett, W. Kaiser, and W. L. Bond,"Stimulated Emission into Optical Whispering Modes of Spheres,"Phys. Rev.124,1807-1809 (1961).
    33. Ming Cai, Oskar Painter, and K. J. Vahala, Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System[J], Phys. Rev. Lett.,2000,85:74-77.
    34. M. K. Gonokami, R. H. Jordan, A. Dodabalapur, H. E. Katz, M. L. Schilling, and R. E. Slusher, "Polymer microdisk and microring lasers," Opt. Lett.,20: 2093-2095(1995).
    35. H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, "Optically pumped InAs quantum dot microdisk lasers," Appl. Phys. Lett.76: 3519-3521(2000).
    36. W. H. Guo, Y. Z. Huang, Q. M.Wang, "Resonant Frequencies and Quality factors for Optical Equilateral Triangle Resonators Calculated by FDTD Technique and the Pade Approximation," IEEE Photonics Technology Letters,12:813-815(2000).
    37. A. W. Poon, F. Courvoisier, R. K.Chang, "Multimode Resonances in Square-shaped Optical Microcavities," Opt. Lett.26:9-11(2001).
    38.I. Braun, G. Ihlein, F. Laeri, J. U. Nockel, G. Schulz-Ekloff, F. Schuth, U. Vietze, O. Weiss, D. Wohrle, "Hexagonal microlasers based on organic dyes in nanoporous crystals," Appl. Phys. B,70:335-343(2000).
    39. Jiang H. X., Lin L. Y., Zeng K. C. et al., "Optical resonance modes in GaN pyramid microcavities," Appl. Phys. Lett.75:763-765(1999).
    40.徐明兰,硕士毕业论文《正方形光学微腔模式的FDTD计算》,内蒙古大学,2009.
    41.伍长征,《激光物理学》,复旦大学出版社,1987.
    42. M. K. Chin, D. Y. Chu, and S.-T. Ho, "Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes," J. Appl. Phys.75,3302(1994).
    43. N. C. Frateschi and A. F. J. Levi, "Resonant modes and laser spectrum of microdisk lasers," Appl. Phys. Lett.66,2932 (1995).
    44. N. C. Frateschi and A. F. J. Levi, "The spectrum of microdisk lasers," J. Appl. Phys.80,644 (1996).
    45. B. E. Li and P.-L. Liu, "Numerical analysis of microdisk lasers with rough boundaries," IEEE J. Quantum Electron.32,1583 (1996).
    46. R. P. Wang and M. M. Dumitrescu, "Optical modes in semiconductor microdisk lasers," IEEE J. Quantum Electron.34,1933 (1998).
    47. R. P. Wang and M. M. Dumitrescu, "Theory of optical modes in semiconductor microdisk lasers," J. Appl. Phys.81,3391 (1997).
    48.仇善良,博士毕业论文《光学回音壁模微腔模式特性的理论研究与优化设计》,中国科学技术大学,2010.
    49.曹庄琪,《波导光学》,科学出版社,2007.
    50.本段参考网上资料:http://202.207.14.16/summerschool/PPT/WG模式分析-黄永箴.pdf
    51.姜孝顺,博士毕业论文《新型氧化硅光学微腔及其应用研究》,浙江大学,2010.
    52. H. A. Haus and W.-P.Huang, "Coupled-Mode Theory,"Proc. IEEE 79,1505-1518 (1991).
    53. A. Yariv and P. Yeh, Photonics:Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering),Oxford University Press, USA; 6 edition (2006).
    54. M. Bayer, T. Gutbrod and J. P. Reithmaier, "Optical Modes in Photonic Molecules," Phy. Rev. Lett.81,2582-2585(1998).
    55. S. V. Boriskina, "Photonic Molecules and Spectral Engineering,"Photonic Microresonator Research and Applications, Springer Series in Optical Sciences, 156,393-421(2010).
    56. Y. P. Rackovich and J. F. Donegan, "Photonic atoms and molecules,"Laser & Photon. Rev.4,179(2010).
    57. A. Nakagawa, S. Ishii, and T. Baba, "Photonic molecule laser composed of GaInAsPmicrodisks,"Appl. Phys. Lett.86,041112(2005).
    58. S. Ishii and T. Baba, "Bistable lasing in twin microdisk photonic molecules,"Appl. Phys. Lett.87,181102(2005).
    59. B. M. Moller, U. Woggon, M. V. Artemyev and R. Wannemacher,"Photonic molecules doped with semiconductor nanocrystals," Phys. Rev. B.70, 115323(2004).
