结构色成色机理与制备方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构色起源于自然光与微结构的相互作用,通常呈现于诸如干涉、衍射和散射等光学现象之中。生物体结构色的研究具有重要意义,因为它不仅能揭示自然界中许多有趣的调控颜色的方式,同时也可以在光子结构的设计和制备方面给予我们很多启示。在这篇论文之中,我们研究了家鸽的虹彩羽毛、鹦鹉的非虹彩羽毛和中国古代瓷器乳光釉的结构色起源。另外,我们还在以鹦鹉羽毛微结构为模板制备反光子结构和利用分相方法制备光子结构等方面展开了讨论。
     这篇论文由六个章节组成。在第一和第二章中,我们简单介绍了结构色及其研究的理论与实验方法。
     在第三章中,我们研究了家鸽颈部虹彩绿色与虹彩紫色羽毛的结构色起源。我们发现,绿色和紫色小羽枝都是由角蛋白外皮层包裹由黑色素颗粒堆积而成的髓质层构成。结构色来自于角蛋白外层的薄膜干涉效应,而髓质层则起到了粗糙的反射镜的作用。不同厚度的角蛋白外层表皮具有不同的虹彩色。我们发现,当观察角度增大时,虹彩绿色小羽枝的颜色由绿色变为紫色。而相反地,虹彩紫色小羽枝的颜色由紫色变为了绿色。这种相反的虹彩效应可能提供了某些生物功能。
     在第四章中,我们系统地研究了鹦鹉蓝色、绿色和黄色羽毛的成色机理。我们发现羽毛的蓝色纯粹来自于羽枝中的海绵状微结构,而绿色和黄色是由海绵状微结构产生的散射加上表皮中的色素吸收混合而成。研究发现海绵状微结构具有的是非晶金刚石构型,并由此产生了明亮的结构色。由此,我们还探讨了非晶金刚石结构的拓扑与光学特性。
     在第五章中,我们展示了以鹦鹉羽毛微结构为模板的反结构制备。我们得到了两种非晶金刚石结构:一种基于SiO2,另一种则基于TiO2。这些合成结构都具有显著的结构色。对结构的分析表明,基于SiO2的微结构在结构特征上优于基于TiO2的微结构。这些人工结构将是进一步研究非晶金刚石结构光学特性的基础。
     在第六章中,我们研究了中国古代瓷器,包括元代钧窑瓷器和宋代汝窑瓷器的蓝色乳光釉的颜色起源。研究结果表明乳光蓝色来自于瓷器釉层的微结构。在瓷器的烧制过程中,由于失稳分解,釉层中产生了富Si和富Ca两相无序交错的联通域。这两种联通域具有不同的折射率,光在其中的传播发生了相干散射,因而产生了乳光色。从分相的理论出发,我们还探讨了在陶瓷、高聚物和金属这三种体系中制备结构色光子非晶材料的方法。
Structural color results from the interactions of natural light with microstructures with a featured size comparable to visible wavelengths via optical phenomena such as interference, diffraction or scattering. The investigation of structural colors in the biological world is of great significance since it can not only reveal the interesting way of color steering in nature but also inspire our design and fabrication of photonic structures. In this thesis, we study the color origin of pigeon and parrot feathers. We also discuss the origin of the blue color in the glaze of ancient chinaware. The fabrication of inverse structures using parrot feathers as template is discussed.
     The thesis consists of six chapters. In Chapters One and Two, structural coloration and its experimental and theoretical methods are briefly introduced.
     In Chapter Three, we study the origin of green and purple iridescence in the neck feathers of domestic pigeons. We found that both green and purple barbules are composed of an outer keratin cortex layer surrounding a medullary layer consisting of randomly dispersed melanin granula. Structural colors originate from the thin-film interference of the top keratin layer while the medullary layer plays a role of a poor mirror. Different iridescence resides in the different thickness of the keratin layer. Interestingly, we found that green barbules vary colors from green to purple with the observing angle changed from normal to oblique. Oppositely, purple barbules change their colors from purple to green. This opposite iridescence may contain biological significance.