    60. G. Fasching, C. Deutsch, A. Benz, A. M. Andrews, P. Klang, R.Zobl, W. Schrenk, G.Strasser, P. Ragulis, V. Tamosiunas, and K. Unterrainer,"Electrically controllable photonic molecule laser," Opt. Express 17,20321-20326(2009).
    61. H. Lin, J.-H. Chen, S.-S. Chao, M.-C. Lo, S.-D. Lin, and W.-H. Chang,"Strong coupling of different cavity modes in photonic molecules formed by two adjacent microdisk microcavities,"Opt. Express 18,23948 (2010).
    62. E. I. Smotrova, A. I. Nosich and T. M. Benson,"Optical coupling of whispering-gallery modes of two identical microdisks and its effect on photonic molecule lasing", IEEE J. Sel. Topics Quantum Electron.,12,78-85(2006).
    63. S. V. Boriskina, "Coupling of whispering-gallery modes in size-mismatched microdisl photonicmolecules," Opt. Lett.32,1557-1559(2007).
    64. J.-J. Li, J.-X. Wang and Y.-Z. Huang, "Mode coupling between first-and second-order whispering-gallery modes in coupled microdisks." Opt. Lett.32, 1563(2007).
    65. L. Shang, L. Liu and L. Xu, "Highly collimated laser emission from a peanut-shaped microcavity," Appl. Phys. Lett.92,071111(2008).
    66. F.-J. Shu, C.-L. Zou, F. Sun and Y.-F. Xiao, "Collimated directional emission from a peanut-shaped microresonator," Phys. Rev. A 83,053835 (2011).
    67. L. Shang, L. Liu and L. Xu, "Single frequency coupled asymmetric microcavity laser,"Opt. Lett.33,1150-1152 (2008).
    68. J.-W. Ryu, S.-Y. Lee, C.-M. Kim and Y.-J. Park, "Directional interacting whispering-gallery modes in coupled dielectric microdisks," Phys. Rev. A 74, 013804(2006).
    69. J.-W. Ryu and M. Hentschel, "Designing coupled microcavity lasers for high-Q modeswith unidirectional light emission," Opt. Lett.36,1116-1118(2011).
    70. S.V. Boriskina, T.M. Benson and P. Sewell, "Photonic molecules made of matched and mismatched microcavities:new functionalities of microlasers and optoelectronic components," (INVITED) Photonics West 2007, San Hose, CA; Proc. SPIE,6452 (2007).
    71. X. Zhang, H. Li, X. Tu, X. Wu, L. Liu and L. Xu, "Suppression and hopping of whispering gallery modesin multiple-ring-coupled microcavity lasers," J. Opt. Soc. Am. B 28,483 (2011).
    72. X. Wu, Y. Sun, J. D. Suter, and X. Fan, "Single mode coupled optofluidic ring resonator dye lasers," Appl. Phys. Lett.94,241109 (2009).
    73. X. Wu, H. Li, L. Liu, L. Xu, "Unidirectional single-frequency lasing from a ring-spiral coupled microcavity laser," Appl. Phys. Lett.93,081105(2008).
    74. W.Lee, H. Li, J. D. Suter, K Reddy, Y. Sun and X. Fan, "Tunable single mode lasing from an on-chip optofluidic ringresonator laser," Appl. Phys. Lett.98, 061103(2011).
    75. X. Fan, I. M. White, S. I. shopova, H. Zhu, J. D. Suter, Y. Sun, "Sensitive optical biosensors for unlabeled targets:A review", Anal. Chem. Acta,620:8-26(2008).
    76. C. Kang, C. T. Phare, Y. A. Vlasov, S. Assefa, S. M. Weiss, "Photonic crystal slab sensor with enhanced surface area" Opt. Express 18:27930-27937(2010).
    77. H. Li, X, Fan, "Characterization of sensing capability of optofluidic ring resonator biosensors", Appl. Phys. Lett.97:011105(2010).
    78. J. Liu, Y. Sun, D. J. Howard, G. F. Mason, A. K. Thompson, S. Ja, S. K. Wang, M. Bai, H. Taub, M. Almasri, X. Fan, "Fabry-Perot cavity sensors for multipoint on-column micro gas chromatography detection", Anal. Chem.,82: 4370-4375(2010).
    79. A. B. Matsko, V. S. Ilchenko, "Optical Resonators With Whispering-Gallery Modes-Part I:Basics", IEEE J. Sel. Top. Quantum Electron.12:3-14(2006).
    80. S. I. Shopova, Y. Sun, A.R, and X. Fan, "Highly sensitive tuning of the resonance of coupled optical ring resonators by microfluidics,"Microfluidics and Nanofluidics 6,425-429 (2009).
    81. H. Li, L. Shang, X. Tu, L. Liu and L. Xu, "Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser," J. Am. Chem. Soc.131,16612-16613(2009).
    82. X. Zhang, L. Ren, X. Wu,H. Li,L. Liuand L. Xu, "Coupled optofluidic ring laser for ultrahigh-sensitive sensing," Opt. Express 19,22242 (2011).
    83. S. Lee, S. C. Eom, J. S. Chang, C. Huh, G. Y. Sung, and J. H. Shin, "Label-free optical biosensing using a horizontal air-slot SiNx microdisk resonator,"Opt. Express.18,20638-20644 (2010).
    84. Y.-F. Xiao, V.Gaddam, and L. Yang, "Coupled optical microcavities:an enhanced refractometric sensing configuration,"Opt. Express.16,12538(2008).
    85. C.-Y. Chao and L. Jay Guo, "Biochemical sensors based on polymer microrings with sharpasymmetrical resonance,"Appl. Phys. Lett.83,1527(2003).
    86. S. V. Boriskina, "Spectrally-engineered photonic molecules as optical sensors with enhanced sensitivity:a proposal and numerical analysis," J. Opt. Soc. Am. B 23, 1565-1573 (2006).
    87. J.V.Hryniewicz, P.P.Absil, B. E. Little, R. A. Wilson and P. T. Ho, "Higher order filter response in coupled microringresonators," IEEE Photon. Technol. Lett.12, 320-322 (2000).
    88. F. Xia, L. Sekaricand Y. Vlasov,"Ultracompact optical buffers on a silicon chip,"Nat. Photonics 1,65 (2007).
    89. T.J. Kippenberg, K.J. Vahala, "Cavity optomechanics," Opt. Express.15, 17172-17205(2007).
    90. T.J. Kippenberg, K.J.Vahala, "Cavity optomechanics:back-action at the mesoscale," Science,321,1172-1176 (2008).
    91. D. Gerace, H.E. Tureci, A. Imamoglu, V. Giovannetti and R. Fazio, "The quantumoptical Josephson interferometer," Nat. Phys.5,281-284 (2009).
    92. D. G. Angelakis, M. F. Santos, V. Yannopapas and A. Ekert, "A proposal for the implementation of quantum gates with photonic-crystal coupledcavity waveguides," Phys. Lett. A.362,377-380(2007).
    93. P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, "Trapping, corralling and spectral bonding of opticalresonances through optically induced potentials," Nat. Photon.1,658-665 (2007).
    94. M. Eichenfield, Michael, C. P. Michael, R. Perahia and O. Painter,"Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces," Nat. Photon.1,416-422 (2007)
    95. M. C. Y. Huang, Y. Zhou, C. J. C. Hasnain, "A nanoelectro mechanical tunable laser. Nat. Photon.2,180-84 (2008).
    96. M. Li, W. H. P. Pernice, C. Xiong, T. B. Jones, M. Hochberg and H. X. Tang, "Harnessing optical forces in integrated photonic circuits," Nature.456,480-484 (2008).
    97. S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky and F. Vollmer, "Whispering gallery mode carousel:a photonic mechanism forenhanced nanoparticle detection in biosensing," Opt. Express.17,6230-6238 (2009).
    1. K. J. Vahala, "Optical microcavities," Nature 424,839-846(2003).
    2. S. J. Choi, K. Djordjev, S. J. Choi, and P. D. Dapkus, "Microdisk lasers vertically coupled to output waveguides," IEEE Photon.Technol. Lett.15,1330-1332 (2003).
    3. M. Cai, O. Painter, and K. J. Vahala, "Fiber-coupled microsphere laser," Opt. Lett. 25,1430-1432(2000).
    4. J. Wiersig, J. Unterhinninghofen, Q. Song, H. Cao, M. Hentschel, S. Shinohara, "Review on unidirectional light emission from ultralow-low modes in deformed microdisks," Trends in Nano- and Micro- Cavities,109-152(2011).
    5. J. U. Nockel, A. D. Stone, "Ray and wave chaos in asymmetricresonant optical cavities," Nature,385,45-47(1997).
    6. C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone,J. Faist, D. L. Sivco, A.Y. Cho, "High-power directional emissionfrom microlasers with chaotic resonators," Science,280:1556-1564(1998).
    7. H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, andA. D. Stone, "Dramatic shape sensitivity of directionalemission patterns from similarly deformed cylindricalpolymer lasers," J. Opt. Soc. Am. B 21,923-934 (2004).
    8. S. Shinohara, T. Harayama, H. E. Tureci, and A. D. Stone, "Ray-wave correspondence in the nonlinear description ofstadium-cavity lasers," Phys. Rev. A,74,033820 (2006).