     In Chapter Four, we systematically study the blue, green and yellow coloration in parrot feathers. We found that the blue color is purely from the spongy microstructures in the barbs, while green and yellow are produced by the color mixing of the blue color from the spongy microstructures and pigments. Interestingly, it is found that the spongy microstructures are indeed amorphous diamond structures which could produce a bright structural color. Their implications in photonic crystals are discussed.
     In Chapter Five, we present results on the fabrication of inverse sponge microstructure using parrot barbs as template. We obtained two amorphous diamond structures:one based on SiO2and the other one on TiO2. These synthesized structures show obvious structural colors. Structural characterizations revealed that SiO2-based structures possess better structural quality than TiO2-based ones. These artificial structures can be the basis for the further study of the optical properties of amorphous diamond structures.
     In Chapter Six, we study the coloration of the light blue glaze of the ancient chinawares:Jun and Ru Ware. Our results suggest that the blue color would originate from the microstructures in the glaze. The microstructures are formed during the firing process owing to the unstable decomposition, leading to randomly dispersed Si-rich and Ca-rich micro-domains. Since these micro-domains have different refractive index light will be scattered coherently, producing eventually a light blue color. From the theory of phase separation, we also discussed the ways to fabricate materials with strcutural colors in porcelains, polymers and metals.
引文
[I]K. Nassau. The physics and chemistry of color [M]. John Wiley & Sons, Inc.,1983.
    [2]Sir Isaac Newton. Opticks (Based on the 4th edition of 1730) [M]. New York:Dover Publications,1952.
    [3]S. Coren, C. Porar, and L. M. Ward. Sensation and perception [M]. New York:Academic Press,1978.
    [4]Shuichi Kinoshita, Shinya Yoshioka. Structural colors in nature:The role of regularity and irregularity in the structure [J]. CHEMPHYSCHEM,2005,6(8):1442-1459.
    [5]A. R. Parker.515 million years of structural colour [J]. JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS,2000,2(6):R15-R28.
    [6]Haiwei Yin, Lei Shi, Jing Sha, Yizhou Li, Youhua Qin, Biqin Dong, Serge Meyer, Xiaohan Liu, Li Zhao, and Jian Zi. Iridescence in the neck feathers of domestic pigeons [J]. Phys. Rev. E,2006,74(5):051916.
    [7]J. Zi, X. D. Yu, L. Z. Li, X. H. Hu, C. Xu, X. J. Wang, X. H. Liu, and R. T. Fu. Coloration strategies in peacock feathers [J]. Proc. Natl. Acad. Sci. U.S.A.,2003,100(22): 12576-12578.
    [8]A. R. Parker, D. R. McKenzie, M. C. J. Large. Multilayer reflectors in animals using green and gold beetles as contrasting examples [J]. JOURNAL OF EXPERIMENTAL BIOLOGY, 1998,201(9):1307-1313.
    [9]A. R. Parker, V. L. Welch, D. Driver, N. Martini. An opal analogue discovered in a weevil [J]. Nature,2003,426:786-787.
    [10]P. Vukusic, J. R. Sambles, C. R. Lawrence. Structural colour-Colour mixing in wing scales of a butterfly [J]. Nature,2000,404(6777):457-457.
    [11]Feng Liu, Haiwei Yin, Biqin Dong, et al. Inconspicuous structural coloration in the elytra of beetles Chlorophila obscuripennis (Coleoptera) [J]. Phys. Rev. E,2008,77(1):012901.
    [12]P. Vukusic, I. Hooper. Directionally controlled fluorescence emission in butterflies [J]. Science,2005,310(5751):1151-1151.
    [13]S. John. Photonics-Frozen light [J]. Nature,1997,390(6661):661-662.
    [14]P. W. Anderson. Absence of diffusion in certain random lattices [J]. Phys. Rev.,1958, 109(5):1492-1505.
    [15]P. W. Anderson. The question of classical localization-A theory of white paint [J]. PHILOSOPHICAL MAGAZINE B,1985,52(3):505-509.
    [16]C. J. Jin, X. D. Meng, B. Y. Cheng, et al. Photonic gap in amorphous photonic materials [J]. Phys. Rev. B,2001,63(19):195107.
    [17]J. M. Ziman. Models of disorder [M]. Cambridge:Cambridge University. Press,1979.
    [18]Yiquan Wang, Bingying Cheng, Daozhong Zhang. Distribution of density of photonic states in amorphous photonic materials [J]. Appl. Phys. Lett.,2003,83:2100.