    9. G. D. Chern, H. E. Tureci, A. D. Stone, R. K.Chang, M. Kneissl, N. M. Johnson, "Unidirectional Lasing from InGaN Multi-quantum-well Spiral-shaped Micropillars," Appl. Phys. Lett.,83,1710-1712(2003).
    10. M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D.Chern, and R. K. Chang, "Current-injection spiral-shapedmicrocavity disk laser diodes with unidirectional emission,"Appl. Phys. Lett.84,2485-2487(2004).
    11. T. Ben-Messaoud and J. Zyss, "Unidirectional laseremission from polymer-based spiral microdisks," Appl.Phys. Lett.86,241110(2005).
    12. J. Wiersig and M. Hentschel, "Combining directional lightoutput and ultralow loss in deformed microdisks," Phys.Rev. Lett.100,033901(2008).
    13. C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N.Yu, C. Pflugl, F. Capasso, M. A. Belkin, T. Edamura, M.Yamanishi, and H. Kan, "Directional emission anduniversal far-field behavior from semiconductor lasers withlimacon-shaped microcavity," Appl. Phys. Lett.94,251101(2009).
    14. Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H.Cao, "Chaotic microcavity laser with high quality factorand unidirectional output," Phys. Rev. A 80,041807(2009).
    15. S. Lacey, H. Wang, "Directional emission from whispering-gallerymodes in deformed fused-silica microspheres," Opt. Lett.26,1943-1945(2001).
    16. Y. F. Xiao, C. H. Dong, C. L. Zou, Z. F. Han, L. Yang, G. C. Guo, "Lowthresholdmicrolaser in a high-Q asymmetrical microcavity," Opt. Lett.,34, 509-511(2009).
    17. L. Shang, L. Liu and L. Xu, "Highly collimated laser emission from a peanut-shaped microcavity,"Appl. Phys. Lett.92,071111(2008).
    18. L. Shang, L. Liu and L. Xu, "Single frequency coupled asymmetric microcavity laser," Opt. Lett.33,1150-1152(2008).
    19. X. Wu, H. Li, L. Liu and Lei Xu, "Unidirectional singlefrequency lasing from a ring-spiral coupled microcavity laser," Appl. Phys. Lett.93,081105(2008).
    20. S. V. Boriskina, "Coupling of whispering-gallery modes insize-mismatched microdisk photonic molecules," Opt. Lett.32,1557-1559(2007).
    21.J.-W. Ryu, S.-Y. Lee, C.-M. Kimand Y.-J. Park, "Directional interacting whispering-gallery modes in coupled dielectric microdisks," Phys. Rev. A,2006, 74:013804.
    22. S.V. Boriskina, T.M. Benson, and P. Sewell, "Photonic Molecules Made of Matched and Mismatched Microcavities:New Functionalities of Microlasers and Optoelectronic Components," Photonics West 2007, San Hose, CA; Proc. SPIE, 6452(2007).
    23. J.-W. Ryu and M. Hentschel, "Designing coupled microcavity lasers for high-Q modeswith unidirectional light emission," Opt. Lett.36,1116-1118(2011).
    24. Y.-F. Xiao, Y. Li, Q. Gong; C.-L. Zou, C.-H. Dong, Z.-F. Han, "Asymmetric resonant cavities and their applications in optics and photonics:A Review," Frontiers of Optoelectronics in China,3,109-124(2010).
    25. W. H. Guo, W. J. Li, Y. Z. Huang, "Computation of resonantfrequencies and quality factors of cavities by FDTD technique andPade approximation," IEEE Microwave and Wireless ComponentsLetters,11,223-225(2001).
    26. J. Wiersig, "Boundary element method for resonances in dielectricmicrocavities,"J. Opt. A:Pure Appl. Opt.5,53(2003).
    27. S. V. Boriskina, P. Sewell and T. M. Benson, "Accurate simulation of two-dimensional optical microcavities withuniquely solvable boundary integral equations and trigonometric Galerkin discretization," J. Opt. Soc. Am. A 21, 393-402 (2004).
    28. H. J. Stockmann, Quantum Chaos:An Introduction. UK:Cambridge University Press,1999.
    29. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxswell equations in isotropicmedia,"IEEE Trans. Antennas Propagat.,14, 302-307(1966).
    30. A. Taflove, S. C. Hagness, Computational electrodynamics:the finite-difference time-domain method, second edition, Artech House, Boston/London,2000.
    31.孟潮洛蒙,硕士毕业论文《半导体微盘谐振腔的模式特性研究》,内蒙古大学,2009.
    32.葛德彪,闫玉波,电磁波时域有限差分方法,西安:西安电子科技大学出版社,2002.
    33.胡广书,数字信号处理-理论,算法与实现,清华大学出版社,1997.
    1.沈全洪,徐端颐,齐国生,高密度蓝光存储及扩展技术,光学技术,31,921-927(2005).
    2. http://www.sony.com.cn/products/rme/b2b/technology/blu_ray/blu_ray_3.html
    3. D. P. Pacheco, H. R. Aldag, D. K. Klimek, et al. "High-average-powerblue-green laser for underwater communications," Proc. Conf.Lasers, USA:New Orleans, 376(1990).
    4. L. Marshall, "Many variant lasers compete in the blue," Laser Focus World,40, 79-83(2004).
    5. T. C. Lu, C.-C. Kao, H.-C. Kuo, G.-S. Huang andS.-C. Wang, "CW lasing of current injection blue GaN-based vertical cavity surfaceemitting laser," Appl. Phys. Lett.92,141102(2008).
    6. K. H. Li, Z. Ma, and H. W. Choi, "High-Q whispering-gallery mode lasing from nanosphere-patterned GaNnanoring arrays," Appl. Phys. Lett.,98,071106(2011).
    7. I. V. Smetanin and P. P. Vasil'ev, "Enhanced longitudinal mode spacing in blue-violet InGaN semiconductor lasers," Appl. Phys. Lett.100,041113(2012).
    8. D. Solnyshkov, G. Malpuech, "A polariton laser based on a bulk GaN microcavity," Superlattices and Microstructures,41,279-283(2007).
    9. G. Malpuech, A. D. Carlo, A. Kavokin, J. J. Baumberg, M. Zamfirescu and P. Lugli, "Room-temperature polariton lasers based on GaN microcavities," Appl. Phys. Lett.81,412-414(2002).
    10. A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and Pallab Bhattacharya, "Room Temperature Ultralow Threshold GaN Nanowire Polariton Laser," Phys. Rev. Lett.107,066405 (2011).
    11. Deng, H., Haug, H., and Yamamoto, Y., "Exciton-Polariton Bose-Einstein Condensation," Rev. Mod. Phys.82,1489 (2010).
    12. J. Levrat, R. Butte, E. Feltin, J.-F. Carl in, Nicolas Grandjean, D. Solnyshkov and G. Malpuech, "Condensation phase diagram of cavity polaritons in GaN-based microcavities:Experiment andtheory," Phys. Rev. B 81,125305 (2010).
    13.R. Butte, G. Christmann, E. Feltin, J.-F. Carlin, M. Mosca, M. Ilegems, and N. Grandjean,"Room-temperature polariton luminescence from a bulk GaN microcavity," Phys. Rev. B 73,033315 (2006)
    14. F. Semond, I. R. Sellers, F. Natali, D. Byrne, M. Leroux, J. Massies, N. Ollier, J. Leymarie, P. Disseix, and A. Vasson, "Strong light-matter coupling at room temperature in simple geometry GaN microcavities grown on silicon," Appl. Phys. Lett.87,021102(2005)
    15. K. H. Li, Z. Ma, and H. W. Choi, "Single-mode whispering gallery lasing from metal-clad GaN nanopillars," Opt. Lett.,37,374-376,1943-1945(2012).
    16. S. Kalusniak, S. Sadofev, S. Halm, and F. Henneberger, "Vertical cavity surface emitting laser action of an all monolithicZnO-based microcavity,"Appl. Phys. Lett.,98,011101 (2011).
    17. Y.-G. Wang, C.-C. Chen, C.-H. Chiu, M.-Y. Kuo, M. H. Shih and H.-C. Kuo, "Lasing in metal-coated GaN nanostripe at room temperature," Appl. Phys. Lett., 98,131110(2011).
    18. W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang and H. Cao, "Detection of chemical species using ultraviolet microdisk lasers," Appl. Phys. Lett.85,3666-3668(2004).
    19. W. Fang, "From regularity to chaos:studies on semiconductor microdisks and deformed microdisk lasers," Ph.D thesis, Northwest University,2006.
    20. J. Dai,C. X. Xu,R. Ding, K. Zheng, Z. L. Shi, C. G. Lv and Y. P. Cui, "Combined whispering gallery mode laser from hexagonal ZnO microcavities," Appl. Phys. Lett.95,191117(2009).
    21.X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, "Ultraviolet photonic crystal laser," Appl. Phys. Lett.,85,3657-3659(2009).
    22. R. Chen, H. D. Sun,T. Wang, K. N. Hui, and H. W. Choi, "Optically pumped ultraviolet lasing from nitride nanopillars at roomtemperature," Appl. Phys. Lett. 96,241101(2009).