    [19]Chongjun Jin, Xiaodong Meng, Bingying Cheng, Zhaolin Li, Daozhong Zhang. Photonic gap in amorphous photonic materials [J]. Phys. Rev. B.,2001,63:195107.
    [20]S. John. Strong localization of photons in certain disordered dielectric superlattices [J]. Phys. Rev. Lett.,1987,58(23):2486-2489.
    [21]Y. S. Chan, C. T. Chan, Z. Y. Liu. Photonic band gaps in two dimensional photonic quasicrystals [J]. Phys. Rev. Lett.,1998,80(5):956-959.
    [22]K. Edagawa, S. Kanoko, M. Notomi. Photonic amorphous diamond structure with a 3D photonic band gap [J]. Phys. Rev. Lett.,2008,1(1):013901.
    [23]贺蕴秋,王德平,徐振平.无机材料物理化学[M].北京:化学工业出版社,2005.
    [24]江伟辉,廖奇丽.R2O-RO-B2O3-SiO2-A12O3-P2O5-CaF2分相-析晶乳浊釉的形成机理[J].硅酸盐学报,2006,34(11):1356-1361.
    [25]M. Prusty, B. J. Keestra, J. G. P. Goossens, P. D. Experimental and computational study on structure development of PMMA/SAN blends [J]. Anderson. Chemical Engineering Science,2007,62(6):1825-1837.
    [26]L. H. Qian, M. W. Chen. Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation [J]. Applied Physics Letters,2007,91(8):083105.
    [27]Rong Li, K. Sieradzki. Ductile-brittle transition in random porous Au [J]. Phys. Rev. Lett., 1991,68(8):1168-1171.
    [28]P. Vukusic, B. Hallam, J. Noyes. Brilliant Whiteness in Ultrathin Beetle Scales [J]. Science, 2007,315:348-348.
    [1]葛德彪,电磁波时域有限差分方法[M].西安:西安电子科技大学出版社,2002.
    [2]R. Ziolkowski. Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs [J]. Optics Express,2003,11:662.
    [1]P. Vukusic, J. R. Sambles, and C. R. Lawrence. Limited-view iridescence in the butterfly Ancyluris meliboeus [J]. Proceedings of the royal society of london series B,2002,269 (1486):7-14.
    [2]A. R. Parker, V. L. Welch, D. Driver, and N. Martini. Structural colour-Opal analogue discovered in a weevil [J]. Nature,2003,426(6968):786-787.
    [3]J. P. Vigneron, J.-F. Colomer, N. Vigneron, and V. lousse. Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera) [J]. Phys. Rev. E 72,2005,72(6): 061904.
    [4]C. W. Mason. Structural colors in feathers. I [J]. J. Phys. Chem.,1923,27(3):201-251.
    [5]E. Merritt. A spectrophotometric study of certain cases of structural color [J]. J. Opt. Soc. Am.11,1925,1(2):93-98.
    [6]C. H. Greenwalt, W. Brandt, and D. D. Friel. Iridescent colors of hummingbird feathers [J]. J. Opt. Soc. Am.50,1960,50(10):1005-1013.
    [7]J. Dyck, Z. Biol. Skr. (Copenhagen) 18,1(1971).
    [8]J. Dyck. Structure and colour-production of blue barbs of agapornis-roseicollis and cotinga-maynana [J]. Biol. Skr,1971,115(1):17-&.
    [9]H. Durrer, In Biology of the Integument.2. Vertebrates, edited by J. Bereiter-Hahn, A. G. Matoltsky, and K. S. Richards (Springer, Berlin,1986), p.239.
    [10]J. Dyck, Biol. Skr. (Copenhagen) 30,2 (1987).
    [11]R. O. Prum, R. Torres, S. Williamson, and J. Dyck. Coherent light scattering by blue feather barbs [J]. Nature,1998,396(6706):28-29.
    [12]R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck. Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs [J]. Proc. R. Soc. London, Ser. B,1999,266(1414):13-22.
    [13]D. Osorio and A. D. Ham. Spectral reflectance and directional properties of structural coloration in bird plumage [J]. J. Exp. Biol.,2002,205(14):2017-2027.