    23.尚磊,博士毕业论文,《新型非圆对称回音壁模光学微腔激光器的植被与特性研究》,复旦大学,2009
    24.李皓,博士毕业论文,《新型光学微腔和微腔激光器生物传感效应研究》,复旦大学,2011
    25. L. Zhou, H.-H. You, X.-Y. Pu, "Broadening free spectral range of an evanescent-wave pumped Whispering-Gallery-Mode fibre laserby Vernier effect,' Opt. Commun.284,3387-3390 (2011).
    26. M. Fridman, M. Nixon, E. Ronen, A. A. Friesem and N. Davidson, "Phase locking of two coupled lasers with manylongitudinal modes," Opt. Lett.35, 526-528(2010).
    27. W. Lee, H. Li, J. Suter, K. Reddy, Y. Sun andX. Fan, "Tunable single mode lasing from an on-chip optofluidic ringresonator laser," Appl. Phys. Lett.,98, 061103(2011).
    28.凌涛,硕士毕业论文《有机染料掺杂圆对称及非圆对称光学微腔的发光特性研究》,复旦大学,2003
    29. D. Psaltis, S. R. Quake, and C. Yang, "Review Article Developing optofluidic technology through the fusion of microfluidics and optics," Nature, 442,381(2006).
    30. X. Fan and I. M. White, "Optofluidic microsystems for chemical and biological analysis," Nat. Photonics 5,591-597 (2011).
    31.X.Wu, Y.Sun, J. D. Suter andX. Fan, "Single mode coupled optofluidic ringresonator dye lasers," Appl. Phys. Lett.,94,241109(2009).
    32. B. Moeyersoon, G. Morthier and M. Zhao, "Degradation of the mode suppression in single-mode laser diodes due to integrated optical amplifiers," IEEE J. Sel. Topics Quantum Electron.40,241-244(2004).
    33. H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang,"Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films," Appl. Phys. Lett.73,3656 (1998).
    34.王皓,本科毕业论文,《二氧化硅光学微腔的制备和理论研究》,复旦大学,2007
    1. M. Bayer, T. Gutbrod and J. P. Reithmaier, "Optical Modes in Photonic Molecules, " Phy. Rev. Lett.81,2582-2585(1998).
    2. S. V. Boriskina, Photonic Microresonator Research and Applications,Springer Series in Optical Sciences,156,393-421 (Springer, New York,2010).
    3. A. Nakagawa, S. Ishii, and T. Baba, "Photonic molecule laser composed of GaInAsPmicrodisks," Appl. Phys. Lett.86,041112(2005).
    4. S. Ishii and T. Baba, "Bistable lasing in twin microdisk photonic molecules," Appl. Phys. Lett.87,181102(2005).
    5. G. Fasching, C. Deutsch, A. Benz, A. M. Andrews, P. Klang, R.Zobl, W. Schrenk, G.Strasser, P. Ragulis, V. Tamosiunas, and K. Unterrainer, "Electrically controllable photonic molecule laser," Opt. Express 17,20321-20326(2009).
    6. H. Lin, J.-H. Chen, S.-S. Chao, M.-C. Lo, S.-D. Lin, and W.-H. Chang,"Strong coupling of different cavity modes in photonic molecules formed by two adjacent microdisk microcavities," Opt. Express 18,23948 (2010).
    7. Y.-H. Chen, Y.-K. Wu, and L. J. Guo, "Photonic crystal microdisk lasers," Appl. Phys. Lett 98,131109 (2011)
    8. X. Tu, Y.-K. Wu, and L. J. Guo, "Vertically coupled photonic molecule laser," Appl. Phys. Lett.100,041103(2012)
    9. Y.-K. Wu, X. Tu, Y.-H. Chen, and L. J. Guo, "Photonic crystal microdisk lasers with exceptionalpontaneous emission coupling to the lasing mode" e-print arXiv: 1109.2277v1, (submitted).
    10. Y. Hara, T. Mukaiyama, K. Takeda, and M. K.-Gonokami, "Photonic molecule lasing," Opt. Lett.28,2437-2439(2003).
    11. E. I. Smotrova, A. I. Nosich and T. M. Benson, "Optical coupling of whispering-gallery modes of two identical microdisks and its effect on photonic molecule lasing", IEEE J. Sel. Topics Quantum Electron.12,78-85(2006).
    12. S. V. Boriskina, "Coupling of whispering-gallery modes in size-mismatched microdisl photonicmolecules," Opt. Lett.32,1557-1559(2007).
    13.J.-J. Li, J.-X. Wang and Y.-Z. Huang, "Mode coupling between first-and second-order whispering-gallery modes in coupled microdisks." Opt. Lett.32, 1563(2007).
    14. J.-W. Ryu, S.-Y. Lee, C.-M. Kim and Y.-J. Park, "Directional interacting whispering-gallery modes in coupled dielectric microdisks," Phys. Rev. A,74, 013804(2006).
    15. F.-J. Shu, C.-L. Zou, F. Sun and Y.-F. Xiao, "Collimated directional emission from a peanut-shaped microresonator," Phys. Rev. A 83,053835 (2011).
    16.吴根柱,张宝顺,曲铁,任大翠,张兴德,半导体微腔激光器阈值特性分析,半导体光电,21,5,325(2000)
    17. X. Zhang, W. Pan, "Enhanced spontaneous emission factor for microcavity lasers," Chin. Opt. Lett.6,411-414(2008)
    18. http://qwiki.stanford.edu/index.php/Spontaneous Emission Coupling Factor
    19. P. Jaffrennou, J. Claudon, M. Bazin, N. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, and J. Gerard, "Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities," Appl. Phys. Lett.96,071103 (2010).
    20. Y. Zhang, C. Hamsen, J. T. Choy, Y. Huang, J. Ryou, R. D. Dupuis, and M. Loncar, "Photonic crystal disk lasers," Opt. Lett.36,2704-2706 (2011).
    21. M. Nomura, S. Iwamoto, and Y. Arakawa, "A photonic crystal nanocavity laser with ultralow threshold,"http://spie.org/x 18202.xml
    22. Y. Zhang,M. Khan,Y. Huang,J. Ryou,P. Deotare,R. Dupuis,and M. Loncar, "Photonic crystal nanobeam lasers," Appl. Phys. Lett.97,051104 (2010).
    23. K. Srinivasan, M. Borselli, and O. Painter, "Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,' Opt. Express 14,1094-1105 (2006).
    24. Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, "Near-IR subwavelength microdisk lasers," Appl. Phys. Lett.94,061109 (2009).
    25. J. Van Campenhout, P. Rojo-Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J. M. Fedeli, C. Lagahe, and R. Baets, "Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit," Opt. Express 15,6744-6749 (2007).
    26. S. Noda, "Seeking the ultimate nanolaser," Science 314,260-261 (2006).
    27. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gerard, "A highly efficient single-photon source based on a quantum dot in a photonic nanowire," Nat. Photon. 4,174-177 (2010).
    28. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-Coated nanocavities," Nat. Photon.1,589-594 (2007).
    29. H. Yokoyama and K. Ujihara, "Spontaneous emission and laser oscillation in microcavities," in, Anonymous (CRC Press,1995).
    30. S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nature Photonics 1,449-458 (2007).
    31. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett.95, 013904(2005).
    32. J. M. Bendickson, J. P. Dowling, and M. Scalora, "Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures," Phys. Rev. E 53,4107-4121 (1996).
    33. L. A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits (John Wiley & Sons, New York,1995).
    34. Z. N. Wang, T. R. Zhai, L. Lin, and D. H. Liu, "Effect of surface truncation on mode density in photonic crystals," Journal of the Optical Society of America B-Optical Physics 24,2416-2420 (2007).
    35. M. J. H. Marell, B. Smalbrugge, E. J. Geluk, P. J. van Veldhoven, B. Barcones, B. Koopmans, R. Notzel, M. K. Smit, and M.T. Hill, "Plasmonic distributed feedback lasers at telecommunications wavelengths," Opt. Express,19,15110(2011).
    1.李皓,博士毕业论文,《新型光学微腔和微腔激光器生物传感效应研究》,复旦大学,2011
    2. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, "Sensitive optical biosensors for unlabeled targets:A review," Anal.Chim. Acta 620,8(2008).
    3. R. W. Boyd and J. E. Heebner "Sensitive disk resonator photonic biosensor," Appl. Opt.40,5742-5747(2001).
    4. N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, "Chip scale integrated microresonator sensing systems," J. Biophoton.2, No.4,212-226 (2009).
    5. D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, R. C. Tiberio, "Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and21.6-nm free spectral range," Opt. Lett.22, 1244-1246(1997).
    6. S. J. Choi, K. Djordjev, Z. Peng, Q. Yang, S. J. Choi,P. D. Dapkus,"Laterally coupled buriedheterostructure high-Q ring resonators," IEEE Photon. Technol. Lett.16,2266-2268(2004).
    7. K.D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, R. Baets, "Silicon-on-Insulator microring resonator for sensitive and label-free biosensing", Opt. Express 15, 7610-7615 (2007).
    8. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. B. Jones, R. C. Bailey, and L. C. Gunn, "Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation," IEEE J. Sel. Top. Quantum Electronics.16,654-661(2010)
    9. V. R. Almeida, C. A.Barrios, R. R. Panepucci, M.Lipson,"All-optical control of light on asilicon chip," Nature,431,1081-1084(2004).