    [14]M. D. Shawkey, A. M. Estes, L. M. Siefferman, and G. E. Hill. Nanostructure predicts intraspecific variation in ultraviolet-blue plumage colours [J].2003, Proc. R. Soc. London, Ser.B,270(1523):1455-1460.
    [15]J. Zi, X. D. Yu, L. Z. Li, X. H. Hu, C. Xu, X. J. Wang, X. H. Liu, and R. T. Fu. Coloration strategies in peacock feathers [J]. Proc. Natl. Acad. Sci. U.S.A.100,2003,100(22): 12576-12578.
    [16]D. J. Brink and N. G. van der berg. Structural colours from the feathers of the bird Bostrychia hagedash [J]. J. Phys.2004,37(5):813-818.
    [17]Y. Li, Z. Lu, H. Yin, X. Yu, X. Liu, and J. Zi. Structural origin of the brown color of barbules in male peacock tail feathers [J]. Phys. Rev. E,2005,72(1):010902.
    [18]B. Gralak, G. Tayeb, S. Enoch. Morpho butterflies wings color modeled with lamellar grating theory [J]. Optics Express,2001,9(11):567-578.
    [19]J. P. Vigneron, J. F. Colomer, M. Rassart, A. L. Ingram, and V. Lousse. Structural origin of the colored reflections from the black-billed magpie feathers [J]. Phys. Rev. E,2006,73(2): 021914.
    [20]D. W. Lee. Iridescent blue plants [J]. Am. Sci.,1997,85(1):56-63.
    [21]J. P. Vigneron, M. Rassart, Z. Vertesy, K. Kertesz, M. Sarrazin, L. P. Biro, K. Ertz, and V. Lousse. Optical structure and function of the white filamentary hair covering the edelweiss bracts [J]. Phys. Rev. E,2005,71(1):011906.
    [22]D. S. Blough. Spectral sensitivity in the pigeon [J]. J. Pot. Soc. Am.,1957,47(9):827-833.
    [23]A. A. Wright. Influence of ultraviole-radiation on pigeons color discrimination [J]. J, Iowa Med. Soc.,1972,17(3):325-&.
    [24]J. K. Bowmaker. Visual Pigments, Oil droplets and spectral sensitivity of pigeon [J]. Vision Res.,1977,17(10):1129-1138.
    [25]K. J. McGraw. Multiple UV reflectance peaks in the iridescent neck feathers of pigeons [J]. Naturwiss.,2004,91(3):125-129.
    [26]M. Born and E. Wolf. Principles of optics [M]. Cambridge:Cambridge University Press, 1999.
    [1]R. O. Prum, et al. Coherent light scattering by blue feather barbs [J]. Nature,1998, 396(6706):28-29.
    [2]S. Andersson. Morphology of UV reflectance in a whistling-thrush:implications for the study of structural colour signalling in birds [J]. Journal Of Avian Biology,1999,30(2): 193-204.
    [3]R. O. Prum, R. H. Torres. Structural colouration of mammalian skin:convergent evolution of coherently scattering dermal collagen arrays [J]. Journal of Experimental Biology,2004, 207(12):2157-2172.
    [4]R. O. Prum, R.H. Torres, Journal of Experimental Biology 206,14 (2003).
    [5]R. O. Prum, R. H. Torres. S. Williamson, et al. Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs [J]. Proceedings of the Royal Society of London Series B,1999,266(1414):13-22.
    [6]E. Finger, D. Burkhardt, J. Dyck. Avain plumage colors-Origin of UV reflection in a black parrot [J]. Naturwissenschaften,1992,79(4):187-188.
    [7]E. Finger. Visible and UV coloration in birds:Mie scattering as the basis of color in many bird feathers [J]. Naturwissenschaften,1995,82(12):570-573.
    [8]K. E. Arnold, Ian P. F. Owens, N. Justin Marshall. Fluorescent signaling in parrots [J]. Science,2002,295:92.
    [9]R. Zallen. The physics of amorphous solids [M]. A Wiley-Interscience Publication,1983.
    [10]Y. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev. Different regimes of light localization in a disordered photonic crystal [J]. Physical Review B,1999,60(3):1555-1562.
    [11]V. Yannopapas, A. Modinos, and N. Stefanou. Anderson localization of light in inverted opals [J]. Physical Review B,2003,68(19):193205.
    [12]Z. Y. Li, Z. Q. Zhang. Fragility of photonic band gaps in inverse-opal photonic crystals [J]. Phys. Rev. B,2000,62(3):1516-1519.
    [13]H. Cao, Y. Ling, J. Y. Xu, et al. Probing localized states with spectrally resolved speckle techniques [J]. Phys. Rev. E,2002,66(2):025601.
    [14]K. Nassau. The physics and chemistry of color [M]. John Wiley & Sons. Inc.,1983.
    [15]D. Osorio, A. D. Ham. Spectral reflectance and directional properties of structural coloration in bird plumage [J]. J. Exp. Biol,2002,205(14):2017-2027.
    [16]J. M. Ziman. Models of disorder [M]. Cambridge:Cambridge Univ. Press,1979.
    [17]J. D. Joannopoulos, R. D. Meade, J. N. Winn. Photonic Crystals [M]. Princeton:Princeton University Press,1995.
    [18]Jian Zi, Xindi Yu, et al. Coloration strategies in peacock feathers [J]. Proceedings of the National Academy of Sciencs of the United States of America,2003,100(22): 12576-12578.
    [19]A. R. Parker, et al. Structural colour-Opal analogue discovered in a weevil [J]. Nature, 2003,426 (6968):786-787.
    [20]Chongjun Jin, Xiaodong Meng, Bingying Cheng, Zhaolin Li, Daozhong Zhang. Photonic gap in amorphous photonic materials [J]. Phys. Rev. B.,2001,63:195107.
    [21]K. Edagawa, et al. Photonic amorphous diamond structure with a 3D photonic band gap [J]. Phys. Rev. Lett.,2008,100(1):013901.
    [22]K. M. Ho, et al. Existence of a photonic gap in periodic dielectric structures [J]. Phys. Rev. Lett.,1990,65(25):3152-3155.
    [23]M. Maldovan, E. L. Thomas. Diamond-structured photonic crystals [J]. Nature Materials, 3(9):593-600.
    [24]S. John. Strong localization of photons in certain disordered dielectric superlattices [J]. Phys. Rev. Lett.,1987,58(23):2486-2489.
    [25]P. W. Anderson. Absence Of Diffusion in certain random lattices [J]. Phys. Rev.,1958,109 (5):1492-1505.
    [26]C. T. Chan, Q. L. Yu, K. M. Ho. Order-N spectral method for electromagnetic waves [J]. Phys. Rev. B,1995,51(23):16635.
    [27]D. S. Wiersma, P. Bartolini, A. Lagendijk, et al. Localization of light in a disordered medium [J]. Nature,1997,390(6661):671-673.
    [28]X. T. Peng, A. D. Dinsmore. Light propagation in strongly scattering, random colloidal films:The role of the packing geometry [J]. Phys. Rev. Lett.,2007,99(14):143902.
    [29]R. Sapienza, P. D. Garcia, J. Bertolotti, M. D. Martin, A. Blanco, L. Vina, C. Lopez, D. S. Wiersma. Observation of resonant behavior in the energy velocity of diffused light [J]. Phys. Rev. Lett.,2007,99(23):233902.
    [30]P. D. Garcia, R. Sapienza, A. Blanco, C. Lopez. Photonic glass:A novel random material for light [J]. Advanced Materials,2007,19(18):2597.
    [31]R. Fenollosa, F. Meseguer, M. Tymczenko. Silicon colloids:From microcavities to photonic sponges [J]. Advanced Materials,2008,20(1):95.
    [1]P. W. Anderson. The question of classical localization-A theory of white paint [J]. Philosophical Magazine B,1985,52(3):505-509.
    [2]D. S. Wiersma, et al. Localization of light in a disordered medium [J]. Nature,1997, 390(6661):671-673.
    [3]Jian Zi, Xindi Yu, et al. Coloration strategies in peacock feathers [J]. Proceedings of the National Academy of Sciencs of the United States of America,2003,100(22):12576-12578.
    [4]Judith E, G. J. Wijnhoven and Willem L. Vos, Science 281,802 (1998).
    [5]Martin Storzer, Peter Gross, Christof M. Aegerter and Georg Maret, Phys. Rev. Lett.96, 063904 (2006).