    10. A. Yalcin, K.C. Popat, J.C. Aldridge, T.A Desai, J. Hryniewicz, N. Chbouki, B.E. Little,O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M.S. Onlu, B.B. Goldberg, "Optical sensing of biomolecules using microring resonators," IEEE J. Sel. Top. Quantum Electron.12,148-155(2006).
    11. D. J. W. Klunder, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, B. Docter,H. J. W. M Hoekstra, A. Driessen, "Experimental and numerical study of SiON microresonators with air and polymer cladding,"J. Lightwave Technol.,21, 1099-1110(2003).
    12. T. Barwicz,M. A. Popovic, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, H.I. Smith,"Microring-resonator-based add-drop filters in SiN:Fabrication and analysis," Opt. Exp.12,1437-1442(2004)
    13. P. Rabiei, W. H. Steier, C. Zhang, L. R. Dalton, "Polymer micro-ring filters and modulators,"J. Lightwave Technol.20,1968-1975(2002)
    14. Y. Huang, G. T. Paloczi, J. Scheuer, A. Yariv, "Soft lithography replication of polymericmicroring optical resonators," Opt. Exp.11,2452-2458(2003)
    15. C.Y. Chao, W. Fung, and L. J. Guo, "Polymer microring resonators for biochemical sensing applications," IEEE Selected Topic in Quantum Electronics. 12,134-142(2006)
    16. C. Y. Chao and L. J. Guo, "Polymer microring resonators fabricated by nanoimprint technique," J. Vac. Sci. Technol. B 20,2862-2866 (2002).
    17. S. Y. Cho and N. M. Jokerst, "A polymer microdisk photonic sensor integrated onto silicon," IEEE J. Lightw. Technol.,18,2096-2098(2006).
    18. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, "Polymer Micro-Ring Filters and Modulators," IEEE J. Lightw. Technol.,20.1968-1975(2002).
    19. T. Ling, S. L. Chen, and L. J. Guo, "Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,' Opt. Express 19,861-869 (2011).
    20.陈曜,博士毕业论文,《微纳光学环生物传感芯片的制备研究》,华中科技大学,2009.
    21. Z. Zhang, M. Dainese, L. Wosinski, and M. Qiu, "Resonance-splitting and enhanced notch depth inSOI ring resonators with mutual mode coupling,"Opt. Exp.16,4621-4630(2008)
    22. H. A. Haus, "Waves and Fields in Optoelectronics", Prentice-Hall, Englewood Cliffs,1984
    23. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J., P. Laine, "Microring resonator channel dropping filters", J. Lightwave Technol.,1997,15:998-1005
    24. C.-Y. Chao, T. Ling and L. J. Guo, Label-Free Biochemical Sensors Based on Optical Microresonators, ADVANCED PHOTONIC STRUCTURES FOR BIOLOGICAL AND CHEMICAL DETECTION, Integrated Analytical Systems,Ⅱ,177-227(2009)
    25. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint of Sub-25 nm Vias and Trenches in Polymers,"Appl. Phys. Lett.,67 (21),3114 (1995)
    26. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint Lithography with 25-Nanometer Resolution," Science,272,85 (1996).
    27. L. J. Guo, "Recent progress in nanoimprint technology and its applications,"J. Phys. D:Appl. Phys.37, R123-R141(2004)
    28. L. J. Guo, "Nanoimprint Lithography:Methods andMaterial Requirements," Adv. Mater.,19,495-513(2007)
    29.谢审奇,硕士毕业论文,《基于纳米压印技术的大面积高密度光栅的研制》,复旦大学,2008
    30.李小丽,博士毕业论文,《纳米压印技术制作光子晶体结构及其应用研究》,上海交通大学,2009
    31. M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks:theory and experiment," Opt. Express 13, 1515-1530(2005).
    32. H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, "Analysis of biomolecule detection with optofluidic ring resonator sensors," Opt. Express 15,9139-9146(2007).
    33. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, "Shift of whispering-gallery modes in microspheres by protein adsorption," Opt. Lett.28, 272-274(2003).
    1. M. Oxborrow, "How to simulate the whispering gallery modes of dielectric microresonator in FEMLAB/COMSOL," Proc. SPIE 6452,64520J,64520J-12 (2007).
    2. Jianming Jin, The Finite Element Method in Electromagnetics, New York:Wiley,1993.
    3. M. Imran Cheema, and Andrew G. Kirk. "Implementation of the perfectly matched layer to determine the quality factor of axisymmetric resonators in COMSOL", COMSOL conference, Boston, Oct 2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700