    [6]Blanco A, Chomski E, Grabtchak S, et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres [J]. Nature,2000, 405(6785):437-440.
    [7]Florencio Garcia Santamaria, Hideki T.Miyazaki, Alfonso Urquia, Marta Ibisate, Manuel Belmonte, Norio Shinya, Francisco Meseguer and Cefe Lopez, Advanced Materials 14,1144 (2002).
    [8]Jingyun Huang, X. D. Wang, Z. L. Wang. Controlled replication of butterfly wings for achieving tunable photonic properties [J]. Nano Letters,2006,6(10):2325-2331.
    [9]Seshadri R, Meldrum FC. Bioskeletons as templates for ordered, macroporous structures [J]. Advance Materials,2000,12(15):1149.
    [10]Shinye Chia, Jun Urano, Fuyuhiko Tamanoi, Bruce Dunn, and Jeffrey I. Zink, Journal Of American Chemistry Society 122,6488 (2000).
    [11]Cook G, Timms PL, Spickermann CG. Exact replication of biological structures by chemical vapor deposition of silica [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003,42(5):557.
    [12]Yang D, Qi LM, Ma JM. Eggshell membrane templating of hierarchically ordered macroporous networks composed of TiO2 tubes [J]. Advance Materials,2002,14(21):1543.
    [13]Dong AG, Wang YJ, Tang Y, et al. Zeolitic tissue through wood cell templating [J]. Advance Materials,2002,14(12):926-929.
    [14]Y. H. Ye, S. Badilescu, V. V. Truong. Large-scale ordered macroporous SiO2 thin films by a template-directed method [J]. Applied Physics Letters,2002,81(4):616-618.
    [15]J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton Univ. Press, Princeton, NJ,1995).
    [16]P. Lodahl, van A. F. Driel, I. S. Nikolaev, et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,2004,430(7000):654-657.
    [17]B. Z. Tian, X. Y. Liu, B. Tu, et al. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs, Nature Materials,2003,2(3):159-163.
    [1]M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield. fabrication of photonic crystals for the visible spectrum by holographic lithography [J]. Nature,2000, 404(6773):53-56.
    [2]V. Berger, O. Gauthier-Lafaye, E. Costard. Photonic band gaps and holography [J]. J. Appl. Phys.,1997,82(1):60-64.
    [3]T. F. Krauss, R. M. De La. Photonic crystals in the optical regime-past, present and future [J]. Prog. Quantum Electron.,1999,23(2):51-96.
    [4]杨益民,冯敏,毛振伟,王昌燧,凌雪,龚明,孙新民,郭木森.汝瓷及其仿制品瓷釉的显微结构分析和“汝钧不分”难题的破解[J].分析测试学报,2005,24(6):16-20.
    [5]Yimin Yang, Min Feng, Xue Ling, Zhenwei Mao, Changsui Wang, Xinmin Sun, Musen Guo. Microstructural analysis of the color-generating mechanism in Ru ware, modern copies and its differentiation with Jun ware [J]. Journal of Archaeological Science,2005,32(2): 301-310.
    [6]Weidong Li, Jiazhi Li, Zequn Deng, Jun Wu, Jingkun Guo. Study on Ru ware glaze of the northern song dynasty:One of the earliest crystalline-phase separated glazes in ancient China [J]. Ceramics International,2005,31(3):487-494.
    [7]W. D. Kingery and P. Vandiver. Song dynasty Jun (Chun) ware glazes [J]. Amer. Ceram. Soc. Bull.,1983(11),62(11):1269.
    [8]刘平,陈显求,许淑惠.玻璃的分相与结晶(三)[J].玻璃与搪瓷,1994,22(3):28-32,4.
    [9]刘凯民,李洁,苗锡锦,刘春伟,苗长强.唐代花瓷釉的本质及其与后世分相乳光釉的关系[J].山东陶瓷,2006,29(1):6-10,21.
    [10]杨高林,孙洪巍,李国霞,赵维娟,李融武.基于米氏散射的钧瓷乳光模拟计算[J].材料导报,2007,21(10):120-124.
    [11]张福康.中国古陶瓷的科学[M].上海:上海人民美术出版社,2000.
    [12]贺蕴秋,王德平,徐振平.无机材料物理化学[M].北京:化学工业出版社,2005.
    [13]刘凯民.[J].山东陶瓷,1981,1:40.
    [14]M. Prusty, B. J. Keestra, J. G. P. Goossens. Experimental and computational study on structure development of PMMA/SAN blends [J]. Anderson. Chemical Engineering Science,2007,62(6):1825-1837.
    [15]西泽泰二.微观组织热力学[M].北京:化学工业出版社,2006.
    [16]夏玉虎,李彬,隋智通.[J].东北大学学报(自然科学版),1999,20:511.
    [17]孙洪巍,陈显求,黄瑞福,周学林,高力明.[J].陶瓷,1994,108:8.
    [18]黄建国,李伟东,孙承绪,张樵英.[J].现代技术陶瓷,2000,86:6.
    [19]江伟辉,廖奇丽.R2O-RO-B2O3-SiO2-A12O3-P2O5-CaF2分相-析晶乳浊釉的形成机理[J].硅酸盐学报,2006,34(11):1356-1361.
    [20]武秀兰,任强,王芬.R2O-RO-A12O3-SiO2-P2O5系分相/析晶乳浊釉乳浊粒子的形成机理[J].硅酸盐通报,2006,25(1):26-29.
    [21]K. Nassau. The physics and chemistry of color [M]. John Wiley & Sons, Inc.,1983.
    [22]S. John. Strong localization of photons in certain disordered dielectric superlattices [J], Phys. Rev. Lett.,1987,58(23):2486-2489.
    [23]Yizhou Li, Zhihua Lu, Haiwei Yin, Xindi Yu, Xiaohan Liu, and Jian Zi. Structural origin of the brown color of barbules in male peacock tail feathers [J]. Phys. Rev. E,2005,72(1): 010902.
    [24]Haiwei Yin, Lei Shi, Jing Sha, Yizhou Li, Youhua Qin, Biqin Dong, Serge Meyer, Xiaohan Liu, Li Zhao, and Jian Zi. Iridescence in the neck feathers of domestic pigeons [J]. Phys. Rev. E,2006,74(5):051916.
    [25]T. Hashimoto, M. Takenaka, H. Jinnai. Scattering studies of self-assembling processes of polymer blends in spinodal decomposition [J]. Journal of Applied Crystallography,1991, 24:457-466.
    [26]Ning Zhou, Frank S. Bates, Timothy P. Lodge. Mesoporous membrane templated by a polymeric bicontinuous microemulsion [J]. Nano Letters,2006,6(10):2354-2357.
    [27]A. Cumming, P. Wiltzius, F.S. Bates, J.H. Rosedale. Light-scattering experiments on phase-separation dynamics in binary fluid mixtures [J]. Phys. Rev. A,1992,45(2):885-897.
    [28]R. Petschek, H. Metiu. A computer-simulation of the time-dependent Ginzburg-Landau model for spinodal decomposition [J]. Journal of Chemical Physics,1983,79(7): 3443-3456.
    [29]P. Meakin, J. M. Deutch. Monte-Carlo simulation of diffusion controlled colloid growth-rates in 2 and 3 dimensions [J]. Journal of Chemical Physics,1984,80(5): 2115-2122.
    [30]M. R. Mruzik, F. F. Abraham, G. M. Pound. Phase separation in fluid systems by spinodal decompostion 2 molecular-dynamics computer-simulation [J]. Journal of Chemical Physics, 1978,69(8):3462-3467.
    [31]R. E. V. Vliet, H. C. J. Hoefsloot, P. J. Hamersma, P. D. ledema. Pressure-induced phase separation of polymer-solvent systems with dissipative particle dynamics [J]. Macromolecular Theory and Simulations,2000,9(9):698-702.
    [32]T. L. Tran, P. K. Chan, D. Rousseau. Morphology control in symmetric polymer blends using spinodal decomposition [J]. Chemical Engineering Science,2005,60(24): 7153-7159.
    [33]L. H. Qian, M. W. Chen. Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation [J]. Applied Physics Letters,2007,91(8):083105.
    [34]Rong Li, K. Sieradzki. Ductile-brittle transition in random porous Au [J]. Phys. Rev. Lett., 1991,68(8):1168-1171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700